# 14th International Conference on Environmental Degradation of Materials in Nuclear Power Systems Water Reactors 2009

Virginia Beach, Virginia, USA 23-27 August 2009

Volume 1 of 2

ISBN: 978-1-61738-853-8

Printed from e-media with permission by:

Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571



Some format issues inherent in the e-media version may also appear in this print version.

Copyright© (2009) by the American Nuclear Society All rights reserved.

Printed by Curran Associates, Inc. (2010)

For permission requests, please contact the American Nuclear Society at the address below.

American Nuclear Society 555 North Kensington Avenue LaGrange Park, Illinois 60526

Phone: (800) 323-3044 (708) 352-6611 Fax: (708) 352-0499

www.ans.org

#### Additional copies of this publication are available from:

Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571 USA Phone: 845-758-0400 Fax: 845-758-2634 Email: curran@proceedings.com Web: www.proceedings.com

# **Table of Contents**

## **PWR-I:** Corrosion and SCC of Nickel Base Alloys

| Localized Corrosion of Steam Generator Alloys at Low Temperature in Mixed                                                 | 1  |
|---------------------------------------------------------------------------------------------------------------------------|----|
| William Zhang, Roger C. Newman                                                                                            |    |
| Investigation of Intergranular Attack/Stress Corrosion Cracking of Sensitized<br>Alloy 600 Tubing at Roll Transition Zone | 9  |
| John Jevec, Jeff Sarver, Peter King, Jianguo Yu, Ken Sedman, David Durance                                                |    |
| On the Stress Corrosion Cracking Behavior of Two Age-Hardenable Alloys in PWR Primary Environment                         | 16 |
| B. Ter-Ovanessian, J. M. Cloué, J. Deleume, E. Andrieu                                                                    |    |
| Questions and Answers                                                                                                     | 25 |

## **PWR-II: Corrosion and SCC of Nickel Base Alloys**

| A Preliminary Hybrid Model of Nickel Alloy SCC Propagation in PWR Primary<br>Water Environments                         | 27 |
|-------------------------------------------------------------------------------------------------------------------------|----|
| E. D. Eason, R. Pathania                                                                                                |    |
| The Effect of Sulfate Impurities on the Stress Corrosion Cracking of Nickel<br>Alloys in High Temperature Primary Water | 39 |
| Martin König, Karen Gott, Pål Efsing                                                                                    |    |
| Mechanistic Studies of Stress Corrosion Cracking of Nickel-Base Alloys in High                                          | 45 |
| Temperature High Pressure PWR Environment                                                                               |    |
| Fabien Léonard, Robert A. Cottis, François Vaillant, Florence Carrette, Gabriel Ilevbare                                |    |
| Stress Corrosion Crack Growth Rate in Rolled Alloy 600 Exposed to Primary                                               | 54 |
| PWR Environment                                                                                                         |    |
| Thierry Couvant, François Vaillant, Emmanuel Lemaire                                                                    |    |
| Fatigue Crack Growth Rate Behavior of Alloy 690 in Air and Water                                                        | 67 |
| W. J. Mills                                                                                                             |    |
| Questions and Answers                                                                                                   | 85 |

## **PWR**—III: Environmental Effects

| Effect of Flowrate on the Environmentally Enhanced Fatigue Crack Propagation<br>of Austenitic Stainless Steels in a Simulated PWR Primary Coolant Environment | 87  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Norman Platts, David R. Tice, John W. Stairmand                                                                                                               |     |
| Effect of Intergranular Oxygen Penetration on the SCC Initiation Behaviour of<br>Ni Based Structural Alloys                                                   | 99  |
| B. Ter-Ovanessian, J. M. Cloué, J. Deleume, E. Andrieu                                                                                                        |     |
| Prediction of Stress Corrosion Initiation Time of Alloy 600 PWR Components<br>Claude Benhamou, Claude Amzallag                                                | 109 |
| Effects of Dissolved Hydrogen on the Electronic Properties of the Oxide Film<br>on Alloy 600 in High Temperature Water                                        | 119 |
| Qunjia Peng, Yoichi Takeda, Jiro Kuniya, Tetsuo Shoji                                                                                                         |     |
| Stress Corrosion Cracking Response of 304 Stainless Steel in Aerated and<br>Deaerated Water<br>W. J. Mills                                                    | 129 |
| Questions and Answers                                                                                                                                         | 154 |

# **PWR-IV:** Deformation Effects on Stainless Steel in Primary Water

| Effects of Cold Work and Sensitization on Stress Corrosion Crack Propagation<br>of Austenitic Stainless Steels in PWR Primary Coolant Conditions<br>D. R. Tice, S. Nouraei, K. J. Mottershead, J. W. Stairmand | 158 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Stress Corrosion Cracking Propagation of Cold-Worked Austenitic Stainless<br>Steels in PWR Environment                                                                                                         | 172 |
| François Vaillant, Laure Tribouilloy-Buissé, Thierry Couvant                                                                                                                                                   |     |
| Development of Understanding of the Interaction Between Localized<br>Deformation and SCC of Austenitic Stainless Steels Exposed to Primary PWR<br>Environment<br>T. Couvant et al.                             | 182 |
| SCC Behaviour of Austenitic Stainless Steels in High Temperature Water:<br>Effect of Cold Work, Water Chemistry and Type of Materials                                                                          | 195 |
| D. Gómez-Briceño, M <sup>a</sup> Sol García, Jesús Lapeña                                                                                                                                                      |     |
| Effects of Loading Mode and Water Chemistry on Stress Corrosion Cracking of<br>316L Stainless Steel in Simulated PWR Environments                                                                              | 207 |

Zhanpeng Lu, Tetsuo Shoji, Seiya Yamazaki

**Questions and Answers** 

## **PWR-V: Weldments**

| The Effect of Strain-Hardening on PWSCC of Nickel-Base Alloys 600 and 690<br>Tetsuo Shoji, Zhanpeng Lu, Seiya Yamazaki | 220   |
|------------------------------------------------------------------------------------------------------------------------|-------|
| The Stress Corrosion Cracking Behavior of Alloys 690 and 152 Weld in a PWR<br>Environment                              | 239   |
| B. Alexandreanu, Y. Yang, Y. Chen, W. J. Shack                                                                         |       |
| An Analytical Evaluation of the Full Structural Weld Overlay as a Stress                                               | 251   |
| Improving Mitigation Strategy to Prevent Primary Water Stress Corrosion Cracki                                         | ng in |
| Pressurized Water Reactor Piping                                                                                       |       |
| L. F. Fredette, Paul M. Scott, F. W. Brust, A. Csontos                                                                 |       |
| LTCP of Alloy 182/152 Tested in PWR Primary Water                                                                      | 262   |
| Emmanuel Herms, Olivier Raquet, Ian De Curières, Pierre Joly                                                           |       |
| Questions and Answers                                                                                                  | 273   |

## **PWR-VI: PWSCC**

| Impact of Welding Residual Stress Uncertainties on PWSCC Growth Modeling                                            | 275 |
|---------------------------------------------------------------------------------------------------------------------|-----|
| David L. Rudland, Aladar Csontos, Frederick Brust, Tao Zhang                                                        |     |
| An Analytical Evaluation of the Efficacy of the Mechanical Stress                                                   | 281 |
| Improvement Process in Pressurized Water Reactor Primary Cooling Piping                                             |     |
| L. F. Fredette, Paul M. Scott, F. W. Brust, A. Csontos                                                              |     |
| PWSCC in the Steam Generator Drain Nozzle of a PWR                                                                  | 291 |
| Seong Sik Hwang et al.                                                                                              |     |
| Effect of a High Li Chemistry on Alloy 600 PWSCC Susceptibility                                                     | 295 |
| Thierry Couvant, François Vaillant, Odile de Bouvier, Damien Déforge                                                |     |
| Environmental Mitigation of PWSCC Initiation - Low DH Chemistry For PWR                                             | 306 |
| Primary System -                                                                                                    |     |
| Daisuke Akutagawa, Nobuaki Nagata, Koji Dozaki, Hideki Takiguchi, Kjell Norring, Anders<br>Jenssen, Anders Molander | 5   |
| Questions and Answers                                                                                               | 316 |

## Ni-Base Welds—I: Alloy 52/152

| Characterization of Defects in Alloy 152, 52 and 52M Welds<br>S. M. Bruemmer, M. B. Toloczko, M. J. Olszta, R. Seffens, P. Efsing                                                                     | 319                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| EAC Crack Initiation in Nickel-Based Dissimilar Metal Welds Using Doped<br>Steam Test<br>Hannu Hänninen, Aki Toivonen, Tapio Saukkonen, Anssi Brederholm, Pertti Aaltonen, Ul<br>Ehrnstén             | <b>333</b><br>Ila        |
| Questions and Answers                                                                                                                                                                                 | 343                      |
| Ni-Base Welds—II: Alloy 82/182                                                                                                                                                                        |                          |
| SCC Mitigation of Ni Alloys and Weld Metals by Optimizing Dissolved H <sub>2</sub>                                                                                                                    | 345                      |
| Peter L. Andresen, Rick Reid, John Wilson                                                                                                                                                             |                          |
| Influence of Sulphate on the Crack Growth Rates of Nickel Base Weld Metals<br>Alloy 82 and 182 Under Simulated BWR Off-Chemistry Environment<br>B. Devrient, R. Kilian, M. Widera, E. Nowak           | 373                      |
| SCC of Controlled Chemistry Alloy 182 and 82 Weld Metals in BWR Water<br>Peter L. Andresen                                                                                                            | 382                      |
| Microstructural Characterization of Primary Water Stress-Corrosion Cracks in<br>Alloy 182 Welds from PWR Components and Laboratory Tests<br>L. E. Thomas, M. J. Olszta, B. R. Johnson, S. M. Bruemmer | 409                      |
| IGSCC Initiation from Weld Defects in Alloy 600/82                                                                                                                                                    | <b>422</b><br>, Kawaljit |
| Dolores Gómez-Briceño, Jesús Lapeña, Ma Sol García, Lucas Castro, Francisco Perosanz<br>Ahluwalia, John Hickling                                                                                      |                          |

| Dynamic Strain Aging of Ni-Base Alloy Weld Metals in Comparison to Alloy<br>600 and 690            | 435 |
|----------------------------------------------------------------------------------------------------|-----|
| M. Ivanchenko, Y. Yagodzinskyy, H. Hänninen, U. Ehrnstén                                           |     |
| Corrosion Fatigue Behavior of Dissimilar Metal Weldments in High<br>Temperature Water Environments | 445 |

J. Y. Huang, R. F. Liu, M. C. Young, S. L. Jeng, J. S. Huang, R. C. Kuo, J. C. Wang

| lual Stress Measurement and Finite Element Mapping on a Narrow Gap | 456 |
|--------------------------------------------------------------------|-----|
| Dissimilar Metal Weld                                              |     |
| X. Ficquet, S. Courtin, C. Ohms, D. Neov, P. Gilles, P. Joly       |     |
| Questions and Answers                                              | 468 |

## **BWR**—I: Corrosion and SCC

| Evaluation of Hydrothermally-Deposited Zirconium Oxide Coatings to Mitigate             | 470    |
|-----------------------------------------------------------------------------------------|--------|
| Intergranular Stress Corrosion Cracking in BWR Environments                             |        |
| P. H. Chou, R. Pathania, M. B. Toloczko, S. M. Bruemmer, S. N. Lvov, E. Chalkova, V. Ba | lashov |
| A Novel Fouling Mitigation Method for Jet Pump Components in BWR                        | 496    |
| Young-Jin Kim, Catherine P. Dulka                                                       |        |
| An Investigation into the Electrochemical Behavior of Oxygen on TiO <sub>2</sub> -      | 504    |
| Treated Type 304 Stainless Steels in High Temperature Pure Water                        |        |
| Tsung-Kuang Yeh, Yu-Jen Huang, Chuen-Horng Tsai                                         |        |
| Crack Growth Rate Measurements of Alloy 600 in Simulated BWR                            | 513    |
| Environment                                                                             |        |
| Johan Stjärnsäter, Christer Jansson, Björn Forssgren, Bengt Bengtsson, Mats Molin       |        |
| Questions and Answers                                                                   | 522    |

## **BWR-II: SCC**

| Crack Growth Rates in Irradiated Stainless Steels in BWR Internals                                                                                             | 524     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| R. Pathania, R. Carter, R. Horn, P. Andresen                                                                                                                   |         |
| SCC Investigation of Pre-Irradiated Core Shroud Weld HAZ Specimens Under<br>Simulated BWR Environmental Conditions in a Research Reactor<br>H. Hoffmann et al. | 537     |
| Crack Initiation Precursors Originating from Surface Grinding                                                                                                  | 549     |
| M. J. Olszta, L. E. Thomas, K. Asano, S. Ooki, S. M. Bruemmer                                                                                                  |         |
| SCC Growth Verification Test Using Large-Diameter Pipe Made of Low-Carbon                                                                                      | 562     |
| Stainless Steel in Simulated BWR Water Environment                                                                                                             |         |
| Mikiro Itow, Rie Sumiya, Norihiko Tanaka, Taiji Harasawa, Haruo Usui, Masami Ando,                                                                             | Kiyotom |

Mikiro Itow, Rie Sumiya, Norihiko Tanaka, Taiji Harasawa, Haruo Usui, Masami Ando, Kiyotomo Nakata

#### **Questions and Answers**

### **BWR-III: SCC**

| Corrosion Fatigue Behavior of Austenitic Stainless Steels Under Simulated<br>BWR/HWC and PWR Conditions                                                            | 574     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| H. P. Seifert, S. Ritter, H. Leber                                                                                                                                 |         |
| Results of Low Cycle Fatigue Experiments in German Boiling Water Reactor<br>Environment                                                                            | 586     |
| Rainer Gersinska, Leopold Weil, Karl Heinz Herter, Xaver Schuler                                                                                                   |         |
| Effects of γ-Ray Irradiation Upon SCC Initiation and Propagation Under BWR<br>Conditions                                                                           | 596     |
| Yoichi Wada, Kazushige Ishida, Atsushi Watanabe, Masahiko Tachibana, Motohiro Aizaw<br>Motomasa Fuse                                                               | a,      |
| High Resolution Electron Microscopy Study on the Thin Oxide Films Formed<br>on Type 316L Stainless Steel Exposed Under Simulated BWR Water Chemistry<br>Conditions | 604     |
| J. Chen, H. Bergqvist, D. Jädernäs, G. Granath                                                                                                                     |         |
| Passivation Characteristics of Stainless Steels Containing Silicon                                                                                                 | 614     |
| Peter L. Andresen, Peter H. Chou, Michael L. Pollick, J. Lawrence Nelson, Raul B. Rebak                                                                            |         |
| Correlation Between Oxide Film and Stress Corrosion Cracking Susceptibility<br>of Surface Cold Worked L-Grade Stainless Steels                                     | 622     |
| Ryoji Obata, Masato Koshiishi, Hideya Anzai, Katsuyuki Nakade, Suguru Ooki, Kenro Ta<br>Shunichi Suzuki                                                            | kamori, |
| Questions and Answers                                                                                                                                              | 635     |
|                                                                                                                                                                    |         |
| BWR—IV: Weldments                                                                                                                                                  |         |
| Quantifying the Effects of Straining-Hardening and Water Chemistry on Crack                                                                                        | 636     |

Growth Rates of 316L SS Welds in High Temperature Water

Zhanpeng Lu, Kazuhiko Sakaguchi, Koji Negishi, Yoichi Takeda, Yuzuru Ito, Tetsuo Shoji

Investigation of Grain Boundary and SCC Crack Tip Characteristics at the646Heat-Affected Zone in L-Grade Stainless Steels646

Yusaku Maruno et al.

Effect of Loading Direction on Crack Growth Behavior Near Fusion Line in Low 660 Carbon Stainless Steel Weld Joints

Taku Arai, Kenji Kako, Keiji Watanabe, Yuichi Miyahara

| Effects of K and Anion Impurity Concentration on Crack Growth Kinetics near<br>Alloy 182/A533B Weld Overlay Boundaries in BWRs | 671 |
|--------------------------------------------------------------------------------------------------------------------------------|-----|
| Katsuhiko Kumagai et al.                                                                                                       |     |
| Questions and Answers                                                                                                          | 683 |

## Crack Growth—I: Experimental Observations

| Crack Growth Behavior of Welded and Cast Stainless Steels in Hydrogenated<br>and Oxygenated High-Temperature Water                                                                 | 684 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Takuyo Yamada, Takumi Terachi, Tomoki Miyamoto, Koji Arioka                                                                                                                        |     |
| Crack Growth Response of Alloy 152 and 52 Weld Metals in Simulated PWR<br>Primary Water                                                                                            | 690 |
| M. B. Toloczko, S. M. Bruemmer                                                                                                                                                     |     |
| Crack Growth Response of Alloy 690 in Simulated PWR Primary Water<br>M. B. Toloczko, S. M. Bruemmer                                                                                | 706 |
| Effect of Grain Size on Stress Corrosion Cracking of Low Carbon Austenitic<br>Stainless Steel in High Temperature Water<br>Kenji Kako, Yuichi Miyahara, Taku Arai, Masami Mayuzumi | 722 |
| Questions and Answers                                                                                                                                                              | 731 |

## **Crack Growth—II: Fundamentals**

| The Electrochemistry of Stress Corrosion Cracking<br>Digby D. Macdonald                                                                                           | 734 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Fast Algorithm for Predicting Fatigue Crack Growth Rate<br>G. R. Engelhardt, D. D. Macdonald                                                                      | 745 |
| Calculation of Crack Tip Stress Intensity Factors for Flaws in RPV Outlet<br>Nozzle Butt Welds During Plant Cooldown                                              | 755 |
| John E. Broussard III, Anne Demma<br>heoretical and Practical Results on the Effect of a Varying Stress Intensity<br>actor on Stress Corrosion Crack Growth Rates | 764 |
| Kjell Pettersson, Anders Jenssen Questions and Answers                                                                                                            | 778 |

### **Crack Initiation and Deformation in Stainless Steels**

| A Review and Assessment of Cold-Work Influence on SCC of Austenitic<br>Stainless Steels in Light Water Reactor Environment | 780       |
|----------------------------------------------------------------------------------------------------------------------------|-----------|
| Y. S. Garud, G. O. Ilevbare                                                                                                |           |
| Effects of Surface Treatments on Microstructure, Hardness and Residual Stress in Type 316L Stainless Steel                 | 791       |
| Junya Kaneda, Hiroaki Tamako, Ryo Ishibashi, Hisamitsu Hato, Masahiko Miyagawa,<br>Yamashita                               | Norimichi |
| Questions and Answers                                                                                                      | 803       |

### **Crack Initiation and Deformation Structures in Ni-Base** Alloys

| Questions and Answers                                                                                                                        | 906 |
|----------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Formation of Crack Embryos Prior to Crack Growth in High Temperature<br>Water<br>Koji Arioka, Tomoki Miyamoto, Takuyo Yamada, Takumi Terachi | 895 |
| Long Range Ordering of Alloy 690<br>F. Delabrouille, D. Renaud, F. Vaillant, J. Massoud                                                      | 888 |
| Effect of Deformation and Orientation on SCC of Alloy 690<br>Peter L. Andresen, Martin M. Morra, Al Ahluwalia, John Wilson                   | 846 |
| Unusual Cold Work and Strain Rate Effects on SCC<br>Peter L. Andresen                                                                        | 805 |

## Cracking and Inhomogenous Structures in Stainless Steel

| Deformation Localisation and EAC in Inhomogeneous Microstructures of<br>Austenitic Stainless Steels                               | 910 |
|-----------------------------------------------------------------------------------------------------------------------------------|-----|
| Ulla Ehrnstén, Tapio Saukkonen, Wade Karlsen, Hannu Hänninen                                                                      |     |
| Characteristic of Grain Boundary Having SCC Susceptibility for Low Carbon<br>Austenitic Stainless Steel in High Temperature Water | 920 |
| Yohei Sakakibara, Keiji Kubushiro, Guen Nakayama                                                                                  |     |
| 3-D Characterization of SCC in Cold Worked Stainless Steels                                                                       | 926 |

Sergio Lozano-Perez, David Saxey, Takumi Terachi, Takuyo Yamada, Lionel Cervera-Gontard

**Questions and Answers** 

Lister

932

#### SCC Retardation and Propagation Behavior in Dissimilar Weldment of Alloy 935 182 and Low Alloy Steel Tatsuya Kubo, Mikiro Itow, Norihiko Tanaka, Toshiyuki Saito The Effect of Material Variability on Low Cycle Fatigue Resistance of Low 945 Alloy Steels in a 310°C Deoxygenated Water Hun Jang, Jong-Dae Hong, Jae Gon Lee, Changheui Jang Influence of Dynamic Strain Ageing on the Crack Growth Rates and Crack Tip 952 Plasticity of Low-Alloy Steels in Oxygenated High-Temperature Water B. Devrient, A. Roth, K. Küster, M. Widera, U. Ilg **Issues and Advances in the Assessment of Flow Accelerated Corrosion** 962 Yogendra S. Garud Evaluation of Wall Thinning Rate due to Flow Accelerated Corrosion with the 973 **Coupled Models of Electrochemical Analysis and Double Oxide Layer Analysis** Shunsuke Uchida, Masanori Naito, Yasushi Uehara, Hidetoshi Okada, Seiichi Koshizuka, Derek H.

Low Alloy Steels and Flow Accelerated Corrosion

Effects of Alloy Composition of Carbon Steel on the Flow Accelerated985Corrosion and Oxide Film Properties in Neutral Water Condition<br/>Tomonori Satoh, Hirokazu Ugachi, Takashi Tsukada, Shunsuke Uchida985FAC Mitigation Technology in BWR996

Young-Jin Kim
Questions and Answers
1007

#### Water Chemistry—I: Mitigation Strategies

| Electrochemical Corrosion Potential (ECP) Reduction and Crack Mitigation                                           | 1012 |
|--------------------------------------------------------------------------------------------------------------------|------|
| Experiences with NobleChem <sup>™</sup> and On-Line Noble Chem <sup>™</sup>                                        |      |
| S. Hettiarachchi, R. M. Horn, P. L. Andresen, Y. J. Kim                                                            |      |
| Impact of Power Coastdown Operations on the Effectiveness of Hydrogen<br>Water Chemistry in Boiling Water Reactors | 1032 |

Tsung-Kuang Yeh, Mei-Ya Wang, Charles F. Chu, Ching Chang

| A New Concept Sensor for Determination of Oxygen and Hydrogen Peroxide<br>Concentrations in Nuclear Reactor Coolant | 1041 |
|---------------------------------------------------------------------------------------------------------------------|------|
| Tomonori Satoh, Yukio Miwa, Takashi Tsukada, Shunsuke Uchida                                                        |      |
| The Influence of ZrO <sub>2</sub> Treatment on the Electrochemical Behavior of                                      | 1053 |
| Hydrogen Peroxide on Type 304 Stainless Steels in High Temperature Water                                            |      |
| T. K. Yeh, P. I. Wu, C. H. Tsai                                                                                     |      |
| Radiation Induced `Long Cell' (Macrocell) Corrosion in PWRs and BWRs                                                | 1065 |
| Genn Saji                                                                                                           |      |
| Questions and Answers                                                                                               | 1077 |

## Water Chemistry—II: Species Control

| Selection of Water Chemistry for Successful Operation of Water-Cooled                                  | 1080       |
|--------------------------------------------------------------------------------------------------------|------------|
| Fusion Machines                                                                                        |            |
| Andrei Y. Petrov, Jan B. Berry, Otakar Jonas, Lee Machemer                                             |            |
| Possible Alternatives to Sodium Phosphate for Non-Volatile pH Control in<br>Steam Generators           | 1088       |
| Bryan Poulson, Vince Evans, Geoff Bignold                                                              |            |
| Evaluation of the Effects of Oxide Film on Electrochemical Corrosion                                   | 1100       |
| Potential of Stainless Steel in High Temperature Water                                                 |            |
| Shunsuke Uchida, Tomonori Satoh, Takashi Tsukada, Takahiro Miyazawa, Yoshiyuki Sa<br>Ishii             | toh, Keizo |
| Studies of Iron Redox States, Corrosion Potentials and Oxygen Reduction in a Simulated Feedwater Train | 1110       |
| Stefan Forsberg, Peter Gillén, Per-Olof Andersson, Jerzy A. Sawicki                                    |            |
| Questions and Answers                                                                                  | 1122       |

## Water Chemistry—III: Deleterious Effects

| Effect of Ni/Fe Ratio and Ni Concentration on Crud Deposition Behavior on<br>Heated Zircaloy-4 Surface in Simulated PWR Primary Water | 1124 |
|---------------------------------------------------------------------------------------------------------------------------------------|------|
| Hirotaka Kawamura, Masahiro Furuya                                                                                                    |      |
| Characterization of PWR Crud Phases and Their Variation Under Plant<br>Operation by Transmission Electron Microscopy                  | 1136 |
| H. Bergqvist, J. Chen, D. Jädernäs, B. Bengtsson                                                                                      |      |
| Oxide Investigation Formed on Alloy 600 in Leaded Aqueous Solutions                                                                   | 1148 |

Dong-Jin Kim, Mi Ae Kim, Hyuk Chul Kwon, Seong Sik Hwang, Joung Soo Kim, Jun Hwa Hong, Hong Pyo Kim

#### **Questions and Answers**

1156

#### IASCC-I

# Criteria for Initiation of Irradiation-Assisted Stress Corrosion Cracking in1157Stainless Steels in PWR Systems

Stephen Fyfitch, Hongqing Xu, Peter Scott, Lionel Fournier, Anne Demma

# Crack Growth Rate Testing of Fast Reactor Irradiated Type 304L and 316 SS 1164 in BWR and PWR Environments

Anders Jenssen, Johan Stjärnsäter, Raj Pathania

# Influence of Microstructure on IASCC Growth Behavior of Neutron1181Irradiated Type 304 Austenitic Stainless Steels in Simulated BWR Condition1181

Yoshiyuki Kaji, Yukio Miwa, Akira Shibata, Junichi Nakano, Takashi Tsukada, Kenichi Takakura, Kiyotomo Nakata

#### Crack Growth Behavior of Neutron Irradiated L-Grade Austenitic Stainless 1192 Steels in Simulated BWR Conditions

Kenichi Takakura, Kiyotomo Nakata, Shigeaki Tanaka, Tomomi Nakamura, Kazuhiro Chatani, Yoshiyuki Kaji

#### **Questions and Answers**

1204

#### IASCC-II

| IASCC Properties of Cold Worked 316 Stainless Steel in PWR Primary Water<br>Kenichi Takakura, Kiyotomo Nakata, Koji Fujimoto, Kimihisa Sakima, Noboru Kubo             | 1207 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Crack Growth Rates and Fracture Toughness of Neutron Irradiated Grain-<br>Boundary-Engineered Austenitic Stainless Steels                                              | 1219 |
| Y. Chen, O. K. Chopra, Y. Yang, W. J. Shack, B. Alexandreanu, E. E. Gruber, A. S. Rao                                                                                  |      |
| Crack Growth Rate and Fracture Toughness of Austenitic Stainless Steels in<br>a PWR Primary Water Environment<br>J. K. McKinley, E. W. Deemer, R. J. Jacko, R. G. Lott | 1228 |
| An Atom Probe Tomography Study of Proton-Irradiated Austenitic Stainless<br>Steels<br>Z. Jiao, G. S. Was, P. Chou                                                      | 1240 |

#### Characterization of IASCC Crack Tip in Highly Irradiated Stainless Steels 1248

Koji Fukuya, Hiromasa Nishioka, Katsuhiko Fujii, Yuji Kitsunai

| The Investigation of the Damages of Irradiated 316L Stainless Steel Used<br>for the Hafnium Plate Type of Control Rods in BWR Plants<br>S. Ooki, A. Miyazaki, H. Tezuka, M. Taguchi, S. Suzuki           | 1259 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Questions and Answers                                                                                                                                                                                    | 1271 |
| IASCC-III                                                                                                                                                                                                |      |
| Effect of Chemical Compositions on IGSCC Resistance for Strain Hardened<br>Low Carbon Austenitic Stainless Steels in High Temperature Water<br>Toshio Yonezawa et al.                                    | 1274 |
| <b>Evaluation of Localized Deformation at Low Strain Levels in Austenitic</b><br><b>Stainless Steel Irradiated by Proton</b><br>Takashi Tanno, Akira Hasegawa, Shuto Sasaki, Shuhei Nogami, Manabu Satou | 1289 |
| Cracking Behavior of Irradiated Heat-Affected Zone Specimens of Type 304<br>and 304L Stainless Steel Welds in High-Purity Water<br>Y. Chen, W. J. Shack, B. Alexandreanu, E. E. Gruber, A. S. Rao        | 1294 |
| Questions and Answers                                                                                                                                                                                    | 1305 |

## Irradiation Effects—I: Microstructure and Hardening

| <b>Fracture Toughness of Irradiated Stainless Steel in Nuclear Power Systems</b><br>Stephen Fyfitch, Hongqing Xu, Anne Demma, Robert Carter, Ron Gamble, Peter Scott                                              | 1307 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Modelling Grain Boundary Chromium Depletion in Austenitic Alloys<br>Youfa Yin, Roy G. Faulkner, Paul Moreton, Ian Armson                                                                                          | 1314 |
| Microstructure and Grain Boundary Chemistry Evolution in Austenitic<br>Stainless Steels Irradiated in the BOR-60 Reactor up to 120 Dpa<br>Alexandra-Évelyne Renault, Cédric Pokor, Jérôme Garnier, Joël Malaplate | 1324 |
| Dose Dependence of Radiation Hardening of Austenitic Steels in BOR-60 at<br>PWR-Relevant Temperatures<br>Yong Yang, Yiren Chen, Todd R. Allen, Omesh K. Chopra                                                    | 1335 |
| Questions and Answers                                                                                                                                                                                             | 1341 |

## Irradiation Effects—II: Dimensional Changes

| Impact Of Ni-59 (N, α) and (N, P) Reactions On DPA Rate, Heating Rate, Gas<br>Generation and Stress Relaxation In LMR, LWR and Candu&Reg Reactors       | 1344 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| F. A. Garner, L. R. Greenwood, E. R. Gilbert and Malcolm Griffiths                                                                                      |      |
| Irradiation Creep and Irradiation Stress Relaxation of 316 and 304L<br>Stainless Steel                                                                  | 1355 |
| John Paul Foster, Torill Karlsen                                                                                                                        |      |
| The Effect of Prior Cold-Work on the Deformation Behavior of Neutron<br>Irradiated AISI 304 Austenitic Stainless Steel<br>Wade Karlsen, Steven Van Dyck | 1371 |
| Questions and Answers                                                                                                                                   | 1382 |

## Irradiation Effects-III

| A New Deformation Mode Observed in Austenitic Low-Nickel Stainless Steels                | 1385 |
|------------------------------------------------------------------------------------------|------|
| Irradiated to High Neutron Exposure at 310-432°C                                         |      |
| M. N. Gusev, D. A. Toktogulova, O. P. Maksimkin, F. A. Garner                            |      |
| Influence of Surface Peening on the Weldability of Neutron-Irradiated<br>Stainless Steel | 1392 |
| Masato Koshiishi, Tomomi Nakamura, Kyoichi Asano                                         |      |
| Questions and Answers                                                                    | 1399 |

## Zirconium Alloys—I: Corrosion

| Review on Electrochemical Corrosion of Zirconium Alloys in High<br>Temperature Water                                        | 1400 |
|-----------------------------------------------------------------------------------------------------------------------------|------|
| Raul B. Rebak, Yang-Pi Lin, Young-Jin Kim                                                                                   |      |
| The Atomic Scale Structure and Chemistry of the Zircaloy-4 Metal-Oxide<br>Interface                                         | 1407 |
| Daniel Hudson et al.                                                                                                        |      |
| <b>The Effect of Residual Stress on Growth of Oxide Scale on Zirconium Alloys</b><br>E. Polatidis, P. G. Frankel, M. Preuss | 1419 |
| Questions and Answers                                                                                                       | 1425 |

## Zirconium Alloys—II: Hydrogen Effects

| Corrosion and Hydriding Performance of Alloy M5 <sup>®</sup> in U.S. Reactors<br>M. T. Machut, G. L. Garner, J. P. Mardon, P. B. Hoffmann | 1427 |
|-------------------------------------------------------------------------------------------------------------------------------------------|------|
| Influence of Zirconium Hydrides on Zircaloy-4 Corrosion in PWR Simulated<br>Conditions in Laboratory                                      | 1434 |
| Caroline Bisor-Melloul, Marc Tupin, Philippe Bossis, Jacques Chêne, François Jomard                                                       |      |
| Crack Growth Rate and Hydride Cracking with Temperature in Delayed<br>Hydride Cracking of Zirconium Alloys<br>Young S. Kim                | 1446 |
| Questions and Answers                                                                                                                     | 1450 |

#### Waste

| Evaluation of Austenitic Stainless Steel Dry Storage Cask Stress Corrosion<br>Cracking Susceptibility                                                  | 1452 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Mekonen Bayssie, Darrell Dunn, Aladar Csontos, Leonardo Caseres, Todd Mintz                                                                            |      |
| Corrosion Resistance of Alloy 22 in Chloride Plus Silicate Solutions<br>Ricardo M. Carranza, Mauricio Rincón Ortiz, Martin A. Rodriguez, Raul B. Rebak | 1462 |
| Corrosion of Radioactive Waste Drum Materials by Various Thiobacillus<br>Strains<br>F. I. Chou, M. Y. Wang, H. P. Chung, H. W. Wen                     | 1468 |
| TIMODAZ: Lining Stability Under Thermal Load<br>Jaroslav Pacovsky                                                                                      | 1476 |
| Questions and Answers                                                                                                                                  | 1486 |

# **Operational Experience—I: Service Experience**

| Build-Up of Deposits in Steam Generators: A Safety Issue           | 1488 |
|--------------------------------------------------------------------|------|
| M. Le Calvar, A. Vergnault, H. Bodineau, F. Balestreri, T. Sollier |      |
| Questions and Answers                                              | 1496 |

## **Operational Experience—II: Methodologies and Policies**

| Proposed Coordinated U.S. PWR Reactor Vessel Surveillance Plan: A<br>Summary                                                             | 1498 |
|------------------------------------------------------------------------------------------------------------------------------------------|------|
| Ryan Hosler, J. Brian Hall, Jack Spanner, Stephen Byrne                                                                                  |      |
| Improving Regulatory Practices Through the OECD-NEA Stress Corrosion                                                                     | 1507 |
| Akihiro Yamamoto, Alejandro Huerta, Karen Gott, Bengt Lydell                                                                             |      |
| Review of Corrosion Experience with Aged Components in Russian NPPs<br>G. Saji, B. T. Timofeev, V. A. Yurmanov                           | 1511 |
| Service Experience with Alloy 600 and Associated Welds in Operating PWRs,<br>Including Repair Activities and Regulatory and Code Actions | 1525 |
| Warren H. Bamford, Nathan A. Palm                                                                                                        |      |
| Questions and Answers                                                                                                                    | 1537 |

## Life Beyond 60 Years—Panel

| U.S. LWR Sustainability Program, Ronaldo Szilard, Jeremy Busby                                                       | 1540 |
|----------------------------------------------------------------------------------------------------------------------|------|
| Korean Perspectives, Changheui Jang, IL Soon Hwang                                                                   | 1557 |
| AREVA Perspective: Long-Term PWR Operation (60 <sup>+</sup> Years), S. Fyfitch                                       | 1571 |
| Panelist: Karen Gott                                                                                                 | 1594 |
| IAEA Activities on Plant Life Management for Safe Long Term Operation,<br>Ervin Liszkia, Ki-Sig Kang                 | 1606 |
| EPRI Long Term Operation Project, Raj Pathania, John Gaertner                                                        | 1623 |
| NRC Research to Support Regulatory Decisions Related to Subsequent<br>License Renewl Periods, C. E. (Gene) Carpenter | 1642 |
| Questions and Answers                                                                                                | 1651 |

## **Extended Operations**

| Modeling and Simulation of Aging Effects in Irradiated PWR Reactor     | 1655 |
|------------------------------------------------------------------------|------|
| Internals Components                                                   |      |
| Glenn A. Gardner, Anne Demma, Frank J. Marx, Tamas Liszkai, Joe Rashid |      |

| Reactor Pressure Vessel Issues for the Light-Water Reactor Sustainability | 1667 |
|---------------------------------------------------------------------------|------|
| Program                                                                   |      |
| Randy K. Nanstad, G. Robert Odette                                        |      |
| Questions and Answers                                                     | 1677 |

## Advanced Energy Systems—I: Stress Corrosion Cracking

| Intergranular Cracking Behavior of Irradiated Austenitic Alloys in<br>Supercritical Water | 1679 |
|-------------------------------------------------------------------------------------------|------|
| G. S. Was, R. Zhou, E. A. West, Z. Jiao                                                   |      |
| Influence of Taylor Factor on IASCC in SCW and Simulated BWR<br>Environments              | 1690 |
| E. A. West, Z. Jiao, G. S. Was                                                            |      |
| Stress Corrosion Cracking Behavior of Cast Stainless Steels                               | 1702 |
| Sebastien Teysseyre, Jeremy Busby, Gary S. Was                                            |      |
| Questions and Answers                                                                     | 1712 |

## Advanced Energy Systems—II: Oxidation

| Oxidation Performance in Supercritical Water                                | 1714 |
|-----------------------------------------------------------------------------|------|
| T. R. Allen, K. Sridharan, X. Ren, L. Tan, Y. Chen                          |      |
| General Corrosion of Neutron Irradiated Candidate Alloys for Fuel Claddings | 1723 |
| Shigeki Kasahara et al.                                                     |      |
| The Oxidation Behavior of Candidate Materials for Advanced Energy Systems   | 1730 |
| in Steam at Temperatures Between 650°C and 800°C                            |      |
| J. M. Sarver                                                                |      |
| Corrosion of Austenitic Stainless Steels in Supercritical Aqueous Solutions | 1740 |
| Xueyong Guan, Digby D. Macdonald                                            |      |
| Microstructure and Oxidation Mechanisms of Ferritic-Martensitic Alloy       | 1751 |
| HCM12A in Supercritical Water                                               |      |
| P. Ampornrat, Y. B. Chen, L. M. Wang, G. G. Was                             |      |
| Comparison of the Oxide Structure Formed on 9CrODS Steel and NF616 in       | 1764 |
| Supercritical Water                                                         |      |
| J. Bischoff, A. T. Motta, X. Ren, T. R. Allen                               |      |
| Questions and Answers                                                       | 1771 |