2010 IEEE Photonics Society Summer Topical Meeting Series

Playa del Carmen, Mexico 19-21 July 2010

IEEE Catalog Number: CFP10SUM-PRT **ISBN:**

978-1-4244-3730-6

Polarization Division Multiplexed Optical Transmission Systems

Monday, 19 July 2010

MA1.	High Capacity PDM-Transmission I	
MA1.1	Polarization Multiplexed Transmission for Undersea Applications	1
MA1.2	Advanced Modulation Formats and its Application in Optical Label Switching Systems	3
MA2.	Nonlinearities I	
MA2.1	Cross-Polarization Modulation in Polarization-Division Multiplexed Transmission Systems	6
MA2.2	XPM Induced Nonlinear Polarization Crosstalk and Mitigation in Optical Dual Polarization Systems	8
MA2.3	SPM Compensation of No-Guard-Interval PDM Co-OFDM for Optical Transport Network	10
MA3.	PMD and PDL Effects	
MA3.1	Polarization Tracker and PMD Compensator for 100Gb/s Direct-Detect RZ-DQPSK PDM Systems	12
MA3.2	MLSE-Based PMD Mitigation in On-Off Keying Polarization Multiplex Direct Detection Systems	14
MA3.3	The Role of Polarization Dependent Loss in Polarization Multiplexed Transmission	16
MA3.4	Measurements of the Polarization Dependent Loss of Multiple WDM Channels in an Installed, Long-Haul Terrestrial Link	18
MA4.	Algorithms and DSP	
MA4.1	Techniques and Algorithms in Coherent Detection	20
MA4.2	DSP Techniques for 16-QAM Coherent Optical Systems	22
MA4.3	Implementation Challenges of 100G Coherent Transponders	24

Tuesday, 20 July 2010

TuA1.	Tutorial Session	
TuA1.1	The Onsager Relations and Birefringence in Optical Fibers	26
TuA2.	Long-Haul Transmission	
TuA2.1	PDM-QPSK Transmission Experiments Over Transoceanic Distance	28
TuA2.2	Long-Haul Optical Transmission using 100-Gb/s Polarization- Multiplexed QPSK Modulation	30
TuA2.3	Experimental Studies of Polarization-Multiplexed Optical OFDM Superchannel Transport	32
TuA3.	Nonlinearities II	
TuA3.1	Impact of Fiber Nonlinearity on Tb/s PDM-OFDM Transmission	34
TuA3.2	Inter-Channel Nonlinearities in Hybrid OOK and Coherent PDM-QPSK Transmission Systems with Dispersion Management	36
TuA3.3	Nonlinear Limits in Single- and Dual-Polarization Transmission	38
TuA3.4	Dispersion Map Optimization of Single and Dual-Pol QPSK in the Presence of Adjacent Aggressor Channels	40

Wednesday, 21 July 2010

WA1.	Digital Signal Processing Receivers	
WA1.1	MAP Detection for Linear and Nonlinear ISI Mitigation in Long-Haul Coherent Detection Systems	42
WA1.2	Demultiplexing via a Dual-Polarization Coherent Receiver	44
WA2.	High Capacity PDM-Transmission II	
WA2.1	High Speed Transmission at High Spectral Efficiencies	46
WA2.2	Offset QPSK for 112 Gb/s Coherent Optical Links	48
WA2.3	High Capacity Coherent PDM-WDM Transmission System Demonstrations	50
WA2.4	Modified Progressive Edge-Growth Algorithm based LDPC Coded- Modulation for 400 Gb/s Optical Transport	52

Novel Waveguiding, Structures and Phenomena

Monday, 19 July 2010

MB1.	Nonlinear Optics I	
MB1.1	Applications of Ultrafast, Ultralow Power Four-Wave Mixing on Chip	N/A
MB1.2	Photonic Chip based Nonlinear Optics for Tera-Bit per Second Processing	N/A
MB2.	Ballistic	
MB2.1	Semiconductor Nanodevices for Room Temperature THz Detection and Emission	N/A
MB2.2	Femtosecond Time-Domain Experimental Characterization of Ballistic Transport in Semiconducting Nanostructures	54
MB2.3	Ballistic Transport in Nanostructures at Room Temperature	56
MB3.	Biophotonics	
MB3.1	Photonic Crystals for Information Processing and Sensing with the SOI Platform	N/A
MB3.2	Infrared and Terahertz Nanoscopy	58
MB3.3	Glass-Clad Crystal Fibers Based Ultrahigh Resolution Optical Coherence Tomography	60
MB4.	Nonlinear Optics II	
MB4.1	Nonlinear Optics in Si Wires	N/A
MB4.2	Mid-Infrared Nonlinear Optics in Silicon Photonic Wire Waveguides	62
MB4.3	Enhancement of Nonlinear Effects in Slow Light Photonic Crystal Waveguides	64

Tuesday, 20 July 2010

TuB1. Plasmonics I

	Nanoplasmonic Cavities and Waveguides: From Design Principles to Active Modulation and Gain	66
TuB1.2	Plasmonic Waveguiding and Focusing	68
TuB2.	Plasmonics II	
TuB2.1	Electrically Interfacing with Deep-Subwavelength Plasmonic Waveguides: Integrated Electrical Detection and Generation of MIM Gap Plasmons	N/A
TuB2.2	Plasmonic Nanoantennas as Building Blocks for Ultracompact Photonic Devices	70
TuB2.3	Plasmonic Integrated Optics: Going the Last Few Microns	72
TuB2.4	Controlled Placement of Spherical Nanoparticles into Array for Biosensing	74
TuB3.	Fiber Based Devices	
TuB3.1	Fiber Optical Parametric Devices	N/A
TuB3.2	Fabrication of SU8/SWCNT Films as Saturable Absorbers	76
TuB3.3	Tunable Light Sources in the Visible and Near Infrared based on Fiber Taper Coupled Photonic Crystal Nanocavities	78
TuB3.4	Optofluidically Tunable Multimode Interference Erbium Doped Fiber Laser	80
TuB3.5	Ferrule Material Dependence of Stress Sensitivity of a Variable Optical Frequency Filter Made of Fiber Fabry-Perot Etalon	82
TuB4.	Wave Propagation	
TuB4.1	Super-Resolution and Recovery of Sparse Sub-Wavelength Images	N/A
TuB4.2	Optical Airy Bullets and Beams	84
TuB4.3	Optical Wave Breaking Cancellation in the Far Dispersion Field of Optical Fiber	86
TuB4.4	Nonlinear Photonic Crystal for Optical Power Limiting	88

Wednesday, 21 July 2010

WB1. Integrated Optics I

	Silicon Optomechanics	90
WB1.2	Cavity-Enhanced Quasi-Phase-Matched Wavelength Conversion in Silicon Ring Resonators: Two Approaches	92
WB1.3	Nonlinear Optics and Group Velocity Dispersion Engineering in Silicon Nitride Waveguides	94
WB2.	Integrated Optics II	
WB2.1	100 Gbit/s Electro-Optic Modulator and 56 Gbit/s Wavelength Converter for DQPSK Data in Silicon-Organic Hybrid (SOH) Technology	96
WB2.2	Tailoring Optical Forces in Waveguides Through Radiation Pressure and Electrostriction	98
WB2.3	The Connection Between Radiation Pressure and Dispersion in Dielectric Waveguides	100
WB2.4	Engineering Optical Forces in Waveguides and Cavities Based on Optical Response	102
WB2.5	Multiport AWG-based Dispersion Compensators	104
WB3.	Integrated Optics III	
WB3.1	High Efficiency, High Power, Room-Temperature Operation, Interband Cascade Lasers	N/A
WB3.2	Compound Semiconductor Nanowires for Next Generation Optoelectronics	106
WB3.3	Nanophotonics for Information Systems Applications	107
WB3.4	A Delta-k Electro-Optic Switch using a Multi-Channel Directional Coupler based on an Organic Crystal OH1	109

Nonlinear Fiber Optics

Monday, 19 July 2010

MC1.	Nonlinear Processing I	
MC1.1	Optics versus Electronics for High-Speed Switching and Signal Processing	111
MC1.2	All-Optical Regeneration: The Holy Grail or Cold Fusion?	113
MC2.	Fibers	
MC2.1	Photonic Bandgap Fibres for Nonlinear Optics	115
MC2.2	Recent Advances in Very Highly Nonlinear Chalcogenide Photonic Crystal Fibers and Their Applications	117
MC2.3	Chirped Photonic Crystal Fibers Break Pulse-Duration Limits in Femtosecond Beam	119
МСЗ.	Telecommunications I	
MC3.1	Ultrafast Optical Technologies for Large-Capacity TDM/WDM Photonic Networks	121
MC3.2	Fiber Optical Parametric Amplifier in High-Speed WDM Networks	123
MC3.3	Optically Powered WDM Signal Transmission System with Distributed Parametric Amplification	125
MC3.4	Impact of Cross-Phase Modulation in Coherent Transmission Systems	127
MC4.	Light Sources I	
MC4.1	Fiber-Based Frequency Combs and Optical Lattice Clocks	129
MC4.2	Tunable U-Band Raman Fiber Source with 3 W CW Output Power	131
MC4.3	Tunable Repetition Rate Multiplier Based on Fiber Optical Parametric Oscillator	133
MC4.4	Short Pulse Generation using Nonlinear Fiber Optics for Biomedical Imaging Applications	135

Tuesday, 20 July 2010

TuC1.	Parametric Amplification	
TuC1.1	Noise Properties of Phase-(in) Sensitive Optical Parametric Amplifiers	137
TuC1.2	All-Fiber Optical Parametric Amplifier at 1 um using a Microstructured Fiber	139
TuC1.3	Spectral Dependence of Nonlinear Phase Noise in One-Pump Fiber-Optic Parametric Amplifiers	141
TuC2.	Nonlinear Processing II	
TuC2.1	Nonlinear Processing with Bismuth Oxide Nonlinear Fibers	143
TuC2.2	Real-time Polychromatic Parametric Processing	145
TuC2.3	Nonlinear Fiber Based Processing for High Speed Optical Communication and Sensor Systems	147
TuC3.	Stimulated Brillouin Scattering	
TuC3.1	SBS Suppression Techniques in Highly Nonlinear Fibers	149
TuC3.2	Brilliouin Suppression by Fiber Design	151
TuC3.3	Optical Fiber Sensors Based On Brillouin Scattering	153
TuC4.	Theory	
TuC4.1	Emergence of Extreme Events in Fiber Based Nonlinear Devices	155
TuC4.2	Robust Dissipative Soliton Molecules with Nonlinearly Evolving Phase in Mode-Locked Fiber Lasers	157
TuC4.3	Supercontinuum Instabilities and Rogue Waves in Optics	159
TuC4.4	Efficient pre-Compensation Algorithm for Self Phase Modulation (SPM)	160

Wednesday, 21 July 2010

WC1. Fiber Properties

WC1.1Measurement of Ultra-Low Fourth Order Dispersion Coefficient of162Nonlinear Fiber by Distant Low-Power FWM162

WC1.2	Rayleigh-Backscattering Impact on Performance of NOLM-Based Phase- Preserving Optical Limiters	164
WC1.3	Distributed Measurement of Modulation Instability Along Optical Fibers	166
WC1.4	Observation of Brillouin Linewidth Broadening and Decay Time in Photonic Crystal Fiber	168
WC2.	Nonlinear Processing III	
WC2.1	Optical Signal Processing for Advanced Optical Modulation Formats	170
WC2.2	Multichannel All-Optical Regeneration	172
WC2.3	All-Optical Modulation Format Conversion Using Highly Nonlinear Fibers	174
WC3.	Telecommunications II	
WC3.1	Nonlinear Impairments in Coherent Communication Systems	176
WC3.2	All-Optical Regeneration of Phase-Encoded Signals in Transmission Systems	178
WC3.3	Nonlinear Fiber-Optic Signal Processing for Future Photonic Networks	180
WC4.	Telecommunications III	
WC4.1	White Light Continuous Wave Supercontinuum Source	182
WC4.2	Generation of Ultra-High Repetition Rate Pulses in a Highly Nonlinear Dispersion-Tailored Compound Glass Fibre	184
WC4.3	Fourier Domain Mode Locking Laser Based On Two-Pump Optical Parametric Amplification	186
WC4.4	High Power and High Repetition Rate Fiber Frequency Combs	N/A

Optical Networks and Devices for Data Centers

Monday, 19 July 2010

MD1.	Plenary Session	
MD1.1	Analysis of Intra-Node and Inter-Node Fabrics of an Exascale System	N/A
MD2.	Tutorial	
MD2.1	Optical Switching and Scalability in Datacenters	188
MD2.2	Multi-Plane Optical Interconnection for Energy-Proportional Network Architectures	189
MD2.3	Low Loss Silicon Waveguides for Application of Optical Interconnects	191
MD2.4	Heterogeneous Optical CDMA with Near-Far Mitigation	193
MD3.	Silicon Photonics for Data Centers	
MD3.1	Si Photonics and Nanophotonics	N/A
MD3.2	Designing Energy Efficient Chip-Scale Optical Communication Links from the Bottom Up: A Perspective from First Principles Device Design of Integrated Photonic Devices	N/A
MD3.3	On the Design of 1xN Multimode Interference Coupler for Photonic Integrated Circuits	195
MD3.4	Broadly Tunable High Speed Silicon Micro-ring Modulator	197
MD4	Transceivers and Packaging I	
MD4.1	Interconnection Technology and Computer Architecture Scaling	N/A
MD4.2	Low Power Silicon Photonic Transceivers	199
MD4.3	Burst-Mode Clock and Data Recovery for Optically Interconnected Data Centers	201
MD4.4	Wavelength Selective Coupler on Silicon for Applications in Wavelength Division	203

Tuesday, 20 July 2010

TuD1.	Data Center Systems	
TuD1.1	Optics as a Game Changer in Exascale Datacenters: Beyond Replacing Copper Wires	N/A
TuD1.2	GHz Photonics on a Silicon Chip	N/A
TuD2.	Optoelectronics for Data Centers I	
TuD2.1	Efficient Sources for Chip-to-Chip to Box-to-Box Communication within Data Centers	205
TuD2.2	2x2 MMI-MZI GaAs-GaAlAs Carrier-Injection Optical Switch	207
TuD2.3	Modulation Energy Efficiency of VCSEL and Coupled-Cavity VCSEL	209
TuD2.4	Si-Ge Surface-normal Asymmetric Fabry-Perot Quantum-confined Stark Effect Electroabsorption Modulator	211
TuD2.5	An 850 nm Dielectric Guide VCSEL for Data Communication Links	213
TuD3.	Energy Efficient Data Centers	
TuD3.1	Survey of Data Center Interconnect Requirements: Now and the Future	N/A
TuD3.2	CMOS Photonic Interconnects for Efficient Memory Access	N/A
TuD3.3	Monolithic Chip-to-Chip WDM Optical Proximity Coupler Utilizing Echelle Grating Multiplexer/Demultiplexer Integrated with Micro Mirrors SOI Platform	215 Built on
TuD3.4	Highly-Efficient Thermally-Tuned Resonant Filters	217
TuD4.	Optoelectronics for Data Centers II	
TuD4.1	Interconnecting with Silicon	N/A
TuD4.2	Simple Electroabsorption Model for Silicon-Germanium/Germanium Quantum Well Devices	219
TuD4.3	Demonstration of Rib Waveguide Based 1x12 Multimode Interference Optical Beam Splitter on Silicon-on-Insulator	221
TuD4.4	120-Gb/s 100-m Transmission in a Single Multicore Multimode Fiber Containing Six Cores Interfaced with a Matching VCSEL Array	223

Wednesday, 21 July 2010

WD1.	Device and System Design	
WD1.1	Data Center Transport in the Zettabyte IP Network	227
WD1.2	Light on Board™ Optical IC Packaging	229
WD2.	Transceivers and Packaging II	
WD2.1	Scalable, Energy Efficient Data Centers	N/A
WD2.2	High-Density, Low-Power Optical Interconnects for Computing Systems	231
WD2.3	Block Linear Coherent Detection of Optical Continuous Phase Modulation	233

Author Index