

2008 Electrical Design of Advanced Packaging and Systems Symposium (IEEE EDAPS 2008)

December 10 – 12, 2008 Seoul, KOREA

Sponsor

IEEE Components, Packaging, and Manufacturing Technology Society (CPMT)

Technical Co-sponsor

The Korean Institute of Electromagnetic Engineering and Science (KIEES)

Table of Contents

Session I - Power Integrity

D1-1-1	Power Delivery for the Next Generation Mobile Platform	1
	Tawfik Rahal-Arabi, Hee-Jun Park, Jaehong Hahn	
	Intel, USA	
D1-1-2	Power Integrity Estimation by Use of LSI Power-pin Model Applying	
	Chip-Package-Board Co-design	5
	Takashi Harada ¹ Masashi Ogawa ¹ , Manabu Kusumoto ¹ , Hiroshi Wabuka ²	
	¹ NEC Corporation, ² NEC Informatec Systems, Ltd., Japan	
D1 1 2	Shaving Daway Distribution Naturals for Fulawood Daway Intervity	
D1-1-3	Sharing Power Distribution Networks for Enhanced Power Integrity	0
	by using Through-Silicon-Via	9
	Jun So Pak ¹ , Jaemin Kim ¹ , Junho Lee ² , Hyungdong Lee ² , Kunwoo Park ² and	
	Joungho Kim ¹	
	¹ KAIST, ² Hynix Semiconductor Inc., Korea	
D1-1-4	Compact Electromagnetic Bandgap Structure for Noise Suppression in	
	Power Plane	13
	Hanumantha Rao Patnam ¹ , Karunakaran S ¹ , Madhayan Swaminathan ²	
	1 SAMEER- Center for Electromagnetics Chennai India	
	2 Caparaia Institute of Tachnology, USA	
	Georgia institute of Technology, USA	
D1-1-5	Characteristics of the Resonance and Impedance of Power-Bus Structure	
	with the Embedded Metamaterial Substratee	16
	Sungtek Kahng, University of Incheon, Korea	
Sessio	n II – Signal Integrity A	
D1-2-1	ASIC packaging challenges with high speed interfaces	20

IBM Systems and Technology Group, USA

D1-2-2	A Frequency Tunable Resonant Clock Distribution Scheme Using Bond-Wir	e
	Inductor	24
	Woojin Lee, Jun So Pak, Jiwoo Pak, Chunghyun Ryu, Jongbae Park, and	
	Joungho Kim	
	KAIST, Korea	
D1-2-3	Chip-Package-Board Co-design – a DDR3 System Design Example from	
	Circuit Designer's Perspective	27
	Yu-Hsiang Lin, Jonathan Chou ² , Yi-Chang Lu ¹ , Tzong-Lin Wu ¹ , and Hsin-Shu C	¹ Then ¹
	¹ National Taiwan University, ² Nanya Technology Corporation (NTC), Taiwan	
D1-2-4	Power Integrity Chip-Package-PCB Co-Simulation for I/O Interface of	
	DDR3 High-Speed Memory	31
	Hao-Hsiang Chuang ¹ , Shu-Jung Wu ¹ , Ming-Zhang Hong ² , Darren Hsu ² ,	
	Raphael Huang ² , Li Chang Hsiao ² , and Tzong-Lin Wu ¹	
	¹ National Taiwan University, ² Nanya Technology Corporation (NTC), Taiwan	
D1-2-5	In-Circuit Impedance Measurement Based on a Two-Probe Approach	35
	Weng-Yew Chang, Richard ¹ , Kye-Yak See ² , Hu Bo ²	
	¹ DSO National Laboratories, ² Nanyang Technological University, Singapore	
Sessio	n III – Poster Session	
D1-3-1	Reduction of Radiated Electromagnetic Interference in 4-Phases Pulse	
	Width Modulation Converter System	39
	Hee-Jung Kim ¹ , Hyun Kim ¹ , Seung-Young Ahn ² , Il-Young Oh ¹ , and	
	Jong-Gwan Yook ¹	
	¹ Yonsei University, ² Samsung Electronics, Korea	
D1-3-2	Investigation of Electromagnetic Noise Coupling that Affects Packet Error	
	Rates in Wireless-LAN Mounted Printed Circuit Boards	43
	Mizuki Iwanami ¹ , Hiroshi Fukuda ¹ , Manabu Kusumoto ¹ , Shigeki Hoshino ² ,	
	Takashi Harada ¹	
	¹ NEC Corporation, ² NEC Patent Service, Ltd., Japan	

D1-3-3	Hardware implementation of an Adaptive Noise Canceller in an automobile	
	environment	45
	Bu-Shik Ryu ¹ , Jae-Kyun Lee ¹ , Joonwan Kim ² , Chae-Wook Lee ¹	
	¹ Daegu University, Korea, ² LeTourneau University, USA	
D1-3-4	Experimental Study of Radiated Emission from High Speed Power Plane	49
	Wei-Shan Soh ¹ , Kye-Yak See ¹ , Weng-Yew Chang, Richard ²	
	¹ Nanyang Technological University, ² DSO National Laboratories, Singapore	
D1-3-5	Extraction of Material Properties for Low-K and Low-Loss Dielectrics Using	
	Cavity Resonator and Efficient Finite Difference Solver up to 40GHz	53
	Seunghyun E. Hwang ¹ , Madhavan Swaminathan ¹ , Venkatesan Venkatakrishnan ²	
	¹ Georgia Institute of Technology, USA, ² Sameer, India	
D1-3-6	Quasi-Static Lumped Element Stand-Alone Package Model for Quad Flat	
	Package	57
	Umberto Paoletti, Takashi Hisakado, Osami Wada	
	Kyoto University, Japan	
D1-3-7	Analysis for shielding effectiveness of an enclosure with a dielectric-backed	
	aperture and a PCB	61
	Su-han Kim, Jae-hyun Lee	
	Chungnam National University, Korea	
D1-3-8	Implementation of HF/UHF multiband RFID reader SiP with	
	Package-on-Package technology	65
	Kyeongil Yi ¹ , Hyunsik Kim ¹ , Jaewhan Kim ¹ , Jikon Kim ¹ , Junghyun Cho ¹ ,	
	Kwangduk An ² , and Shiho Kim ¹	
	¹ Chungbuk National University, ² Samsung Electronics, Korea	
D1-3-9	An Efficient and Broadband Slot Antenna for 60GHz Wireless Applications	69
	Florian Ohnimus ^{1,2} , Ivan Ndip ¹ , Stephan Guttowski ¹ , Herbert Reichl ^{1,2}	
	¹ Fraunhofer IZM, ² Technische Universität Berlin, Germany	

D1-3-10	A Study on Broadband Switching Noise Reduction by Embedding	
	High-Density Thin-Film Capacitor In a Laminate Package	73
	Satoshi Kaneko ¹ , Yo Takahahsi ¹ , Toshio Sudo ¹ , Akihiro Kanno ² ,	
	Akiko Sugimmoto ² , and Fujio Kuwako ²	
	¹ Shibaura Institute of Technology, ² Mitsui Mining & Smelting Co., Ltd, Japan	
D1-3-11	PCB Embedded Capacitor with Central Via Connection Structure for	
	RF Application	77
	Chang-Sheng Chen ^{1, 2} , Yo-Shen Lin ² , Wei-Ting Chen ¹ , Chin-Sun Shyu ¹ ,	
	Shinn-Juh Lay ¹ , Min-Lin Lee ¹	
	¹ Industrial Technology Research Institute, ² National Central University, Taiwan	
D1-3-12	Investigation of an Embedded RF Switch IC in Printed-Circuit-Board	81
	Jong-In Ryu, Dongsu Kim, Se-Hoon Park, Jong Chul Park, and Jun Chul Kim	
	Korea Electronics Technology Institute, Korea	
D1-3-13	Modeling of Chip-Package-PCB Hierarchical Power Distribution Network	
	based on Segmentation Method	85
	Jaemin Kim, Jongjoo Shim, Jun So Pak, and Joungho Kim	
	KAIST, Korea	
D1-3-14	Partial EBG Placement on PDN to Effectively Suppress Simultaneous	
	Switching Noise	89
	Jong Hwa Kwon ¹ , Dong Uk Sim ¹ , Sang Il Kwak ¹ , Jae Hoon Yun ¹ , and	
	Jong Gwan Yook ²	
	¹ Electronics and Telecommunications Research Institute, ² Yonsei University, Kor	rea
D1-3-15	Mode-Impedance Method for Modeling and Analysis of Crosstalk	
	in Differential Meander Delay Lines	93
	Gawon Kim, Jaemin Kim, Sangrok Lee, Jiseong Kim, and Joungho Kim	
	KAIST, Korea	
D1-3-16	Analysis of the EMI and SI Effects on the Flexible-PCBs for Mobile	
	Application	97
	Tae-Heon Lee ¹ , Chang-Gyun Kim ² , Jang-Hoon Lee ¹ , Jae-Kyung Wee ¹	

¹Soongsil University, ²ROOTiN Technology, Korea

D1-3-17	Signal Integrity Analysis of DDR3 High-Speed Memory Module	101
	Cheng-Kuan Chen ¹ , Wei-Da Guo ¹ , Chun-Huang Yu ² , Ruey-Beei Wu ¹	
	¹ National Taiwan University, ² NanYa Technology Corporation (NTC), Taiwan	
D1-3-18	Optimization of Via Structure in Multilayer PCB for High Speed Signal	
	Transmission	105
	Bong-Gyu Kang, Hyun Kim, Hee-do Kang, and Jong-Gwan Yook	
	Yonsei University, Korea	
D1-3-19	Module Design Using 2-Layers PCB for an Automotive BLDC	
	Motor Driver	109
	Chang-Gyun Kim ¹ , Tae-Heon Lee ² , Sang-Kook Kim ³ , Jin-Yong Jeon ³ ,	
	Jae-Kyung Wee ²	
	¹ ROOTiN Technology, ² Soongsil University, ³ Hyundai Autonet Co. Ltd, Korea	
D1-3-20	Electrical Performance of the Imperfect Reference Plane for	
D1-3-20	Electrical Performance of the Imperfect Reference Plane for Transmission Line	113
D1-3-20	Electrical Performance of the Imperfect Reference Plane for Transmission Line Jimmy Huang, Jiun Kai Beh, Jackson Kong, Chan Kim Lee	113
D1-3-20	Electrical Performance of the Imperfect Reference Plane for Transmission Line Jimmy Huang, Jiun Kai Beh, Jackson Kong, Chan Kim Lee Intel, Malaysia	113
D1-3-20 D1-3-21	Electrical Performance of the Imperfect Reference Plane for Transmission Line Jimmy Huang, Jiun Kai Beh, Jackson Kong, Chan Kim Lee Intel, Malaysia Pad Shape Effects on High Frequency Signal Transfer Characteristics	113
D1-3-20 D1-3-21	Electrical Performance of the Imperfect Reference Plane for Transmission Line Jimmy Huang, Jiun Kai Beh, Jackson Kong, Chan Kim Lee Intel, Malaysia Pad Shape Effects on High Frequency Signal Transfer Characteristics Ki-hoon Nam ¹ , Eun-kwang Koh ¹ , Eun-Ju Hong ² , Seung-Hun Park ² ,	113 117
D1-3-20 D1-3-21	Electrical Performance of the Imperfect Reference Plane for Transmission Line Jimmy Huang, Jiun Kai Beh, Jackson Kong, Chan Kim Lee Intel, Malaysia Pad Shape Effects on High Frequency Signal Transfer Characteristics Ki-hoon Nam ¹ , Eun-kwang Koh ¹ , Eun-Ju Hong ² , Seung-Hun Park ² , Jai-Yeol Lee ² , In-Gu Kwak ² , Wansoo Nah ¹	113 117
D1-3-20 D1-3-21	Electrical Performance of the Imperfect Reference Plane for Transmission Line Jimmy Huang, Jiun Kai Beh, Jackson Kong, Chan Kim Lee Intel, Malaysia Pad Shape Effects on High Frequency Signal Transfer Characteristics Ki-hoon Nam ¹ , Eun-kwang Koh ¹ , Eun-Ju Hong ² , Seung-Hun Park ² , Jai-Yeol Lee ² , In-Gu Kwak ² , Wansoo Nah ¹ ¹ SungkyunKwan University, ² Samsung Electronics, Korea	113 117
D1-3-20 D1-3-21 D1-3-22	Electrical Performance of the Imperfect Reference Plane for Transmission Line Jimmy Huang, Jiun Kai Beh, Jackson Kong, Chan Kim Lee Intel, Malaysia Pad Shape Effects on High Frequency Signal Transfer Characteristics Ki-hoon Nam ¹ , Eun-kwang Koh ¹ , Eun-Ju Hong ² , Seung-Hun Park ² , Jai-Yeol Lee ² , In-Gu Kwak ² , Wansoo Nah ¹ ¹ SungkyunKwan University, ² Samsung Electronics, Korea A Circuit Model for ESD Performance Analysis of Printed Circuit Boards	113117120
D1-3-20 D1-3-21 D1-3-22	Electrical Performance of the Imperfect Reference Plane for Transmission Line Jimmy Huang, Jiun Kai Beh, Jackson Kong, Chan Kim Lee Intel, Malaysia Pad Shape Effects on High Frequency Signal Transfer Characteristics Ki-hoon Nam ¹ , Eun-kwang Koh ¹ , Eun-Ju Hong ² , Seung-Hun Park ² , Jai-Yeol Lee ² , In-Gu Kwak ² , Wansoo Nah ¹ ¹ SungkyunKwan University, ² Samsung Electronics, Korea A Circuit Model for ESD Performance Analysis of Printed Circuit Boards Byong-Su Seol ¹ , Jong-Sung Lee ¹ , Jae-Deok Lim ¹ , Hyungseok Lee ¹ ,	113 117 120
D1-3-20 D1-3-21 D1-3-22	Electrical Performance of the Imperfect Reference Plane for Transmission Line Jimmy Huang, Jiun Kai Beh, Jackson Kong, Chan Kim Lee Intel, Malaysia Pad Shape Effects on High Frequency Signal Transfer Characteristics Ki-hoon Nam ¹ , Eun-kwang Koh ¹ , Eun-Ju Hong ² , Seung-Hun Park ² , Jai-Yeol Lee ² , In-Gu Kwak ² , Wansoo Nah ¹ ¹ SungkyunKwan University, ² Samsung Electronics, Korea A Circuit Model for ESD Performance Analysis of Printed Circuit Boards Byong-Su Seol ¹ , Jong-Sung Lee ¹ , Jae-Deok Lim ¹ , Hyungseok Lee ¹ , HarkByeong Park ¹ , Argha Nandy ² , David Pommerenke ²	113 117 120
D1-3-20 D1-3-21 D1-3-22	Electrical Performance of the Imperfect Reference Plane for Transmission Line Jimmy Huang, Jiun Kai Beh, Jackson Kong, Chan Kim Lee Intel, Malaysia Pad Shape Effects on High Frequency Signal Transfer Characteristics Ki-hoon Nam ¹ , Eun-kwang Koh ¹ , Eun-Ju Hong ² , Seung-Hun Park ² , Jai-Yeol Lee ² , In-Gu Kwak ² , Wansoo Nah ¹ ¹ SungkyunKwan University, ² Samsung Electronics, Korea A Circuit Model for ESD Performance Analysis of Printed Circuit Boards Byong-Su Seol ¹ , Jong-Sung Lee ¹ , Jae-Deok Lim ¹ , Hyungseok Lee ¹ , HarkByeong Park ¹ , Argha Nandy ² , David Pommerenke ² ¹ Samsung Electronics Co., Ltd., Korea, ² Missouri University of Science and	113 117 120

Session IV – EMI/EMC

D1-4-1	A Novel Method for Suppression of Vertical Coupling in Multi-layered	
	Substrates	124
	Nithya Sankaran, Madhavan Swaminathan and Rao Tummala	
	Georgia Institute of Technology, USA	
D1-4-2	Minimizing Electromagnetic Interference in Power-Ground Cavities	128
	Ivan Ndip ¹ , Florian Ohnimus ^{1,2} , Stephan Guttowski ¹ , Herbert Reichl ^{1,2}	
	¹ Fraunhofer Institute for Reliability and Microintegration, IZM,	
	² Technische Universität Berlin, Germany	
D1-4-3	Impact of Package Inductance and DQ Driver Strength on the 3 rd Harmonic	
	EMI from DRAM	132
	Junho Lee, Dae-kun Yoon, Hyunseok Kim, Booho Jung, Hyungdong Lee,	
	Kunwoo Park, and Joongsik Kih	
	Hynix Semiconductor Inc., Korea	
D1-4-4	Modeling of Microcontroller with Multiple Power Supply Pins for Conducte	d
	EMI Simulations	135
	Kengo Iokibe ¹ , Ryota Higashi ¹ , Takahiro Tsuda ² , Kouji Ichikawa ² ,	
	Katsumi Nakamura ² , Yoshitaka Toyota ¹ , and Ryuji Koga ¹	
	¹ Okayama University, ² DENSO Corporation, JAPAN	
D1-4-5	APD-based Measurement Technique to Estimate the Impact of Noise Emission	on
	from Electrical Appliances on Digital Communication Systems	139
	A.N Zainal Abidin ¹ , W.R Wan Abdullah ¹ , T.C Chuah ² , M.Z.M Jenu ³ , A.Ramli ¹	
	¹ TM Research & Development Sdn. Bhd., ² Multimedia University,	
	³ Universiti Tun Hussein Onn, Malaysia	
Sessio	n V – Modeling of Interconnect, PDN, and EMI	

D2-1-1	A Concise Multiple Scattering Method for Via Array Analysis in a Circular	
	Plate Pair	143
	Yaojiang Zhang, Jun Fan, Arun Reddy Chada, and James L. Drewniak	

Missouri University of Science & Technology, USA

D2-1-2	Generalized PEEC Analysis for Planar Circuits with Narrow	
	Slotted Ground	147
	Kai Yang and Ke-Li Wu	
	The Chinese University of Hong Kong, Hong Kong	
D2-1-3	On the Extension of the Image Theory to Partial Inductance Calculation	151
	Umberto Paoletti, Takashi Hisakado, Osami Wada	
	Kyoto University, Japan	
D2-1-4	Stability Analysis of the Latency Insertion Method Using a Block Matrix	
	Formulation	155
	José Schutt-Ainé	
	University of Illinois at Urbana-Champaign, USA	
D2-1-5	Estimation of Parallel FDTD-based Electromagnetic Field Solver on PC	
	Cluster with Multi-Core CPUs	159
	Naoki Oguni ¹ , Hideki Aasai ^{1,2}	
	¹ Shizuoka University, ² SESAME Technology Inc, Japan	
Sessio	n VI – Electro-Thermal Analysis	
D2-2-1	Co-Optimization of Signal, Power, and Thermal Distribution Networks	
	for 3D ICs	163
	Young-Joon Lee and Sung Kyu Lim	
	Georgia Institute of Technology, USA	
D2-2-2	Electro-Thermo-Mechanical Investigation on Multi-Level Interconnects	
	in the Presence of an ESD Pulse	167
	Fan-Zhi Kong ¹ , Wen-Yan Yin ¹ , Jun-Fa Mao ¹ , and Qin Huo Liu ²	
	¹ Shanghai Jiao Tong University, CHINA, ² Duke University, USA	
D2-2-3	Thermal-Aware Electrical Analysis of High-Speed Interconnect	171
	¹ En-Xiao Liu, ^{1,2} Er-Ping Li, and ¹ Xingchang Wei	

¹A*STAR Institute of High Performance Computing, ²National University of Singapore, Singapore

D2-2-4	Electro-Thermal Characterization of Single-walled Carbon Nanotube (SWCNT) Interconnect Arrays Wen-Chao Chen ¹ , Lei Jia ¹ , Wen-Yan Yin ¹ , and Q. H. Liu ² ¹ Shanghai Jiao Tong University, CHINA, ² Duke University, USA	175
Sessior	ı VII – Package and Embedded Passive Design	
D2-3-1	Novel and Low Cost Through Silicon Via Solution for Wafer Scale	
	Packaging of Image Sensors	179
	G Humpston	
	Tessera, United Kingdom	
D2-3-2	A Diplexer by various Embedding Method	183
	Chan-Sei Yoo, Se-Hoon Park, Woo-Sung Lee, Jun-Chul Kim, Nam-Kee Kang,	
	Jong-Chul Park	
	Korea Electronics Technology Institute, Korea	
D2-3-3	13.56MHz RFID reader SiP with embedded Antenna	186
	Jikon Kim ¹ , Hyunsik Kim ¹ , Jaewhan Kim ¹ , Junghyun Cho ¹ ,	
	Gawon Kim ² , and Shiho Kim ¹	
	¹ Chungbuk National University, ² KAIST, Korea	
D2-3-4	LTCC-based Triplexers for WiMAX Front-end Modules	190
	Dongsu Kim ¹ , Dong Ho Kim ^{1,2} , Chong Dae Park ² , Jong In Ryu ¹ ,	
	Jun Chul Kim ¹ , and Nam Kee Kang ¹	
	¹ Korea Electronics Technology Institute, ² MyongJi University, Korea	
D2-3-5	A Low-Cost Approach for Testing Embedded RF Passive Circuits Based on	
	Oscillation Principle	194
	Abhilash Goyal and Madhavan Swaminathan	
	Georgia Institute of Technology, USA	

D2-3-6	A Feasibility Study of Antenna in a Package Technology for 40GHz	
	Front-end Module	198
	Woo-Jin Byun, Bong-Su Kim, Kwang-Seon Kim, Jong-Myun Kim	
	and Myung-Sun Song	
	ETRI, Korea	
Sessio	n VIII – Signal Integrity B	
D2-4- 1	Coupled High-Speed Interconnect Analysis on Parallel Platforms	202
	D. Paul, N. M. Nakhla, R. Achar, M. S. Nakhla	
	Carleton University, Canada	
D2-4-2	Novel Multimodal High-Speed Structures Using Substrate Integrated	
	Waveguides with Shielding Walls in Thin Film Technology	206
	Brian Curran ¹ , Ivan Ndip ¹ , Stephan Guttovski ¹ , Herbert Reichl ^{1,2}	
	¹ Fraunhofer Institute for Reliability and Microintegration	
	² Technische Universität Berlin, Germany	
D2-4-3	Analysis of Signal Integrity/Power Integrity in Multilayer Printed	
22.0	Circuit Board and Two Improving Methods	210
	Hee-do Kang Hyun Kim Jong-Gwan Yook	
	Yonsei University, Korea	
D2 4 4	Signal Integrity and Deliability of a New Multi Steel Deckage using	
D2-4-4	a Dragoune Conductive Dukhen	214
	<i>a</i> ressure Conductive Rubber	214
	Kibulii Kang, Jindo Byuli, Jae-Woli Jang, Hai-Toung Lee,	
	Jae-Hoon Choi, Jae-Seon Hwang, Dong-Chun Lee	
	Ajou University, Samsung Electronics co., LTD, Korea	
D2-4-5	Enhanced Wire Bond Transition from Die to Chip Carrier for	
	3.1-10.6 GHz UWB applications	218
	Olivier Fourquin ^{1,2} , Joseph Romen Cubillo ¹ , Jean Gaubert ¹ ,	
	Sylvain Bourdel ¹ , Marc Battista ¹	
	¹ Aix-Marseille University, ² Insight SiP, France	

D2-4-6A Delay Estimation Method Using Reduced Model of RLC Interconnects222Chang-Woo Park, Moon-Sung Jeong, Ki-Young Kim, Seok-Yoon Kim
Soongsil University, Korea221