2009 IEEE 20th International **Conference on Indium Phosphide** & Related Materials

(IPRM)

Newport Beach, California, USA 10-14 May 2009

IEEE Catalog Number: CFP09IIP-PRT ISBN:

978-1-4244-3432-9

Table of Contents

Monday, 11 May 2009

PLE	Plenary Session	
PLE1	THz Technologies and Applications	N/A
PLE2	Recent Advances in InP PICs	1
PLE3	Quantum Cascade Lasers and Applications	3
MA1	HBT Devices and Circuits	
MA1.1	InP-Based DHBT Technology for High-Speed Mixed Signal and Digital Applications	10
MA1.2	200-nm InGaAs/InP Type I DHBT Employing a Dual-Sidewall Emitter Process Demonstrating fmax $> 800 \text{GHz}$ and ft = 360GHz	16
MA1.3	Performance Improvement of Composition-Graded AlGaAsSb/InP Double Heterojunction Bipolar Transistors	20
MA1.4	172 GHz Divide-by-Two Circuit using a 0.25-um InP HBT Technology	24
MB1	Photonic Crystal and Long Wavelength Lasers	
MB1.1	Widely Tunable Photonic Crystal Coupled Cavity Laser Diodes Based on Quantum-Dash Active Material	28
MB1.2	Local Digital Etching and Infiltration for Tuning of a H1-Cavity in Deeply Etched InP/InGaAsP/InP Photonic Crystals	31
MB1.3	An Electrically Driven Quasi-L2 Photonic Crystal Nano-Cavity with a Small Mode Volume	35
MB1.4	Low-dispersion InGaAsP/InP Slow Light Waveguide Optical Switch with Coupled Bragg Reflector Waveguide	37
MB1.5	Improvement of 1.55 μm InAs QD Laser using Vicinal (001)InP Substrate	41
MA2	Epitaxy & Hetero-Integration	
MA2.1	Ultra High Repetition Rate and Very Low Noise Mode Locked Lasers based on InAs/InP Quantum Dash Active Material	45
MA2.2	Uniform InGaAs Micro-Discs on Si by Micro-Channel Selective-Area MOVPE	48
MA2.3	Selective Growth and Characterization of InGaAs Quantum Dots on Patterned InP	52

Substrates Utilizing a Diblock Copolymer Template

MA2.4	Influence of Growth Rate and Temperature on InP/GaInAs Interface Structure Analyzed by X-ray CTR Scattering Measurement	55
MA2.5	Heterogeneous Integration of Indium Phosphide on Silicon by Nano Epitaxial Lateral Overgrowth	59
MA2.6	Defect Reduction in Large Lattice Mismatch Epitaxial Growth through Block Copolymer Full Wafer Patterning	63
MA2.7	InAs QDs on thin GaPN buffer on GaP by MOCVD	65
MB2	Quantum Dots and Nanostructured Lasers	
MB2.1	Progress in Photonic Crystal Quantum-Dot and Quantum-Well Lasers	69
MB2.2	Characteristics of Highly Stacked Quantum Dot Laser Fabricated on InP(311)B Substrate	73
MB2.3	Energy Transfer in Patterned InAs Quantum Dot Cluster Grown on GaAs Nano-Pyramid	75
MB2.4	Columnar Quantum Dashes for Polarization Insensitive Semiconductor Optical Amplifiers	77
MB2.5	InAs Quantum Dots on AlGaInAs Emitting in the Optical C-Band at 1.55 μm	80
MB2.6	Surface States Passivation for and Regrowth around Nanoposts Formed for the Fabrication of InP-based Intersubband Quantum Box Lasers	83
MB2.7	Near-field Imaging Spectroscopy of Low Density InAs/InP Quantum Dots	87
Tuesda	y, 12 May 2009	
TuA1	Novel Substrate Technology and Hetero-Integration	
TuA1.1	Growth Crystal InP with REEs Elements	91
TuA1.2	Nano-Electronics of High k Dielectrics on InGaAs for Key Technologies Beyond Si CMOS	94
TuA1.3	Progress and Challenges in the Direct Monolithic Integration of III-V Devices and Si CMOS on Silicon Substrates	100
TuA1.4	Technology for Dense Heterogeneous Integration of InP HBTs and CMOS	105
TuA1.5	Source/Drain Formation by Using Epitaxial Regrowth of n+InP for III-V nMOSFETs	111
TuA2	HEMT Devices	
TuA2.1	High Performance InP HEMT Technology with Multiple Interconnect Layers for Advanced RF and Mixed Signal Circuits	115

TuA2.2	Enhancement Mode In0.53Ga0.47As MOSFET with Self-aligned Epitaxial Source/Drain	120
TuA2.3	Theoretical Study of Performance Limits in Nano-Scale InAs HEMTs Based on Quantum-Corrected Monte Carlo Method	124
TuA2.4	A 40-nm-Gate InAs/InGaAs Composite-Channel HEMT with 2200 mS/mm and 500-GHz fT	128
TuA2.5	Scaling Benefit of InAs PHEMTs	132
TuA2.6	Hetero-Epitaxy of III-V Compounds Latticed-Matched to InP on GaAs/Si by MOCVD for Device Applications	136
TuB1	Photodetectors	
TuB1.1	Advances in Single Photon Detectors	140
TuB1.2	High Detection Efficiency InGaAs/InP Single Photon Avalanche Photodiodes	146
TuB1.3	Reduced Frequency Dependence of Third Order Nonlinearities in Partially-Depleted- Absorber Photodiodes	147
TuB1.4	Low Dark Current SWIR Photodiode with InGaAs/GaAsSb Type II Quantum Wells grown on InP Substrate	149
TuB1.5	InGaP/GaAs Heterojunction Phototransistors for Ultra-low Optical Power Detection	153
TuB1.6	Optically Pre-Amplified Photodetectors for Multi-Guide Vertical Integration in InP	155
TuB1.7	Investigation of Evanescent Coupling Between SOI Waveguides and Heterogeneously-Integrated III-V pin Photodetectors	159
TuB2	Photonic Integration Technology	
TuB2.1	Programmable Photonic Filters Fabricated with Deeply Etched Waveguides	163
TuB2.2	First Monolithic InP-Based 90°-Hybrid OEIC Comprising Balanced Detectors for 100GE Coherent Frontends	167
TuB2.3	Chained Integration of Broadband Electroabsorption Modulators and Semiconductor Optical Amplifier for Noise Reduction	171
TuB2.4	Low-Threshold and High-Efficiency Operation of Distributed Reflector Laser with Wirelike Active Regions by Reduced Waveguide Loss	174
TuB2.5	Lateral Current Injection Type GaInAsP/InP DFB Lasers on SI-InP Substrate	178
TuB2.6	Multiple-Wavelength GaInAs/GaAs VCSELs with Grading a Spacer Layer for Short Reach WDM Applications	182

Wednesday, 13 May 2009

WA1	HEMT Circuits	
WA1.1	Sub-MMW Active Integrated Circuits based on 35 nm InP HEMT Technology	185
WA1.2	Metamorphic HEMT Technology for Low-noise Applications	188
WA1.3	Fundamental Oscillation up to 831 GHz in GaInAs/AlAs Resonant Tunneling Diodes	192
WA1.4	A 300 GHz mHEMT Amplifier Module	196
WA1.5	Manufacturable Tri-Stack AlSb/InAs HEMT Low Noise Amplifiers Using Wafer-Level-Packaging Technology for Light-Weight and Ultralow-Power Applications	200
WA1.6	InGaAs/InAlAs/InP Power HEMT with an Improved Ohimc Contact and an Extremely High Operating Voltage	204
WA1.7	An InGaAs PIN-diode based Broadband Traveling-wave Switch with High-Isolation Characteristics	207
WB1	Epitaxy & Heterojunction	
WB1.1	III-V/SOI Heterogeneous Photonic Integrated Devices for Optical Interconnection in LSI	210
WB1.2	Novel Application of Quantum Well Intermixing Implant Buffer Layer to Enable High-Density Photonic Integrated Circuits in InP	215
WB1.3	Deep Etching and Rabbit-Ear-Free Regrowths for Quantum Cascade Lasers	219
WB1.4	Ultra-thin InAlP/InGaAs Heterojunctions Grown by Metal-Organic Vapor-Phase Epitaxy	222
WB1.5	Uncooled (25-85 °C) 10-Gbps Operation of 1.3- μ m-Range Metamorphic InGaAs Laser on GaAs Substrate	226
WB1.6	Semiconductive Properties of Heterointegration of InP/InGaAs on High Doped Silicon Wire Waveguide for Silicon Hybrid Laser	230
WB1.7	Photoluminescence Characteristics of MOCVD Grown-InAs Quantum Dots Covered by GaInP Layer	234
WA2	Quantum Cascade & Novel Devices	
WA2.1	High Temperature Operation of Terahertz Quantum Cascade Laser Sources	N/A
WA2.2	Temporal Wavelength Multiplexing of a Quantum Cascade Laser	238
WA2.3	Phase-Locking in Quantum Cascade Laser Arrays	241
WA2.4		

	SSC-Integrated TM Mode LD for Long-Range Surface-Plasmon-Polariton Waveguide	243
WA2.5	Improvement in Electrostatic-Discharge-Tolerance of 1.3 μ m AlGaInAs/InP Buried Heterostructure Laser Diodes	245
WB2	Nanowire and Heterostructures	
WB2.1	MOVPE Growth and Structural Characterization of Extremely Lattice-Mismatched InP-InSb Nanowire Heterostructures	249
WB2.2	Growth of III-V Nanowires using MOCVD	N/A
WB2.3	Spontaneous Formation of Ultra-Short-Period Lateral Composition Modulation in TIGaInAsN/TIInP Structures	253
WB2.4	Fabrication and Structural Characterization of Nearly Lattice-matched p-ZnSnAs2/n-InP Heterojunctions	255
WB2.5	Improvement in Luminescence Properties of TlInGaAsN/TlInP Multi-Layers Grown by Gas Source Molecular Beam Epitaxy	259
WP	Poster Session	
WP1	GaAsSb-GaAsN -based Type-II 'W' Structures for Mid-IR Emission	263
WP2	X-Ray Diffraction Analysis of Quantum Cascade Lasers	267
WP3	Evaluation of the Degeneracy of Hole's Quantum Levels in the InGaAsP/InP Quantum Well Structures by using Photoluminescence Spectra	270
WP4	Effect of Sulfur Passivation and Dielectric Capping on the Dark Current of InGaAs/InP PIN Photodetectors	274
WP5	Electrical Derivative Analysis of Leakage Current in Quantum Cascade Lasers	276
WP6	Enhancing Oscillator Strength for Second Harmonic Generation in AlGaAs/InGaAs Quantum Cascade Laser Structures	278
WP7	Injection Locked Fabry-Perot Lasers with Integrated Phase Modulators	282
WP8	Realization of a Tunable Near Infra Red InP / InGaAs QWs based Photodetector Integrated in a MOEMS Structure for Micro-Spectrometer Applications	285
WP9	Semiconductor Optical Amplifier Designs for Passive Optical Network Extensions	289
WP10	Temperature Effects on the Modulation Response of an Injection-Locked InAs/InP Quantum-Dash Laser	292
WP11	Wavelength-Selective Receiver for Simultaneous λ =1.3 μ m and λ =1.55 μ m RF Optical	295

Transmission

WP12	Room-Temperature CW Operation of Lateral Current Injection Lasers with Thin Film Lateral Cladding Layers	298
WP13	Experimental Study on Temperature Dependance of RTD-based Low-Power MMIC VCO	302
WP14	Scaling Behaviors of 25-nm Asymmetrically Recessed Metamorphic High Electron- Mobility Transistors	305
WP15	Temperature Dependent Characteristics of InP RTD based CML-MOBILE D-Flip Flop IC	308
WP16	Vertical InGaAs MOSFET with Hetero-Launcher and Undoped Channel	311
WP17	InP/InGaAs-channel MOSFET with MOVPE Selective Regrown Source	315
WP18	InAlAs/InGaAsSb/InGaAs Double Heterojunction Bipolar Transistors with High Current Gain and Low Base Sheet Resistance	319
WP19	DC Characteristics of InAs/AISb HEMTs at Cryogenic Temperatures	323
WP20	Metal-Oxide-HEMT on 6.1Å Antimonides	326
WP21	Low-Leakage InAs/AISb HEMT with High fT-Lg Product	330
Thurso	lay, 14 May 2009	
ThA1	Advanced Processing and Materials Properties	
ThA1.1	InP-based Photonic Integrated Circuits: Technology and Manufacturing	334
ThA1.2	Optimization of 1550nm InAs/InP Quantum Dash and Quantum Dot based Semiconductor Optical Amplifier	339
ThA1.3	Circular, Narrow Beam Emission of 1.3-µm Surface-Emitting Laser with Monolithically-Integrated InP Lens for Direct Fiber Coupling	343
ThA1.4	Properties of High Index Contrast GaInAsP Wired Waveguides with Benzocyclobutene on Si Substrate	347
ThA1.5	Optical Absorption Coefficient of Carbon-doped GaAs Epitaxial Layer by Means of Propagation-Loss Measurement of Waveguide for Long Wavelength VCSEL	351
ThA1.6	High Resolution Imaging of InAs/InP Single Quantum Dots by Low-Voltage Cathodoluminescence	355
ThA1.7	Effect of Surface Preparations on Contact Resistivity of TiW to Highly Doped n-InGaAs	358
ThB1	High Speed Laser Sources	

ThB1.1	Uncooled EA/DFB Lasers for 40Gb/s and 100GBE Applications	362
ThB1.2	40-Gbit/s, Uncooled (-15 to 80°C) Operation of a 1.55-μm, InGaAlAs, Electroabsorption Modulated Laser for Very Short Reach Applications	367
ThB1.3	26 Gbit/s Direct Modulation of AlGaInAs/InP Lasers with Ridge-Waveguide Structure Buried by Benzocyclobutene Polymer	371
ThB1.4	1.3-um InGaAlAs/InP-AlGaAs/GaAs Wafer-Fused VCSELs with 10-Gb/s Modulation Speed up to 100°C	375
ThB1.5	High-Speed Optical Modulation based on Frequency-Modulated VCSELs and Optical	379
ThB1.6	Effect of P-Doping on Temperature and Dynamic Performances of 1550nm InAs/InP Quantum Dash based Lasers	383
ThB1.7	Device Performance of Light Emitting Transistors with Zn-Doped and C-Doped Base	387
ThA2	Micro and Nano-Cavity Emitters	
ThA2.1	High Efficiency 1060nm VCSELs for Low Power Consumption	391
ThA2.2	Photonic Crystal Emitters Incorporating Ordered Quantum Wires and Dots	397
ThA2.3	Photonic Crystal Band Edge Diode Light Emitters	399
ThA2.4	Selectively-Pumped Grating-Mirror Long-Wavelength VCSEL	403
Wedne	esday, 13 May 2009	
WPD	Post Deadline	
WPD1	Quantum Dots in a Vertical Cavity for All-Optical Switching Devices	406
WPD2	Semiconductor Optical Amplifier Designs for Passive Optical Network Extensions	408
WPD3	Entangled Photons Produced with High-Symmetry Site-Controlled Quantum Dots	410