2007 IEEE Workshop on Automatic Speech Recognition and Understanding

Kyoto, Japan 9-13 December 2007

Pages 1-358

IEEE Catalog Number: ISBN 10:

ISBN 13:

CFP07SRW-PRT 1-4244-1745-7 978-1-4244-1745-2

TABLE OF CONTENTS

Demonstrationsxv
S1: ACOUSTIC MODELING AND ROBUST ASR
Invited Talk: ROLES OF HIGH-FIDELITY ACOUSTIC MODELING IN
S1.1: INTERPOLATION OF LOST SPEECH SEGMENTS USING LP-HNM
S1.2: SPEECH ENHANCEMENT USING PCA AND VARIANCE OF THE
S1.3: DEVELOPMENT OF A PHONETIC SYSTEM FOR LARGE
S1.4: FACTOR ANALYSIS OF ACOUSTIC FEATURES FOR STREAMED
S1.5: MONOLINGUAL AND CROSSLINGUAL COMPARISON OF TANDEM
S1.6: INCORPORATING THE VOICING INFORMATION INTO4 HMM-BASED AUTOMATIC SPEECH RECOGNITION Peter Jancovic, Münevver Köküer, University of Birmingham, United Kingdom
S1.7: EXPLOITING COMPLEMENTARY ASPECTS OF PHONOLOGICAL
S1.8: ROBUST SPEECH RECOGNITION USING NOISE SUPPRESSION
S1.9: PREDICTIVE LINEAR TRANSFORMS FOR NOISE ROBUST SPEECH

S1.10: HIGH-PERFORMANCE HMM ADAPTATION WITH JOINT
Jinyu Li, Li Deng, Dong Yu, Yifan Gong, Alex Acero, Microsoft Corporation, United States
S1.11: MINIMUM MUTUAL INFORMATION BEAMFORMING FOR
S1.12: TWO EXTENSIONS TO ENSEMBLE SPEAKER AND SPEAKING
S1.13: MODULATION SPECTRUM EQUALIZATION FOR ROBUST SPEECH
S1.14: INVESTIGATING THE USE OF SPEECH FEATURES AND THEIR
S1.15: JOINT DECODING OF MULTIPLE SPEECH PATTERNS FOR
S1.16: ROBUST SPEECH RECOGNITION BY PROPERLY UTILIZING
S1.17: ROBUST SPEECH RECOGNITION WITH ON-LINE
S1.18: DESIGN AND IMPLEMENTATION OF A ROBOT AUDITION SYSTEM
S1.19: EXPERIMENTS ON CROSS-SYSTEM ACOUSTIC MODEL117 ADAPTATION

Diego Giuliani, Fabio Brugnara, Fondazione Bruno Kessler, Italy

S2: LANGUAGE MODELING AND SPEECH UNDERSTANDING

Invited Talk: VOICE SEARCH – INFORMATION ACCESS VIA VOICE123 QUERIES
Ye-Yi Wang, Microsoft Research, United States
S2.1: HIERARCHICAL PITMAN-YOR LANGUAGE MODELS FOR ASR IN124 MEETINGS
Songfang Huang, Steve Renals, University of Edinburgh, United Kingdom
S2.2: ADAPTING GRAPHEME-TO-PHONEME CONVERSION FOR NAME
Xiao Li, Asela Gunawardana, Alex Acero, Microsoft Research, United States
S2.3: GENERALIZED LINEAR INTERPOLATION OF LANGUAGE MODELS
S2.4: REFINE BIGRAM PLSA MODEL BY ASSIGNING LATENT TOPICS14. UNEVENLY
Jiazhong Nie, Runxin Li, Dingsheng Luo, Xihong Wu, Peking University, China
S2.5: EMPIRICAL STUDY OF THE NEURAL PROBABILISTIC LANGUAGE
S2.6: DISCRIMINATIVE LANGUAGE MODEL ADAPTATION FOR MANDARIN
S2.7: RERANKING MACHINE TRANSLATION HYPOTHESES WITH
S2.8: DYNAMIC LANGUAGE MODELING FOR A DAILY BROADCAST NEWS
S2.9: INVESTIGATING LINGUISTIC KNOWLEDGE IN A MAXIMUM
S2.10: ROBUST TOPIC INFERENCE FOR LATENT SEMANTIC LANGUAGE17' MODEL ADAPTATION
Aaron Heidel, Lin-shan Lee, National Taiwan University, Taiwan
S2.11: SPOKEN LANGUAGE UNDERSTANDING WITH KERNELS FOR18: SYNTACTIC/SEMANTIC STRUCTURES
Alessandro Moschitti Giusenne Riccardi Christian Raymond University of Trento Italy

S2.12: SPOKEN DOCUMENT SUMMARIZATION USING RELEVANT
S2.13: IMPROVING LECTURE SPEECH SUMMARIZATION USING
S2.14: AUTOMATIC DETECTION OF CONTRASTIVE ELEMENTS IN
S2.15: CALL CLASSIFICATION FOR AUTOMATED TROUBLESHOOTING ON
S2.16: MAXIMUM ENTROPY MODEL PARAMETERIZATION WITH TF*IDF
S2.17: A LANGUAGE MODELING APPROACH TO QUESTION ANSWERING
S2.18: AUTOMATIC LEXICAL PRONUNCIATIONS GENERATION AND
S2.19: NON-NATIVE PRONUNCIATION VARIATION MODELING USING AN
P: PROJECT TALKS
P.1: THE GALE PROJECT: A DESCRIPTION AND AN UPDATE237 Jordan Cohen, SRI International, United States
P.2: RECOGNITION AND UNDERSTANDING OF MEETINGS: THE AMI
P.3: INTRODUCTION OF THE METI PROJECT "DEVELOPMENT OF

S3: STATISTICAL MODELING AND LEARNING

Invited Talk: SUBMODULARITY AND ADAPTATION249 Jeff Bilmes, University of Washington, United States
S3.1: AGGLOMERATIVE INFORMATION BOTTLENECK FOR SPEAKER
S3.2: EFFICIENT COMBINATION OF PARAMETRIC SPACES, MODELS AND
S3.3: ROBUST SPEAKER CLUSTERING STRATEGIES TO DATA SOURCE
S3.4: A STUDY ON SOFT MARGIN ESTIMATION FOR LVCSR
S3.5: HIERARCHICAL LARGE-MARGIN GAUSSIAN MIXTURE MODELS FOR
S3.6: AUTOMATIC SPEECH RECOGNITION BASED ON WEIGHTED
S3.7: TRAINING DATA SELECTION FOR IMPROVING DISCRIMINATIVE
S3.8: A CONSTRAINED LINE SEARCH APPROACH TO GENERAL
S3.9: MIXTURE GAUSSIAN HMM-TRAJCTORY METHOD USING296 LIKELIHOOD COMPENSATION Yasuhiro Minami, NTT Corporation, Japan
S3.10: STATE-DEPENDENT MIXTURE TYING WITH VARIABLE

S3.11: BROAD PHONETIC CLASS RECOGNITION IN A HIDDEN MARKOV
S3.12: A COMPACT SEMIDEFINITE PROGRAMMING (SDP) FORMULATION312 FOR LARGE MARGIN ESTIMATION OF HMMS IN SPEECH RECOGNITION Yan Yin, Hui Jiang, York University, Canada
S3.13: HMM TRAINING BASED ON CV-EM AND CV GAUSSIAN MIXTURE318 OPTIMIZATION Takahiro Shinozaki, Tatsuya Kawahara, Kyoto University, Japan
S3.14: VARIATIONAL KULLBACK-LEIBLER DIVERGENCE FOR HIDDEN
S3.15: BAYESIAN ADAPTATION IN HMM TRAINING AND DECODING USING329 A MIXTURE OF FEATURE TRANSFORMS Stavros Tsakalidis, Spyros Matsoukas, BBN Technologies, United States
S3.16: USE OF SYLLABLE NUCLEI LOCATIONS TO IMPROVE ASR
S3.17: SPEECH RECOGNITION WITH LOCALIZED TIME-FREQUENCY
S3.18: REGULARIZATION, ADAPTATION, AND NON-INDEPENDENT347 FEATURES IMPROVE HIDDEN CONDITIONAL RANDOM FIELDS FOR PHONE CLASSIFICATION
Yun-Hsuan Sung, Constantinos Boulis, Christopher Manning, Dan Jurafsky, Stanford University, United States S3.19: DISCRIMINATIVE TRAINING OF MULTI-STATE BARGE-IN MODELS353 Andrej Ljolje, Vincent Goffin, AT&T Labs - Research, United States
S3.20: GRAPH-BASED LEARNING FOR PHONETIC CLASSIFICATION359 Andrei Alexandrescu, Katrin Kirchhoff, University of Washington, United States
K: KEYNOTE TALKS
K.1: SPOKEN LANGUAGE UNDERSTANDING: A SURVEY365 Renato De Mori, University of Avignon, France
K.2: COMBINING STATISTICAL MODELS WITH SYMBOLIC GRAMMAR

S4: SPEECH TRANSLATION AND LVCSR

Invited Talk: SPEECH-TRANSLATION: FROM DOMAIN-LIMITED TO3 DOMAIN-UNLIMITED TRANSLATION TASKS	3 7 9
Stephan Vogel, Carnegie Mellon University, United States	
S4.1: CONSOLIDATION BASED SPEECH TRANSLATION3 Chiori Hori, NiCT-ATR, Japan; Bing Zhao, Stephan Vogel, Alex Waibel, Carnegie Mellon University, United States	
S4.2: LATTICE-BASED VITERBI DECODING TECHNIQUES FOR SPEECH	386
S4.3: SEMANTIC TRANSLATION ERROR RATE FOR EVALUATING	3 90
S4.4: THE RWTH ARABIC-TO-ENGLISH SPOKEN LANGUAGE	196
S4.5: A COMPARISONAL STUDY OF THE MULTI-LAYER KOHONEN	102
S4.6: A NOVEL WEIGHTING TECHNIQUE FOR FUSING LANGUAGE	108
S4.7: NON-NATIVE SPEECH DATABASES	113
S4.8: DEALING WITH CROSS-LINGUAL ASPECTS IN SPOKEN NAME	l 19
S4.9: CROSSLINGUAL ACOUSTIC MODEL DEVELOPMENT FOR	125
S4.10: MULTI-STREAM DIALECT CLASSIFICATION USING SVM-GMM	l 3 1

S4.11: DERIVING SALIENT LEARNERS' MISPRONUNCIATIONS FROM
S4.12: THE TITECH LARGE VOCABULARY WFST SPEECH RECOGNITION
S4.13: ADVANCES IN ARABIC BROADCAST NEWS TRANSCRIPTION AT
S4.14: DEVELOPMENT OF THE 2007 RWTH MANDARIN LVCSR SYSTEM
S4.15: AN ALGORITHM FOR FAST COMPOSITION OF WEIGHTED
S4.16: A MANDARIN LECTURE SPEECH TRANSCRIPTION SYSTEM FOR
S4.17: THE IBM 2007 SPEECH TRANSCRIPTION SYSTEM FOR EUROPEAN
S4.18: OOV DETECTION BY JOINT WORD/PHONE LATTICE
S4.19: UNCERTAINTY IN TRAINING LARGE VOCABULARY SPEECH
S4.20: BUILDING A HIGHLY ACCURATE MANDARIN SPEECH

Ostendorf, University of Washington, United States

S5: SPOKEN AND MULTI-MODAL DIALOGUE SYSTEMS

Invited Talk: IMPLICIT USER-ADAPTIVE SYSTEM ENGAGEMENT IN	496
S5.1: USING PARTICLE FILTERS TO TRACK DIALOGUE STATE	502
S5.2: A METHOD FOR EVALUATING AND COMPARING USERSIMULATIONS: THE CRAMER-VON MISES DIVERGENCE Jason Williams, AT&T Labs - Research, United States	508
S5.3: A MULTI-LAYER ARCHITECTURE FOR SEMI-SYNCHRONOUS EVENT-DRIVEN DIALOGUE MANAGEMENT Antoine Raux, Maxine Eskenazi, Carnegie Mellon University, United States	514
S5.4: DEVELOPMENT AND PORTABILITY OF ASR AND Q&A MODULES	
S5.5: ERROR SIMULATION FOR TRAINING STATISTICAL DIALOGUE	526
S5.6: A DATA-CENTRIC ARCHITECTURE FOR DATA-DRIVEN SPOKEN	532
S5.7: EXAMPLE-BASED ERROR RECOVERY STRATEGY FOR SPOKEN	538
S5.8: TYPE-II DIALOGUE SYSTEMS FOR INFORMATION ACCESS FROM	544
S5.9: UNSUPERVISED STATE CLUSTERING FOR STOCHASTIC DIALOG	550
S5.10: DYNAMIC VOCABULARY PREDICTION FOR ISOLATED-WORD	556
S5.11: DATA SELECTION FOR SPEECH RECOGNITION	562
S5.12: TOWARDS BOTTOM-UP CONTINUOUS PHONE RECOGNITION	566

S5.13: A STUDY ON RESCORING USING HMM-BASED DETECTORS FOR
S5.14: RANDOM DISCRIMINANT STRUCTURE ANALYSIS FOR AUTOMATIC
S5.15: PHONOLOGICAL FEATURE BASED VARIABLE FRAME RATE
S5.16: AN ENHANCED MINIMUM CLASSIFICATION ERROR LEARNING
S5.17: INTERPOLATIVE VARIABLE FRAME RATE TRANSMISSION OF
S5.18: COMPARING ONE AND TWO-STAGE ACOUSTIC MODELING IN
S5.19: EXTENSIBLE SPEECH RECOGNITION SYSTEM USING60 PROXY-AGENT Teppei Nakano, Shinya Fujie, Tetsunori Kobayashi, Waseda University, Japan
S5.20: DEVELOPMENT OF VAD EVALUATION FRAMEWORK
S6: SPEECH MINING AND INFORMATION RETRIEVAL
Invited Talk: VOICE/AUDIO INFORMATION RETRIEVAL: MINIMIZING THE61 NEED FOR HUMAN EARS Mark Clements, Georgia Institute of Technology, United States; Marsal Gavalda, Nexidia, Inc., United States
S6.1: A SYSTEM FOR SPEECH DRIVEN INFORMATION RETRIEVAL

S6.2: TOWARDS SPOKEN-DOCUMENT RETRIEVAL FOR THE
S6.3: A STUDY OF LATTICE-BASED SPOKEN TERM DETECTION FOR
S6.4: FAST AUDIO SEARCH USING VECTOR-SPACE MODELLING
S6.5: THE LIMSI QAST SYSTEMS: COMPARISON BETWEEN HUMAN AND
S6.6: SOUNDBITE IDENTIFICATION USING REFERENCE AND
S6.7: TOPIC IDENTIFICATION FROM AUDIO RECORDINGS USING
S6.8: IMPROVEMENTS IN PHONE BASED AUDIO SEARCH VIA
S6.9: INTEGRATING SEVERAL ANNOTATION LAYERS FOR STATISTICAL
S6.10: ANALYTICAL COMPARISON BETWEEN POSITION SPECIFIC
S6.11: EFFICIENT USE OF OVERLAP INFORMATION IN SPEAKER
S6.12: SPEECHFIND FOR CDP: ADVANCES IN SPOKEN DOCUMENT
S6.13: A FAST-MATCH APPROACH FOR ROBUST, FASTER THAN REAL-TIME

S6.14: NEVER-ENDING LEARNING SYSTEM FOR ON-LINE SPEAKER	.699
DIARIZATION Konstantin Markov, Satoshi Nakamura, NICT-ATR, Japan	
Konstantin Markov, Satosni Nakamura, MC1-A1K, Japan	
S6.15: MULTIPLE FEATURE COMBINATION TO IMPROVE SPEAKER DIARIZATION OF TELEPHONE CONVERSATIONS	.705
Vishwa Gupta, Patrick Kenny, Pierre Ouellet, Gilles Boulianne, Pierre Dumouchel, Centre de Recherche	
Informatique de Montreal, Canada	
S6.16: SENSEI: SPOKEN ENGLISH ASSESSMENT FOR CALL CENTERAGENTS	.7 11
Abhishek Chandel, Abhinav Parate, Maymon Madathingal, Himanshu Pant, Nitendra Rajput, Shajith Ikbal,	Om
Deshmukh, Ashish Verma, IBM India Research Lab, India	
S6.17: TOWARDS ROBUST AUTOMATIC EVALUATION OF PATHOLOGIC	.717
TELEPHONE SPEECH	
Korbinian Riedhammer, Universität Erlangen-Nürnberg, Germany; Georg Stemmer, Siemens AG, Germany	, ,
Tino Haderlein, Maria Schuster, Frank Rosanowski, Elmar Nöth, Andreas Maier, Universität Erlangen-	
Nürnberg, Germany	