2009 IEEE Dallas Circuits and Systems Workshop

(DCAS 2009)

Richardson, Texas, USA 4-5 October 2009

IEEE Catalog Number: CFP09505-PRT **ISBN:**

978-1-4244-5483-9

2009 IEEE Dallas Circuits And Systems Workshop Table of Contents

Presentations

Ultra-Low-Power Intelligent PWM Controller for Vibration Energy Harvesting Power Supplies Arvindh Rajasekaran, Abhiman Hande ¹ , Dinesh Bhatia <i>University of Texas at Dallas,</i> ¹ <i>Texas Micropower</i>	11
Chaotic UWB based system design for ultra low power body area networks Sridhar Rajagopal, Noh-Gyoung Kang, Seung-Hoon Park, Kiran Bynam, Chihong Cho, Eun Tae Won Samsung Electronics	15
Supply Regulation Techniques for Phase-Locked Loops Vivekananth Gurumoorthy, Sam Palermo Texas A&M University	19
Channelized Front Ends for Broadband Analog & RF Signal Processing with Merged LO Synthesis R. Gharpurey ¹ , Peter Kinget ² ¹ University of Texas at Austin, ² Columbia University	23
An RF Variable Gain Amplifier with linear-in-dB Gain Steps and Automatic Power Consumption Optimization Abhijit Kumar Das, Michel Frechette Texas Instruments	27
A feasibility study of high-frequency buck regulators in nanometer CMOS Wei Fu, Ayman Fayed Iowa State University	31
Power Efficient Standard Cell Library Design Ryan Afonso, Mohammad Rahman, Hiran Tennakoon, Carl Sechen <i>University of Texas at Dallas</i>	35
Sample and Hold Design Techniques for Nyquist ADC Design Maher Sarraj Texas Instruments	39
RLC Interconnect Modeling using Delay Algebraic Equations Sourajeet Roy, Anestis Dounavis <i>University of Western Ontario, Canada</i>	43

2009 IEEE Dallas Circuits And Systems Workshop Table of Contents

Posters

Computationally Efficient, Event-Driven Simulation of Communication Transmitters	
Socrates D. Vamvakos, Jingcheng Zhuang ² , Khurram Waheed ³ MoSys Inc., ² Advanced Micro Devices, ³ BitWave Semiconductor	48
Low Power AES Clock Recovery Circuit for Wireless Applications Stanley Goldman Goldman Research	52
A Direct Conversion WiMAX RF Transmitter in 0.18um CMOS Technology Mohammad Fahad Hanif, Syed Askari, Kinchit Desai, Bhaskar Banerjee, Mehrdad Nourani University of Texas at Dallas	56
DSP Power Reduction through Generalized Carry-Save Arithmetic Chiu-Wei Pan, Yuanchen Song, Zhao Wang, Carl Sechen <i>University of Texas at Dallas</i>	60
A Dual-Mode Wide-Band CMOS Oscillator Shatam Agarwal, Ranjit Gharpurey University of Texas at Austin	64
Elimination of Spurious Noise due to Time-to-Digital Converter Robert Bogdan Staszewski ¹ , Khurram Waheed, Sudheer Vemulapalli, Prashanth Vallur, Mitch Entezari, Oren Eliezer ¹ TU Delft, Texas Instruments	67
Impact Of Context Dependent Variability In CMOS Embedded With SiGe On Circuit	
Performance & Power Ashesh Parikh, Oluwamuyiwa Olubuyide, Mak Kulkarni Texas Instruments	71
A 22mW 227Msps 11b Self-Tuning ADC Based on Time-to-Digital Conversion Huihua Huang, Carl Sechen University of Texas at Dallas	75
Digitally Assisted Analog Compressive Sensing Zhuizhuan Yu, Sebastian Hoyos <i>Texas A&M University</i>	79
Low Power Automated Clock Tree Generation Elizabeth Kiefer, William Swartz, Carl Sechen University of Texas at Dallas	83