The Electrochemical Society

Molecular Structure of the Solid-Liquid Interface and its Relationship to Electrodeposition 6

at the 214th ECS Meeting

ECS Transactions Volume 16 No.46

October 12-17, 2008 Honolulu, Hawaii, USA

Printed from e-media with permission by:

Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571 www.proceedings.com

ISBN: 978-1-61567-640-8

Some format issues inherent in the e-media version may also appear in this print version.

Printed from e-media with permission by:

Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571

Some format issues inherent in the e-media version may also appear in this print version.

Copyright $\tilde{\tilde{C}}$ (422:) by The Electrochemical Society All rights reserved.

Printed by Curran Associates, Inc. (202;)

For permission requests, please contact The Electrochemical Society at the address below.

The Electrochemical Society 65 South Main Street Pennington, New Jersey 08534-2839

Phone: (609) 737-1902 Fax: (609) 737-2743

www.electrochem.org

Additional copies of this publication are available from:

Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571 USA Phone: 845-758-0400 Fax: 845-758-2634 Email: curran@proceedings.com Web: www.proceedings.com

ECS Transactions, Volume 16, Issue 46

Molecular Structure of the Solid-Liquid Interface and Its Relationship to Electrodeposition 6

Table of Contents

Chapter 1 Molecular Structure of the Solid-Liquid Interface and Its Relationship to Electrodeposition

Electrochemical Deposition of Metallic Nanowires as a Scanning Probe Tip M. Motoyama, N. P. Dasgupta and F. B. Prinz	3
Measurement of the SiCl ₄ Diffusion Coefficient in a Room-Temperature Ionic Liquid by an Optical Moiré-Pattern Technique Y. Nishimura, T. Nishida, Y. Fukunaka, C. R. Miranda, T. Nohira and R. Hagiwara	13
Correspondence between Experiment and Theory of Bulk Electrocrystallisation at Solid Electrodes in Aqueous Electrolyte <i>J. E. Andersen</i>	25
One-Step Through-Mask Electrodeposition of a Porous Structure Composed of Manganese Oxide Nanosheets <i>M. Nakayama and M. Fukuda</i>	37
The Effect of Substrate Shape and Temperature on the Liquid Cluster Deposition using Molecular Dynamic Simulation <i>S. Go, H. Jeong, M. Shibahara, G. Choi and D. Kim</i>	45
Immobilization of Cationic Porphyrin between Multilayers of Manganese Oxide during Their Electrochemical Assembly <i>R. Hoyashita and M. Nakayama</i>	53
Formation and Reaction of Pyridinethiolate Self-Assembled Monolayers on Au/Si Surface in Aromatic and Aliphatic Ionic Liquids Studied by SEIRAS <i>K. Nishiyama, H. Seriu and I. Taniguchi</i>	61
 Structural Change in 4-Pyridineethanethiolate Self-Assembled Monolayers on Au(111) Induced by Protonation of Pyridine Ring in Electrolyte Solutions K. Nishiyama, M. Tsuchiyama, H. Seriu, S. Yoshimoto and I. Taniguchi 	67

Supramolecular Nanostructure of Porphyrin Diacid on Sulfate/Bisulfate Adlayer Formed on Au(111) S. Yoshimoto and T. Sawaguchi	77
Molecular Simulation Approach to the Effects of Additives in Electrodeposition Process S. Nishimura, Y. Kaneko, Y. Hiwatari, K. Ohara and F. Asa	83
Depositing Mechanism of Metal Oxide Thin Film in the Liquid Phase Deposition Process M. Mizuhata, Y. Saito, M. Takagi and S. Deki	93
Simplified Electrochemical Engineering Modelling of the Species Concentration Profiles at an Electrode <i>P. P. Mandin, J. Cense, Y. Fukunaka and R. C. Alkire</i>	103

Author Index

117