2010 35th International Conference on Infrared Millimeter and Terahertz Waves

(IRMMW-THz 2010)

Rome, Italy 5-10 September 2010

Pages 1-594

IEEE Catalog Number: ISBN:

CFP10IMM-PRT 978-1-4244-6655-9

Monday, September 06, 2010

09:30 - 12:45	Monday Plenary Chair: A. Renieri	Aula Magna

PL.02

3

Free Electron Lasers- A Historical Perspective

George Neil

Jefferson Lab, United States

From their beginnings in the microwave tube industry, free electron lasers have developed into high peak and average power devices with output wavelengths extending from the microwave regime to X-rays. This paper will review that development and point out trends for future advances.

	14:00	- 15:30 Materials 1 Aula Magna Chair: A. Marcelli
Mo-A2.1	2	Electrodynamics of Confined Water in Nanospace <u>Hiroshi Matsui;</u> N. Toyota Tohoku University, Japan
Mo-A2.2	5	By the measurements of microwave conductivity, terahertz transmission and infrared spectroscopy, we clarify that the two-dimensionally confined water forms hexamer cluster in the MnO2 interlayer of Na-birnessite, and the hydration states around PO2- depend on the type of metallic ions of M-DNA. Glass-Transition-Induced Lattice Mode Shifts in PVDF and HDPE
M0-A2.2	2	Observed with Terahertz Time-Domain Spectroscopy S. Wietzke ¹ ; <u>C. Jansen</u> ¹ ; M. Reuter ¹ ; T. Jung ¹ ; D. Kraft ² ; S. Chatterjee ¹ ; M. Koch ¹ ¹ Uni Marburg, Germany; ² Süddeutsches Kunststoff-Zentrum, Germany Semi-crystalline polymers, such as HDPE or PVDF, are composed of both amorphous and crystalline domains. Here, we apply terahertz time-domain

Mo-A2.3	7	spectroscopy to study the impact of the glass transition tak amorphous phase on lattice modes associated with the cryst Water molecules driven by intense THz pulses <u>M. Nagai</u> ; K. Tanaka Kyoto University, Japan We show THz nonlinearity of liquid water using intense m pulse. Single pulse responses and THz pump-probe spectro water molecules are coherently driven by THz pulse with b	stalline domains. nonocycle THz oscopy show that
		bonding network.	neaking nydrogen
Mo-A2.5	;	Coherent Control of Spin Precessional Motion in Yttris with Impulsive Terahertz Pulse Excitations <u>Keita Yamaguchi</u> ; M. Nakajima; T. Suemoto The University of Tokyo, Japan	um Orthoferrite
		Coherent control of spin precession motion using double p THz magnetic pulses has been demonstrated. In addition to extinction of the precession, intensity increase of transmitt energy transfer from spin systems was observed in the extin	o enhancement and ed THz pulse by inction case.
Mo-A2.6	13	Probing Dielectric Relaxation Models of Polar Liquids Time-domain Pulsed Spectroscopy $\underline{Y.W. SUN}^1$; E. Pickwell-MacPherson ² ¹ Department of Electronic Engineering, The Chinese Univ Kong, Hong Kong; ² Department of Electronic & Compute Hong Kong University of Science and Technology, Hong The dielectric response of glycerol solution and pure glyce in terahertz range. It was found that the dielectric relaxation glycerol solution is governed by two exponentials, wherea exhibits Davidson-Cole-type relaxation behavior.	ersity of Hong r Engineering, The Kong erol were measured on behavior of the
	14:00 -	15:30 Detectors 1 Chair: R. Leoni	Aula Minor
Mo-B2.1	15	 Room temperature Terahertz hot electron bolometric of AlGaAs/GaAs two dimensional electron gas <u>A.E.F. El Fatimy</u>¹; P.D.M. Mauskopf¹; D.M. Morozov¹; C.T.J. Jones²; K.W. Wood² ¹School of School of Physics and Astronomy, Cardiff Univ Kingdom; ²QMC Instruments Ltd, School of Physics and <i>A</i> University, Cardiff CF24 3AA, United Kingdom in this paper, we present a hot-electron bolometric detector nonlinearities of the heated two-dimensional electron gas a AlGaAs/GaAs at room temperature. The response was estimated the statemetric detector is a statemetric detector. 	.D. Dunscombe ¹ ; versity, United Astronomy, Cardiff r, which uses the nedium in

		THz frequency range, showing possible application in sensing radiation	of THz
Mo-B2.2	16	THz Power Measurement Traceable to the International	System of Units
		Andreas Steiger; B. Gutschwager; C. Monte; R. Müller; J. Hol	-
		Physikalisch-Technische Bundesanstalt, Germany	
		THz power measurements traceable to the International System	
		missing in the past. Investigations of two optical methods sour	
		detector-based radiometry led to the design of a new calibratio THz detectors with a molecular gas laser and a room-temperat	
Mo-B2.3	18	Improving Photoconductive Receivers for 1.5 µm CW 7	
110 02.0	10	<u>D. Stanze;</u> H. Roehle; R.J.B. Dietz; H.J. Hensel; D. Schmidt; H	
		Schell; B. Sartorius	,
		Fraunhofer Heinrich Hertz Institute, Germany	
		Implementation of interdigital electrodes and etching isolating	
		improved InGaAs/InAlAs photoconductive antennas. The sign	
		of continuous wave systems at 1.5μ m has been increased up to operation range up to 2.1THz .	b 80 dB and its
		Optimization of high-sensitive THz-wave detection using n	onlinear up-
Mo-B2.4	1:	conversion in DAST crystal	
		Hiroaki Minamide; T.N. Notake; M.T. Tang; Y.W. Wang; H.I	Ito
		RIKEN ASI, Japan	
		In this report, the optimum performance of THz-wave detectio	e
		organic DAST cystal was investigated in parameters such as the DAST, pump wavelength, and pumping intensity. Consequent	
		sensitivity was obtained.	ly, a ilighei
Mo-B2.5	3;	Wafer-bonded Ge:Ga blocked-impurity-band far-infra	red detectors
		<u>Yoshihiro Sawayama</u> ¹ ; Y. Doi ¹ ; R. Kurayama ¹ ; E. Higurashi ¹ ; Hosako ²	
		¹ The University of Tokyo, Japan; ² National Institute of Inform	ation and
		Communications Technology, Japan	
		We report the operation of a blocked-impurity-band (BIB) far-	
		photodetector fabricated by surface activated bonding (SAB).	
		shows a high responsivity of ~10 A/W and extended cut-off we compared to a conventional Ge:Ga photoconductor detector.	avelength
		compared to a conventional Secon photoconductor detector.	
	14:00 - 1	5:30 Resonator Devices	Room 2
		Chair: C. Zhang	
Mo-C2.1	23	Tight-binding description of transmission through crowded	l terahertz
		nanoresonators <u>Y.M. Park;</u> H.R. Park; H.S. Kim; J.S. Kyoung; K.J. Ahn; D.S.	Kim
		Seoul National University, Korea, Republic of	NIIII
		We present resonant transmission through rectangular hole arra	ay on a metallic
		film. Transmission spectra broaden with the resonance peaks s	
		higher frequencies, as the period decreases. The broadening is	caused by inter-
		resonator coupling effects similar to the tight binding model.	

Mo-C2.2	26	Dielectric characterization by means of whispering gallery mode
WI0-C2.2	20	resonators
		M. Fittipaldi ¹ ; E. Strambini ² ; M. Martinelli ² ; <u>G. Annino²</u>
		¹ INSTM - Dipartimento di Chimica, Università di Firenze, Italy; ² Istituto per i
		Processi Chimico-Fisici, CNR, Italy
		The possibility to characterize the complex dielectric permittivity of low-loss materials at millimeter and submillimeter wavelengths by means of a
		technique based on whispering gallery mode dielectric resonators is discussed, together with some illustrative results.
		together with some must arrive results.

Mo-C2.4	48	Efficient coupling of THz radiation to microdisk <u>F. Eichhorn</u> ¹ ; A. Patrascu ² ; G. Leo ² ; P.U. Jepsen ¹ ¹ Technical University of Denmark, Denmark; ² University France We model the coupling of THz radiation between a micro- and free-space. This is relevant for a new class of THz e difference-frequency mixing between two laser modes i We show efficient coupling between the MD TM mode mode.	te Paris Diderot, rodisk (MD) resonator emitters based on n an MD resonator.
Mo-C2.5	49	Electrical control terahertz radiation through nat <u>Y.G. Jeong</u> ¹ ; H. Bernien ¹ ; J.S. Kyoung ¹ ; H.S. Kim ¹ ; H.F. H.T. Kim ² ; D.S. Kim ¹ ¹ Seoul National University, Korea, Republic of; ² ETRI, We demonstrate electrical control of terahertz radiation nanoresonators on VO2 thin film. By electrically induce phase transition, terahertz radiation can be switched-off decreased by two orders of magnitudes even when the fin nanoscale.	R. Park ¹ ; B.J. Kim ² ; Korea, Republic of through ed insulator-to-metal . Transmission is
	14:00	- 15:30 Quantum Cascade Lasers 1	Room 3

Chair: A. Tredicucci

Mo-D2.2 4;	Recent pr	ogress in	THz Q	C lasers

- Giacomo Scalari
- ETH, Switzerland

Recent progress in the design and realization of quantum cascade lasers emitting at THz frequencies will be discussed. High temperature, high power operation and broadband emitters are discussed. THz lasers oscillating in

Mo-D2.3	33	micro-resonators with extremely small modal volumes will be also presented. Terahertz pulse generation and amplification within terahertz quantum cascade lasers <u>S. Dhillon¹</u> ; S. Sawallich ¹ ; N. Jukam ¹ ; D. Oustinov ¹ ; J. Madeo ¹ ; R. Rungsawang ¹ ; S. Barbieri ² ; P. Filloux ² ; C. Sirtori ² ; X. Marcadet ³ ; J. Tignon ¹ ¹ Ecole Normale Supérieure, France; ² Université Paris 7, France; ³ Alcatel- Thales III-V lab, France
		Integrated THz pulse generation and amplification in THz QCLs is demonstrated. Intracavity narrowband THz pulses are generated at 2.1THz by exciting the facet of a THz quantum cascade laser with a resonant interband- intersubband transition and detected using electro-optic sampling.
Mo-D2.4	54	Injection locking of Terahertz quantum cascade lasers via RF amplitude modulation up to 35GHz <u>P. Gellie</u> ¹ ; S. Barbieri ¹ ; J.F. Lampin ² ; P. Filloux ¹ ; C. Manquest ¹ ; C. Sirtori ¹ ; I. Sagne ³ ; S.P. Khanna ⁴ ; E.H. Linfield ⁴ ; H.E. Beere ⁵ ; D.A. Ritchie ⁵ ¹ University of Paris VII - CNRS, France; ² Laboratoire IEMN, Université de Lille 1 and CNRS, France; ³ Laboratoire LPN, France; ⁴ School of Electronic and Electrical Engineering, University of Leeds, United Kingdom; ⁵ Cavendish Laboratory, University of Cambridge, United Kingdom We demonstrate that the round-trip frequency of THz quantum cascade lasers can be injection-locked via RF amplitude modulation. Devices with roundtrip frequencies up to 35GHz showed locking bandwidths >200MHz. Inside the locking range the round-trip frequency is phase-locked to the RF-synthesizer.

14:00	- 15:30 Plasma based sources Chair: X.C. Zhang	Room 7
56	Demonstration of High Power Terahertz Sources Driven Femtosecond Lasers	by Intense
	Yutong Li; C. Li; M. Zhou; X. Lin; F. Liu; F. Du; S. Wang;	L. Chen; J. Ma; Z.
	Wang; Z. Wei; Z. Sheng; J. Zhang	
	Institute of Physics, CAS, China	
	We demonstrate an intense plasma-based THz source using -	~5 TW
	femtosecond laser pulses to irradiate solid targets. The energ	y of a single THz
	pulse increases with the laser energy. The maximum THz en	
57		ed Air Plasmas
	V. Blank; M.D. Thomson; H.G. Roskos	
	Physikalisches Institut, Goethe-Universität Frankfurt, Germa	•
	We demonstrate the generation of coherent terahertz radiatio	
		•
		e
	obtained are sufficient to achieve peak fields of at least 60 M	IV/cm.
		 Demonstration of High Power Terahertz Sources Driven Femtosecond Lasers Yutong Li; C. Li; M. Zhou; X. Lin; F. Liu; F. Du; S. Wang; I Wang; Z. Wei; Z. Sheng; J. Zhang Institute of Physics, CAS, China We demonstrate an intense plasma-based THz source using - femtosecond laser pulses to irradiate solid targets. The energ pulse increases with the laser energy. The maximum THz en- high as tens μJ/sr. The polarization of the THz pulse is measus Extreme-bandwidth THz Pulses from Laser-Generate V. Blank; M.D. Thomson; H.G. Roskos Physikalisches Institut, Goethe-Universität Frankfurt, Germa

Mo-E2.3	59	The Role of Multiphoton Ionization by Bicolor Laser Pulses Description of THz Pulse Generation from Laser Breakdown <u>Alexander Shkurinov</u> ¹ ; A.V. Borodin ¹ ; M.N. Esaulkov ¹ ; I.A. Ko ¹ Department of Physics, M.V.Lomonosov Moscow State Univer Federation; ² Budker Institute of Nuclear Physics, Russian Federa The ITM is used to describe the MI of atoms of gases under the femtosecond laser irradiation. The obtained formulas are applied qualitative explanation of recent experiments on the generation of radiation from an optical breakdown in a focus spot of a femtose gas.	n Plasma telnikov ² sity, Russian ation bicolor l for the of THz
Mo-E2.4	5:	THz Generation in Plasmas Using Two-Color Laser Puls <u>Phillip Sprangle</u> ¹ ; J. Penano ¹ ; D. Gordon ¹ ; B. Hafizi ² ; P. Serafim ¹ Naval Research Laboratory, United States; ² Icarus Research, In States; ³ Northeastern University, United States We analyze the generation of THz radiation when an intense, sho is mixed with its frequency-doubled counterpart in plasma. We u driving current to determine the electromagnetic field characteries spectral intensity, electric field amplitude and directionality.	³ c, United ort laser pulse use the THz
Mo-E2.5	5; 14:00 -	Broadband Terahertz Emission from Laser-Produced Pla <u>Nikolay Vvedenskii</u> ; V.A. Kostin; A.A. Silaev Institute of Applied Physics, Russian Academy of Sciences, Rus Federation We present the review of recent studies of the phenomenon of te generation caused by gas ionization with intense femtosecond la	sian rahertz waves
Mo-F2.1	62	Third Harmonic Lasing on Terahertz NovoFEL <u>V.V. Kubarev</u> ; G.N. Kulipanov; O.A. Shevchenko; N.A. Vinoku Budker Institute of Nuclear Physics, Russian Federation NovoFEL has recently lased near 70 μ m on the third harmonic o fundamental frequency. By a choice of different optical resonato fundamental and third harmonics and the resonator length, lasing to occur on both frequencies simultaneously or on either one alo	f the or losses for g can be forced ne
Mo-F2.2	65	 FEM with high-selective Bragg resonator based on coupling propagating and cutoff waves <u>N.Y. Peskov</u>¹; N.S. Ginzburg¹; A.M. Malkin¹; A.S. Sergeev¹; V. I.V. Zotova¹; I.I. Golubev²; S.M. Golubykh²; A.K. Kaminsky²; A E.A. Perelshtein²; S.N. Sedykh² ¹Institute of Applied Physics RAS, Russian Federation; ²Joint In Nuclear Research, Russian Federation Bragg FEM with feedback loop including quasi-cutoff wave was feedback mechanism improves selectivity of the Bragg resonator advance of FEM into short wavelengths up to THz-band. Operator resonator of a novel type has been demonstrated in Ka-band JIN 	Y. Zaslavsky ¹ ; A.P. Kozlov ² ; stitute for s studied. Such rs and allows pility of Bragg

Mo-F2.3	67	Nonlinear Dynamics of a Terahertz Band FEL with Advanced Bragg
WI0-F2.5	07	Resonators.
		Andrey Malkin; N.S. Ginzburg; N.Y. Peskov; A.S. Sergeev; V.Y. Zaslavsky;
		I.V. Zotova
		The Institute of Applied Physics of the Russian Academy of Sciences (IAP
		RAS), Russian Federation
		Powerful THz band FEL utilizing coupling between the paraxial and the
		transverse wave beams on the advanced Bragg structures is studied. Modeling
		of nonlinear dynamics of suggested FEL scheme demonstrates possibility of
		single frequency regime establishment at the distance between plates of 40λ
Mo-F2.4	68	Orotron operation at the second harmonic of the surface wave frequency
		V.L. Bratman; A.E. Fedotov; P.B. Makhalov
		Institute of Applied Physics of RAS, Russian Federation
		A possibility of the frequency doubling inside the orotron cavity is
		experimentally demonstrated at the frequency of 190 GHz. The excitation of
		the surface mode allows a significant reducing the operating current of the
		orotron mode that is important in the terahertz frequency range.

	16:00	- 17:45 Materials 2 Aula Magna Chair: R. Marcelli	ì
Mo-A3.1	6:	THz Radiation by Optically Controlled Depolarization in BiFeO ₃ <u>Masayoshi Tonouchi</u>	
		Osaka University, Japan Terahertz radiation has been observed from BiFeO ₃ thin films via ultrafast modulation of spontaneous polarization upon carrier excitation with	
		illumination of femtosecond laser pulses.	
Mo-A3.2	72	Near-field terahertz imaging of ferroelectric domains in barium tital <u>Filip Kadlec</u> ; M. Berta; P. Kuzel Institute of Physics, Academy of Sciences Czech Rep., Czech Republic We report on results of near-field pulsed THz imaging experiments with a metalized sapphire probe scanning a BaTiO3 multi-domain single crystal. The method is sensitive to the direction of spontaneous polarization, and spatial resolution is better than the dimensions of the probe at its extremity.	he
Mo-A3.3	74	 Terahertz Intersubband Transitions in the Conduction Band of Ge/SiGe Multi Quantum Wells <u>Yan Busby</u>¹; G. Capellini¹; F. Evangelisti¹; M. Ortolani²; M. Virgilio³; G. Grosso³; G. Pizzi³; A. Nucara⁴; S. Lupi⁴; M. De Seta¹ ¹Università di Roma Tre, Italy; ²CNR Istituto di Fotonica e Nanotecnologie, Italy; ³CNR-NEST-INFM, Pisa, Italy; ⁴Università di Roma La Sapienza, Ital We present Terahertz spectroscopy results in the 2-13 THz range on Ge/SiG 	ly

Mo-A3.4	76	Multi Quantum Wells showing clear evidence of bound to bound intersu transitions in the Ge wells. These results may be relevant for the design SiGe-based Quantum Cascade emitters in the THz range. Infrared and THz study of the hole-doped Cu-O plane in its whole	of
M0-A3.4	76	diagram <u>D. Nicoletti¹</u> ; P. Di Pietro ¹ ; O. Limaj ¹ ; P. Calvani ¹ ; S. Ono ² ; Y. Ando ³ ; S.	-
		Lupi ¹ ¹ University of Rome La Sapienza, Italy; ² CRIEPI Institute, Tokyo, Japa ³ Osaka University, Japan	n;
		This paper is a short review of our recent experiments on hole-doped superconducting cuprates. We investigated the in-plane IR and THz pro of a cuprate family over its whole phase diagram in order to obtain infor on the mechanisms driving metallic-phase instabilities in these materials.	rmation s.
Mo-A3.5	78	Transport properties of Free Carriers in Semiconductors Studied b Time-domain Magneto-optical Spectroscopic Ellipsometry Kenichi Yatsugi; N. Matsumoto; T. Nagashima; M. Hangyo	y i nz
		Osaka University, Japan We have developed a technique to deduce effective mass, density and scattering time of free carriers independently with each other by using T time-domain magneto-optical spectroscopic ellipsometry. The derivation these parameters for an undepend n type In As wafer is demonstrated	
Mo-A3.6	7:	 these parameters for an undoped n-type InAs wafer is demonstrated. Calculation of Terahertz Active Normal Modes in Organic Cryss <u>A.D. Burnett</u>¹; J. Kendrick²; J.E. Cunningham¹; A.R. Pearson³; E.H. Lir A.G. Davies¹ ¹School of Electrical and Electronic Engineering, University of Leeds, U 	nfield ¹ ;
		Kingdom; ² Institute of Pharmaceutical Innovation, University of Bradfo United Kingdom; ³ Astbury Centre for Structural Molecular Biology, University of Leeds, United Kingdom	
		THz frequency spectra of a large number of organic compounds have characteristic spectral absorption features, the exact origin of which, in cases, is unknown. This paper demonstrates the ability of solid-state der functional theory to calculate the origin of THz spectral features	
	16:00 ·	- 17:45 Instruments 1 Aula M Chair: T. Ouchi	linor
Mo-B3.1	82	Telecom Technologies for THz Applications - Challenges and Cl <u>B. Sartorius;</u> H. Roehle; R. Dietz; D. Stanze; H. Kuenzel; M. Schell Fraunhofer Heinrich-Hertz-Institut, Germany	hances
		THz at 1.5 μm is pushed for replacing Ti:sapphire by pulsed fiber lasers telecom technologies offer much more advantages. This paper describes developments towards telecom based THz systems for real world applied	s key
Mo-B3.2	85	Silicon Micromachining Technology for THz applications <u>C. Jung</u> ; C. Lee; B. Thomas; G. Chattopadhyay; A. Peralta; R. Lin; J. G Mehdi	ill; I.
		Jet Propulsion Laboratory, United States We report here the development of a wafer-level integrated submm-way receiver front-end by using advanced semiconductor fabrication technol	

		We have developed a technique where Si-metal interf	
		methodology are utilized to enable multi-pixel receive	
Mo-B3.3	88	Silicon Based Microfluidic Device for THz Fro	
		<u>A.J. Baragwanath</u> ¹ ; G.P. Swift ² ; D. Dai ¹ ; A.J. Gallant ¹	; J.M. Chamberlain ¹
		¹ Department of Physics Durham University, United K	ingdom; ² Department of
		Physics, Durham University, United Kingdom	
		In this paper we report on the design, fabrication and t	testing of a silicon based,
		microfluidic device, for transmission THz-TDS. Testi	ng of the device is
		accomplished by analysis of primary alcohol/water mi	ixtures. The analysis of
		biotin solutions has displayed sensitivity of the order	
	0	Developments of THz ESR Systems Using a SQUII	
Mo-B3.4	8:	Micro-Cantilever	
		<u>Hitoshi Ohta¹</u> ; T. Sakurai ² ; M. Fujisawa ³ ; S. Okubo ³ ;	F Ohmichi ⁴
		¹ Kobe University, Molecular Photoscience Research (
		Support to Research and Education Activities, Kobe U	
		³ Molecular Photoscience Research Center, Kobe Univ	ersty, Japan; Faculty of
		Science, Kobe University, Japan	
		evelopments of our highly sensitive THz ESR systems	*
		method is the ESR detection using a micro-cantilever,	
		sensitivity of about 1011 spins/G up to 315 GHz. Ano	
		detection up to 315 GHz using a commercial SQUID	magnetometer.
Mo-B3.5	92	THz time domain spectroscopy based on OSC	AT scheme
		<u>Rafał Wilk¹</u> ; T. Hochrein ² ; M. Mei ¹ ; R. Holzwarth ¹	
		¹ Menlo Systems GmbH, Germany; ² Sueddeutsches Ku	unststoff-Zentrum,
		Germany	
		We present a THz spectrometer based on a novel scan	ning technique without
		any external moveable delay stage. The optical delay	e 1
		probe pulses and thus the scanning range is controlled	
		the laser source.	
	16:00	- 17:45 Imaging 1	Room 2
		Chair: H. Han	
Mo-C3.1	92	Real-time terahertz color scanner	
		<u>T. Yasui</u> ¹ ; T. Iwata ² ; T. Araki ¹	
		¹ Osaka University, Japan; ² University of Tokushima,	Japan
		Real-time THz color scanner was proposed based on a	a combination of non-
		collinear electro-optical time-to-space conversion and	line focusing of a THz
		beam. The proposed system has the potential to expan	d the application scope
		of THz spectral imaging based on its rapid image acqu	uisition rate.
Mo-C3.2	97	High Speed Imaging With Time Domain Terah	
		Irl Duling; D. Zimdars; J. White; S. Williamson	
		Picometrix, LLC, United States	
		Time domain terahertz (TD-THz) imaging provides ri	ch data about the item
		being imaged. By processing the reflected pulse, spec	
			-
		structural information can be generated. The problem	• •
		Recent advances allow images to be collected in second	nus, ramer man nours.

Mo-C3.3	98	THz QCL - based active imaging applied to composite materials
WI0-C3.5	90	diagnostic
		<u>F. Destic¹</u> ; S. Massenot ¹ ; Y. Petitjean ¹ ; J.C. Mollier ¹ ; S. Barbieri ²
		¹ Universite de Toulouse, ISAE, France; ² Universite Paris-Diderot, MPQ,
		France
		This paper presents a CW raster-scanning THz imaging setup, based on a 2.5
		THz Quantum Cascade Laser, used to perform Non-Destructive Testing of
		Kevlar and carbon fibre samples. Delamination defect in Kevlar showing a
		polarization dependence and a break in carbon fibres were detected.
Mo-C3.4	9:	Application of the InGaAs-based bow-tie diodes for Terahertz imaging
		I. Kašalynas; R. Simniškis; D. Seliuta; V. Tamošiūnas; G. Valušis
		Centre for Physical Sciences and Technology, Semiconductor Physics
		Institute, Lithuania
		The bow-tie InGaAs diode with broken symmetry was demonstrated for
		terahertz imaging at room temperature. The voltage-induced capacitance
		effects important for the diode operation in a real time mode were considered.
Mo-C3.5	82	Sub-terahertz Imaging of a Painted Steel
		<u>T. Kurabayashi¹; S. Sakai²; K. Fujino²</u>
		¹ Iwate Prefectural University, Japan; ² Nippon Expressway Research Institute
		Company Ltd., Japan
		Sub-terahertz imaging of a painted steel plate as a method of nondestructive
		inspection was performed using a wave ranging from 100 to 200 GHz. An
		invisible rusty area covered with multiple paint layers on steel in actual use
		was effectively detected by power-reflection imaging.
Mo-C3.6	:4	CCD-camera-based electro-optical detection of nanosecond THz pulses
WI0-C3.0	. +	from an optical parametric oscillator
		F.Z. Meng ¹ ; M.D. Thomson ¹ ; D. Molter ² ; T. Löffler ³ ; J. Jonuscheit ² ; R.
		Beigang ² ; J. Bartschke ⁴ ; T. Bauer ⁴ ; M. Nittmann ⁴ ; <u>H.G. Roskos¹</u>
		¹ Johann Wolfgang Goethe-Universität, Physikalisches Institut, Germany;
		² Department of Terahertz Measurement and Systems, Fraunhofer Institute for
		Physical Measurement Techn, Germany; ³ Physikalisches Institut, Johann
		Wolfgang Goethe-Universität, Germany; ⁴ Xiton Photonics GmbH, Germany
		We report realization of a THz camera based on electro-optical detection of
		THz radiation from an optical parametric oscillator, using a silicon-based CCD
		camera as the optical detector. The dynamic range of 16.5 dB for a 6000-frame
		average (2-minute data acquisition time) is limited by laser noise.

Mo-D3.1 : 6 Phase-locking of 2.4 and 2.7 terahertz quantum cascade lasers to a femtosecond mode-locked Er-fiber laser S. Barbieri ¹ ; P. Gellie ¹ ; G. Santarelli ² ; M. Ravaro ¹ ; M. Amato ¹ ; C. Manques C. Sirtori ¹ ; R. Colombelli ³ ; S.P. Khanna ⁴ ; E.H. Linfield ⁴ ; H.E. Beere ⁵ ; D.A.			17:45 Quantum Cascade Lasers 2	Room 3
femtosecond mode-locked Er-fiber laser <u>S. Barbieri¹</u> ; P. Gellie ¹ ; G. Santarelli ² ; M. Ravaro ¹ ; M. Amato ¹ ; C. Manques			Chair: G. Scamarcio	
S. Barbieri ¹ ; P. Gellie ¹ ; G. Santarelli ² ; M. Ravaro ¹ ; M. Amato ¹ ; C. Manques	Mo-D3.1	:6		de lasers to a
C. Sirtori ¹ ; R. Colombelli ³ ; S.P. Khanna ⁴ ; E.H. Linfield ⁴ ; H.E. Beere ⁵ ; D.A.				mato ¹ : C. Manquest ¹ :
C. DIRUTI, R. CODIRUCHI, D.I. Rhanna, L.H. Linner, H.L. DUCC, D.R.			<u>C Sirtori¹: R Colombelli³: S P Khanna⁴: F H I infield⁴</u>	\cdot H F Beere ⁵ D A
Ritchie ⁵				, 11.L. Deele , D.M.
¹ University of Paris VII - CNRS, France; ² LNE-SYRTE, CNRS, UPMC,				. CNRS. UPMC.
Observatoire de Paris, France; ³ IEF, Université Paris Sud and CNRS, Franc			Observatoire de Paris, France; ³ IEF, Université Paris Suc	d and CNRS, France;
⁴ School of Electronic and Electrical Engineering, University of Leeds, United				
Kingdom; ⁵ Cavendish Laboratory, University of Cambridge, United Kingdo			Kingdom; ⁵ Cavendish Laboratory, University of Cambrid	dge, United Kingdom
We demonstrate the phase-locking of Quantum Cascade Lasers emitting at 2				e
and 2.7Terahertz, to the repetition rate of a commercial Er-doped fiber-fs-			-	-
laser. We observe a linewidth of the beat-note signal with a signal-to-noise				h a signal-to-noise of
80dB in 1Hz bandwidth.				
Mo-D3.2 :9 Gain switching of a terahertz quantum cascade laser for THz pulse	Mo-D3.2	:9		for THz pulse
amplification D. Oustinov ¹ ; N. Jukam ¹ ; R. Rungsawang ¹ ; J. Madeo ¹ ; S. Barbieri ² ; C.				Dombioni ² : C
Manquest ² ; C. Sirtori ² ; S.P. Khanna ³ ; E.H. Linfield ³ ; A.G. Davies ³ ; J. Tigno				
S. Dhillon ¹				J. Davies, <u>J. Highon</u> ,
¹ Ecole Normale Supérieure, France; ² University Paris 7, France; ³ University				France: ³ University of
Leeds, United Kingdom			· · · · · ·	
The population inversion of a terahertz quantum cascade laser is placed out				e laser is placed out of
equilibrium using an integrated Auston switch. As a result, the dynamic gai				
of the laser is no longer clamped at threshold by the mirror losses, and large				
amplification of input terahertz probe pulses is observed.				
Mo-D3.3 :: Gain studies of phonon-depopulation based terahertz quantum cascade	Mo-D3.3	::		z quantum cascade
lasers using terahertz time domain spectroscopy			lasers using terahertz time domain spectroscopy	1 5
<u>S. Dhillon</u> ¹ ; N. Jukam ¹ ; D. Oustinov ¹ ; J. Madeo ¹ ; R. Rungsawang ¹ ; R. Collombelli ² ; P. Dean ³ ; M. Salih ³ ; S.P. Khanna ³ ; E.H. Linfield ³ ; A.G. Davie			<u>S. Dhillon</u> ⁺ ; N. Jukam ⁺ ; D. Oustinov ⁺ ; J. Madeo ⁺ ; R. Run Cellembell ² , D. Deen ³ , M. Sel ³ , S. D. Khanne ³ , F. H. L ²	$1gsawang^{-}; R.$
J. Tignon ¹			Collombelli ; P. Dean ; M. Salin ; S.P. Knanna ; E.H. Li	infield; A.G. Davies;
¹ Ecole Normale Supérieure, France; ² Université Paris Sud, France; ³ Université				d France: ³ University
of Leeds, United Kingdom				id, France, Oniversity
Gain and losses in a LO-phonon THz QCL are studied using TDS. At			e e	sing TDS. At
threshold the gain clamps at 25cm-1 and the gain FWHM is 0.6THz. At low				
biases, absorption features are observed below and above the laser frequenc				
They are shown to originate from the population of a parasitic electronic			•	
channel.			channel.	
Mo-D3.4 :; Terahertz Quantum Cascade Laser in the InGaAs/GaAsSb Material	M_{O} D3 4		Terahertz Quantum Cascade Laser in the InGaAs/Ga	aAsSb Material
System	10-25.4	• •	-	
<u>C. Deutsch</u> ; A. Benz; H. Detz; M. Nobile; A.M. Andrews; P. Klang; W.				s; P. Klang; W.
Schrenk; G. Strasser; K. Unterrainer				
Vienna University of Technology, Austria				l on the alure in the
We demonstrate a terahertz quantum cascade laser based on the aluminum-f InGaAs/GaAsSb material system. Processed in a double-metal waveguide				
configuration, devices reach operating temperatures up to 105 K and the			•	e

Mo-D3.5 Mo-D3.6	;3	spectral emission lies between 3.6 and 4.1 THz. Coupling strategies for two dimensional coherent se <u>C. Schwarzer</u> ¹ ; E. Mujagic ¹ ; Y. Yao ² ; J. Chen ² ; C. Gmacl ¹ Institute for Solid State Electronics, Vienna University of Vienna, 1040, Austria; ² Department of Electrical Engine University, Princeton, New Jersey 08544, United States We present fundamental approaches for realizing coherend quantum cascade laser arrays by utilizing ring cavity suffit this work we describe the design and fabrication as well a characterization. Terahertz quantum cascade lasers with angled facets integration <u>M. Salih</u> LEEDS UNIVERSITY, United Kingdom We report the performance of 3.5 THz quantum cascade laser cavities are formed by wet chemical etching and sho can be obtained using angled facets. This opens up the po- monolithic integration of quantum cascade lasers into ter	hl ² ; G. Strasser ¹ of Technology, ering, Princeton In two dimensional face emitting lasers. In as the electro-optical for monolithic lasers in which the ow that laser ridges ossibility of
	16:00 -	17:45 Gyrotrons 1 Chair: R.J. Temkin	Room 7
Mo-E3.1	;7	 Experimental demonstration of a W-band gyro-BWO corrugated waveguide A.D.R. Phelps¹; <u>C.R. Donaldson</u>²; W. He²; F. Li²; L. Zha Ronald²; A.R. Young²; C.G. Whyte² ¹university of strathclyde, United Kingdom; ²University of Kingdom A gyrotron backward wave oscillator (gyro-BWO) with a and helically corrugated waveguide operating in the W-b is presented and experimentally demonstrated. The 1.5A electron beam has been measured with the velocity ratio, 	ang ² ; A.W. Cross ² ; K. of Strathclyde, United a cusp electron gun and frequency range , 40kV axis-encircling alpha, calculated t
Mo-E3.2	;:	Experimental Studies of a Ka-band Second Harmonic Amplifier <u>Pu-Kun Liu</u> Institute of Electronics, Chinese Academy of Sciences, C The recent experimental results of a Ka-band second har amplifier are presented. The measured output power is 2 is 155MHz, the efficiency is approximately 16% and the	China monic gyroklystron 12kW, 3dB bandwidth
Mo-E3.3	· · · · · · · · · · · · · · · · · · ·	Design of a Permanent Magnet Gyrotron for Active Jeffrey Neilson; M.R. Read; R.L.I. Ives Calabazas Creek Research, United States Current W-Band active denial, non-lethal weapon system sources requiring superconducting magnets. Calabazas C funded by the U.S. Department of Defense to develop a p gyrotron as an alternate source.	Denial Systems ns use gyrotron Freek Research, Inc. is

16:00 - 17:45 Astronomy and Environmental Studies 1Room 11Chair: G. Sironi

Mo-F3.2 323 **Search for Continuum Solar Flare Radiation in the Terahertz Range** <u>Pierre Kaufmann</u>¹; V.S. Makhmutov²; Y.I. Stozhkov²; C.G. Gimenez de Castro¹; J.P. Raulin¹; A.S. Valio¹; E. Correia¹; T. Villela³; R. Marcon⁴; A. Marun⁵; P. Pereyra⁵ ¹Universidade Pesbiteriana Mackenzie, Brazil; ²Lebedev Physical Institute, Russian Federation; ³Instituto Nacional de Pesquisas Espaciais, Brazil; ⁴Universidade Estadual de Campinas, Brazil; ⁵Complejo Astronomico El Leoncito, Argentina Solar bursts sub-THz fluxes increasing with frequency might evidence synchrotron emission from high energy electrons. Knowledge of THz spectral shape is essential to understand the emission mechanisms. THz radiometers are developed for a space mission on a long-duration balloon flight.

		present plans for improving performance of future instruments of this kind.
Mo-F3.4	324	Test Deployment of the PolarBear Experiment
		Paul Richards
		University of California, United States
		PolarBear is an experiment designed to measure the anisotropy of the
		polarization of the Cosmic Microwave Background Radiation. It uses a new
		3.5 m ground based telescope and a large format array of dual-polarization,
		antenna-coupled TES bolometers with a frequency-domain multiplexed
		SQUID readout.
M - E2 5	205	Measurement of the Complex Dielectric Constant of Volcanic Ash at
Mo-F3.5	325	Millimetre Wavelengths.
		Duncan Robertson; A.B. Rogers; D.G. Macfarlane
		University of St Andrews, United Kingdom
		A method for determining the dielectric permittivity of volcanic ash at
		millimetre wavelengths has been developed. This, and preliminary results
		showing good agreement with 19 GHz data, are presented.
Ма Е2 С	207	Recent Progress in Commercial Cryogen-free THz Detectors and Large
Mo-F3.6	327	Format Arrays
		Ken Wood
		QMC Instruments Ltd., United Kingdom
		we present results of the recent incorporation of new superconducting THz
		detector technologies into novel cooling platforms which do not require liquid
		cryogens.

	17:45	- 19:15 Monday Poster	Chiostro
Mo-P.01	329	Intensity modulation of terahertz quantum cascade laser bandgap optical excitation	s under below-
		Norihiko Sekine; I. Hosako	
		National Institute of Information and Communications Tech	
		We have investigated the light-current characteristics of tera cascade lasers using an external light whose energy is below energy of the host material. It is found that light injection inc	the bandgap
		modulation depth, up to 100%.	luces a large
Mo-P.02	32:	THz inter-Landau level emission in a quantum cascado <u>François-Régis Jasnot</u> ¹ ; L.A. de Vaulchier ² ; Y. Guldner ² ; A.	e structure Vasanelli ³ ; C.
		Sirtori ³ ; M. Beck ⁴ ; J. Faist ⁴	
		¹ Laboratoire Pierre Aigrain, France; ² Laboratoire Pierre Aigr	
		Normale Supérieure, France; ³ Laboratoire Matériaux et Phér	
		Quantiques, Université Denis Diderot Paris 7, France; ⁴ Instit Electronics, ETH Zürich, Switzerland	ute of Quantum
		We study a THz quantum cascade structure designed to allow	
		relaxation between crossing Landau levels from different sul perpendicular magnetic field. Electroluminescence measurer intersubband luminescence as well as inter-Landau level emi emission).	nents show

IRMMW-THz 2010

Mo-P.03	332	Spontaneous Emission from GaN/AlGaN based Terahertz Quantum
M0-P.03	332	Cascade Laser Structure grown on GaN Substrate
		W. Terashima; H. Hirayama
		Terahertz Quantum Device Laboratory, RIKEN, Japan
		We fabricated Nitrides-based THz-QCL structure grown on GaN substrate.
		The Output power for QCL on GaN substrate showed ten times higher value
		than that of QCL on MOCVD-GaN template. We for the first time observed
		THz spontaneous emission spectrum on the Nitrides-based THz-QCL on
		injection current.
		High temperature performance of a diagonal THz-QCL calculated with
Mo-P.04	334	non-equilibrium Green fs function method
		<u>Hiroaki Yasuda¹</u> ; T. Kubis ² ; P. Vogl ³ ; I. Hosako ¹ ; K. Hirakawa ⁴
		¹ NICT, Japan; ² Purdue University, United States; ³ Technical University
		Munich, Germany; ⁴ University of Tokyo, Japan
		We have calculated the performance of a novel diagonal design-based THz-
		QCLs with the non-equilibrium Green fs function method. The diagonal QCL
		has a THz gain even at 200 K. The main origin for this is that the non-radiative
M D 05	226	losses are better suppressed than the optical transition.
Mo-P.05	336	THz quantum-cascade lasers with superconducting waveguides
		Alexander Benz; M. Brandstetter; C. Deutsch; G. Fasching; K. Unterrainer;
		A.M. Andrews; P. Klang; W. Schrenk; G. Strasser
		Vienna University of Technology, Austria
		We present THz quantum-cascade lasers in a superconducting double-metal
		waveguide. The active region is sandwiched between 300 nm thick Niobium
		layers. The current-voltage characterisitcs shows a pronounced photon kink at
		lasing threshold.
Mo-P.06	338	THz photonic crystal quantum-cascade lasers: Frequency tuning during
110 1 100	000	lasing operation
		Alexander Benz; M. Brandstetter; C. Deutsch; G. Fasching; K. Unterrainer;
		A.M. Andrews; P. Klang; W. Schrenk; G. Strasser
		Vienna University of Technology, Austria
		We present a new tuning scheme for THz quantum-cascade lasers based on
		active photonic crystal (PhC) resonators. An injected gas changes the
		resonance condition of the PhC and thereby the emission frequency of the
		device.
Mo-P.07	33:	Operation of a Ka-band harmonic multiplying gyrotron traveling wave
10-1.07	55.	tube
		J.R.L. Luo; Y.S. Zhang; W. Guo; M. Zhu; G.J. Yuan; J. Cui; Y.H. Zhang; L.H.
		Ren; J.X. Yang
		Institute of Electronics, Chinese Academy of Sciences, China
		A harmonic multiplying gyro-TWT are reported with coupled cavity and the
		precise control of focusing magnet field to improve the coupling between the
		fundamental and the harmonic and to adapt the sensitivity of the effect of
		focusing magnet field on the beam-wave interaction.

IRMMW-THz 2010

Mo-P.08	342	Simulation of the axis-encircling Cusp electronic gun for Ka-band Gyro- TWT using three folded helical corrugation waveguide
		wenqiang Lei
		Institute of Applied Electronics, China
		The Cusp gun for Ka band Gyro-TWT is simulated by a 3D PIC code, in
		which the electronic velocity value is extracted to calculate the velocity ratio.
		The gun is optimized in 98kV voltage and 1A current, to obtain 1.1 velocity
		ratio and 5% spread. The result is used in helical waveguide Gyro-TWT.
Mo-P.09	344	Simulation of a Four-stage Depressed Collector for a W-band Gyro-BWO
	-	L. Zhang ¹ ; W. He ¹ ; A.W. Cross ¹ ; <u>A.D.R. Phelps¹</u> ; C. Donaldson ¹ ; K. Ronald ¹ ;
		C. Donaldson ² ; K. Ronald ²
		¹ SUPA, Department of Physics, University of Strathclyde, United Kingdom;
		² University of Strathclyde, United Kingdom
		To improve the overall efficiency of a W-band gyrotron backward wave
		oscillator (gyro-BWO) currently been built in university of Strathclyde, an
		energy recovery system using a four-stage depressed collector was simulated
		and designed.
Mo-P.10	346	A W-Band Gyro-TWA using a Helically Corrugated Waveguide
		W. He; <u>A.D.R. Phelps;</u> C.D. Donaldson; A.W. Cross; K. Ronald; L. Zhang
		SUPA, Department of Physics, University of Strathclyde, Glasgow, United
		Kingdom
		A gyrotron travelling wave amplifier with a cusp electron gun and a helically
		corrugated waveguide operating in the W-band is presented. When driven by
		the 40 keV, 1.5 A e-beam, the amplifier was simulated to output 5-10 kW with
		a 3dB frequency bandwidth of 90-100 GHz and saturated gain of 40 dB.
		Simulations of Ka-band waveguide components for use in a gyro-
Mo-P.11	348	travelling wave amplifier
		<u>C.W. Robertson;</u> A.D.R. Phelps; C.G. Whyte; A.R. Young; K. Ronald; A.W.
		Cross
		University of Strathclyde, United Kingdom
		Abstract—We present the results of a series of CST Microwave Studio
		computer simulations of waveguide components for a gyro-TWA operating in
		the Ka-band (26.5-40GHz) frequency range. The components studied include
		circular to helical waveguide transitions and microwave severs.
		Investigations on Wave Propagation in Launchers of Advanced Gyrotron
Mo-P.12	34:	Output Couplers
		<u>J. Flamm¹</u> ; J. Jin ¹ ; J. Neudorfer ² ; S. Roller ² ; M. Thumm ¹
		¹ Karlsruhe Institute of Technology, Germany; ² German Research School for
		Simulation Sciences GmbH, Germany
		In this paper, we present the latest results on an FFT based method for fast
		calculation in a rippled-wall overmoded circular waveguide. These are
		compared with the results of a high-order discontinuous Galerkin method
		solving Maxwell's equations.
		Southing many of the officiality.

Mo-P.13 352

Microwave Cherenkov Radiation from a Particle-in-flight to a Semiinfinite Layered Medium

Levon Grigoryan¹; A.R. Mkrtchyan¹; H.F. Khachatryan¹; S.R. Arzumanyan¹; W. Wagner²

¹Institute of Applied Problems in Physics, Armenia; ²Forschungszentrum Dresden-Rossendorf, Institute of Radiation Physics, Germany Some part of the microwave Cherenkov radiation from a particle-in-flight from vacuum to semi-infinite layered medium is redirected by the periodical structure of medium in the backward direction. This part of radiation is quasimonochromatic.

Mo-P.16 354

THz detectors with HgTe and InSb quantum wells

<u>F. Gouider</u>¹; Y.B. Vasilyev²; J. Könemann³; C. Brüne⁴; H. Buhmann⁴; P.D. Buckle⁵; G. Nachtwei¹ ¹Institut für Angewandte Physik, Technische Universität Braunschweig, Germany; ²A. F. Ioffe Physical Technical Institute, RU-194021 St. Petersburg,, Russian Federation; ³Physikalisch-Technische Bundesanstalt, D-38116 Braunschweig,, Germany; ⁴Fakultät für Physik und Astronomie, Julius-Maximilians-Universität Würzburg, Germany; ⁵QinetiQ Ltd, Malvern WR14 3PS, United Kingdom THz-frequencies in semiconductor quantum wells are of interest due to the

potential for making devices that operate at THz frequencies. We present magnetotransport and magnetooptical data obtained in the magnetic field range 0 < B < 7T at QH detectors patterned as Corbino rings on InSb and HgTe QWs.

Mo-P.18	356	photolithography fabrication process so as to minimize losses. Evaluation of a Terahertz Detector based on a Superconducting Tunnel
		Junction Coupled to a Thin Superconductor Film <u>Seiichiro Ariyoshi</u> ¹ ; T. Taino ² ; A. Dobroiu ¹ ; H. Sato ¹ ; H. Matsuo ³ ; C. Otani ¹ ¹ RIKEN, Japan; ² Saitama University, Japan; ³ National Astronomical
		Observatory, Japan
		The principle of a superconducting terahertz detector is verified. We have detected terahertz radiation based on the Cooper-pair breaking process, and confirmed that the sensitivity has a sharp increase around 0.7 THz, a value that
		is in agreement with the gap frequency of the superconducting Nb.
Mo-P.19	357	Micromachined Arrays of Air-bridge GaAs Schottky Diodes for THz
WIO-1.17	331	Cameras
		<u>C.R. Casini Roberto¹</u> ; D. Dominijanni ¹ ; M. Ortolani ¹ ; E. Giovine ¹ ; F. Gatta ² ; A. D'Amico ² ; V. Foglietti ¹
		¹ CNR-IFN, Italy; ² UNIVERSITY OF ROME "TOR VERGATA", Italy
		We present the fabrication and test of arrays of GaAs Schottky diodes with
		sub-micrometric junction area and negligible parasitic capacitances working as
		rectifying detectors at sub-THz frequencies. GaAs Micromachining techniques
M- D 20	250	are used to decrease the cross talking between adjacent diode detector
Mo-P.20	359	A new method of terahertz detection: probe-energy electro-optic sampling G.K. Kitaeva ¹ ; S.P. Kovalev ¹ ; I.I. Naumova ¹ ; R.A. Akhmedzhanov ² ; <u>I.E.</u>
		<u>Ilyakov</u> ² ; B.V. Shishkin ² ; E.V. Suvorov ²
		¹ M. V. Lomonosov State University, Russian Federation; ² Institute of Applied
		Physics, Russian Academy of Sciences, Russian Federation
		Implementation of free-space electro-optic detection is reported, based on
		measuring the energy variation of a femtosecond laser pulse induced by a
		terahertz field. Scheme of detection is demonstrated using wide-aperture
		periodically poled Mg:Y:LiNbO3 (PPLN) crystals and a ZnTe crystal.
Mo-P.21	35;	Hot Electron Bolometer Waveguide Mixers for 1 to 3 THz
		<u>P. Pütz;</u> C.E. Honingh; K. Jacobs; M. Justen; F. Schomaker; M. Schultz; S. Wulff; J. Stutzki
		1. Physikalisches Institut, KOSMA, Universität zu Köln, Germany
		We report on measurement results of our latest waveguide mixer
		developments for the German Receiver for Astronomy at THz frequencies
		(GREAT), one of the first light instruments of the Stratospheric Observatory
		for Infrared Astronomy (SOFIA), and for the Stratospheric THz Observatory (STO).
Mo-P.22	363	Optimization of Photoresponse and Crosstalk for Mid-wavelength InSb Infrared Focal Plane Arrays
		n. guo^1 ; c. meng ² ; w.d. hu ¹ ; y.q. lv^2 ; x.s. chen ¹ ; w. lu^1
		¹ Shanghai Institute of Technical Physics, Chinese Academy Sciences, China;
		² Luoyang Optoelectronic Institute, Luoyang, Henan, China
		Effects of the pixel crosstalk on photoresponse for mid-wavelength InSb
		infrared focal plane arrays have been numerically studied. Our work shows
		that the pixel crosstalk increases with the increase of the height of pixel and
		the thickness of substrate. The optimal value can be found.

Mo-P.23	365	Sensitive Detectors of Terahertz Radiation Based on Pb1-xSnxTe(In)
		Dmitry Khokhlov
		Moscow State University, Russian Federation
		Indium doped lead telluride-based photodetectors have demonstrated
		extremely high performance in the terahertz range. These materials reveal a
		number of advantageous features: "internal" accumulation of the incident
		radiation, high spatial and temporal stability, high radiation hardness and
		others
Mo-P.24	366	Superconducting Integrated THz Receiver
		<u>Andrey Khudchenko¹</u> ; V.P. Koshelets ¹ ; P.N. Dmitriev ¹ ; L.V. Filippenko ¹ ;
		N.V. Kinev ¹ ; P. Kudryashov ¹ ; O.S. Kiselev ¹ ; M.Y. Torgashin ¹ ; G. de Lange ² ;
		L. de Jong ² ; P.A. Yagoubov ²
		¹ The Kotel'nikov Institute of Radio Engineering and Electronics, Russian
		Federation; ² Netherlands Institute for Space Research, Netherlands
		Abstract—A Superconducting Integrated Receiver (SIR) developed for
		balloon borne instrument TELIS covers frequency range 450-650 GHz. The
		DSB noise temperature was measured as low as 120 K. The SIR application
		for high resolution spectroscopy of breathed out air has been proven.
Mo-P.25	367	Electrically Switchable Optical Response in Graphene
1110 1 .25	507	<u>C. Zhang</u> ; S. Sultan; R. Vickers; F. Gao
		University of Wollongong, Australia
		We carried out a theoretical and computation study of optical response of
		graphene over a wide frequency range, from terahertz to ultraviolet. It is
		shown that due to the massless Dirac Fermion properties, the optical response
		of graphene is electrically switchable.
		Terahertz luminescence under continuous wave interband excitation of
Mo-P.26	369	semiconductors
		<u>Alexander Andrianov</u> ; A.V. Andrianov
		A.F. Ioffe Physical Technical Institute, Russian Federation
		We report on the observation of efficient terahertz emission from
		semiconductors (n-GaAs) under continuous-wave interband excitation at liquid
		helium temperatures. The external quantum yield of the emission is up to
M D 07	26	0.3%.
Mo-P.27	36;	Identification of Textile Fiber by Terahertz Spectroscopy
		<u>T. Kurabayashi</u> ¹ ; F. Saitoh ² ; N. Watanabe ³ ; T. Tanno ¹
		¹ Iwate Prefectural University, Japan; ² Research and Development Division,
		Koiwai Farm, Ltd., Japan; ³ Research Institute for Quality Living Co., Ltd.,
		Japan
		Absorption spectra of a majority of textile fibers are distinguishable by THz
		spectroscopy, even for fibers in the same category or species. The advantage
		of this technique is its sensitivity to the structural differences of the textile
		fibers, even if they consist largely of the same components.
Mo-P.28	373	Validation of thick materials having high refractive indices as high-
WI0-1 .20	515	resistance silicon plates with THz-TDS
		<u>Keiko Kitagishi</u>
		Otsuka Electronics Co. Ltd., Japan
		Evaluation of complex refractive index of high-n materials was attempted by
		THz-TDS. The properties were estimated adequately when THz waves radiate

		in parallel flux, while those were improper with converged waves. The system
		was designed to easily exchange the parallel/converged configuration.
Mo-P.29	375	Neural Network-based Non-destructive Quantification of Thin Coating by
M0-P.29	575	Terahertz Pulsed Imaging in the Frequency Domain
		Yaochun Shen ¹ ; S. Zhong ² ; R.K. May ³ ; M.J. Evans ⁴ ; J.A. Zeitler ³ ; D. Dey ⁵
		¹ University of Liverpool, United Kingdom; ² Department of Electrical
		Engineering and Electronics, University of Liverpool, L69 3GJ, UK, United
		Kingdom; ³ Department of Chemical Engineering and Biotechnology,
		University of Cambridge, CB2 3RA, UK, United Kingdom; ⁴ TeraView Ltd.,
		St. John; s Innovation Park, Cambridge CB4 0WS, UK, United Kingdom;
		⁵ Oystar Manesty, Merseyside L34 9JS, UK, United Kingdom
		We present a Neural Network (NN) based method for determining the coating
		thickness from the FFT-amplitude of the measured terahertz waveform. The
		experimental results demonstrate that the NN-based method can be used to
		characterize the tablet coating with a thickness down to about 20 microns.
Mo-P.30	377	Visualization of Carbon Black Distribution in Rubber Vulcanizates by
		Terahertz Time-Domain Spectroscopy
		Yasuyuki Hirakawa ¹ ; Y. Ohno ¹ ; T. Gondoh ¹ ; T. Mori ¹ ; K. Takeya ² ; M.
		Tonouchi ² ; H. Ohtake ³ ; T. Hirosumi ³
		¹ Kurume National College of Technology, Japan; ² Institute of Laser
		Engineering, Osaka University, Japan; ³ AISIN SEIKI Co., Ltd., Japan
		The distribution of carbon black (CB) in rubber vulcanizates containing
		several additives such as carbon black, ZnO, etc. was estimated by terahertz
		time-domain spectroscopy. It was found that the CB distribution could be
		clearly visualized and the THz measurements indicated high reproducibility.
Mo-P.31	379	Gyrotrons FU CW V and FU CW VIII for measurement of hyperfine
WIO-F .31	519	structure of positronium
		Toshitaka Idehara ¹ ; Y. Urushizaki ¹ ; I. Ogawa ¹ ; R. Ikeda ¹ ; S. Sabchevski ¹ ; S.
		Asai ² ; T. Suehara ² ; A. Miyazaki ² ; T. Yamazaki ² ; T. Kobayashi ² ; T.H. Chang ³
		¹ University of Fukui, Japan; ² The University of Tokyo, Japan; ³ National Tsing
		Hua University, Japan
		For direct measurement on hyperfine structure of positronium, high power
		sub-THz radiation sources have been developed. Gyrotron FU CW V is a
		frequency fixed gyrotron operating at 203.3 GHz for the proof-of-principle
		experiment and Gyrotron FU CW VIII a frequency tunable to measure it
		directly.
Mo-P.32	37;	The Phonon Absorption Bands of KDP, NBP and PTB Crystals
	,	<u>Bihui HOU^1; W. Wang²</u>
		¹ Beijing University of Technology, China; ² Graduate University of Chinese
		Academy of Sciences, China
		The phonon absorption bands of three oxide crystals, KH2PO4(KDP),
		Na5B2P3O13 (NBP) and PbB4O7 (PTB), have been studied and compared
		from the ultraviolet-visible- infrared- THz transmission spectra.
Mo-P.33	383	The Reflectance and Electrical Properties of Nanocrystalline Thulium
110-1.33	505	Fengyan LIU; H. Hou
		Beijing University of Technology, China
		The reflectance spectra within 200nm- 2500nm wavelength range of the two
		nanocrystalline bulk metal thulium(Tm) samples were studied. The

pan
-
-
-
CaCO3
CaCO3
ed to
•
rahertz
0
a ristics of
of 3.0 THz.
).0 111Z.
oske
-Site
ctive
ended
enuation
endence
hous
sics,
1. 1
udied.
i ine
i. The
nsity-
nsity-
nsity- IgTe
nsity-
nsity- IgTe nd
nsity- IgTe

		giving added information on equilibration times and sample properties.
Mo-P.42	397	Highly Sensitive Determination of Coating Thickness by using the High Filling Factor in an Adiabatically Coupled Terahertz Waveguide <u>M. Theuer</u> ¹ ; R. Beigang ² ; D.R. Grischkowsky ¹ ¹ Oklahoma State University, United States; ² Fraunhofer IPM, Germany THz-TDS can be used to detect the thickness of thin layers by pulse delay. The detection limit was considerably increased by using the high filling factor of a
		THz waveguide. The single pass delay was multiplied by a factor of more than 60 resolving dielectric layers down to 2 micron thickness.
		Sub-Terahertz Wave Frequency Converter Design for High Speed Data
Mo-P.43	399	Transmission
		<u>XianJin Deng;</u> Z. Chen; C. Wang; J. Liu; S.Y. Wu Institute of Electronic Engineering, CAEP, China
		This paper presents a sub-terahertz frequency converter for high speed data transmission, which is composed of a V-band source, a D-band harmonic mixer using Schottky diode. It can be used as an upconverter or downconverter between 110 and 170 GHz, which eliminates the need for high LO source. Accurate, Continuously Tunable, Terahertz Synthesizer Based on
Mo-P.44	39;	Photomixing of Two Continuous-Wave Lasers Phase-Locked to Two
	,	Independent Fiber Combs
		<u>K. Kawamoto¹</u> ; H. Takahashi ² ; Y. Iwamoto ² ; K. Arai ² ; T. Yasui ¹ ; H. Inaba ³ ; K. Minoshima ³ ; T. Araki ¹
		¹ Osaka University, Japan; ² Tokyo Univ. Sci., Japan; ³ AIST, Japan
		A continuously tunable, phase-locked, CW-THz generator has been
		demonstrated. This CW-THz generator is based on photomixing of an
		accurately tunable CW laser and a tightly fixed CW laser in the optical
Mo-P.45	3: 3	frequency region, phase-locked to two independent optical combs.
M0-P.43	5: 5	Phase stability considerations in coherent CW THz photomixing systems <u>T. Goebel</u> ; D. Schoenherr; C. Sydlo; M. Feiginov; P. Meissner; H.L. Hartnagel
		Technische Universitaet Darmstadt, Germany
		Wavelength stabilized lasers and the delay stage configuration can
		significantly influence the phase stability in coherent CW photomixing THz-
		systems. Depending on the system design, the phase drift can exceed several
		wavelengths and therefore make the system unsuitable for precise
		measurements.

Mo-P.46	3:4	THz Balanced Electro-Optic Detection with Two Line-Scan Cameras
		Michael Herrmann ¹ ; C. Wiegand ² ; D. Molter ¹ ; J. Jonuscheit ¹ ; R. Beigang ²
Mo-P.47		¹ Fraunhofer Institute for Physical Measurement Techniques IPM, Germany;
		² University of Kaiserslautern, Germany
		We have built a THz system for one-dimensional imaging with a THz line
		focus and electro-optic detection with two line-scan cameras in a balanced
	3: 6	arrangement. The system uses pulsed THz radiation from a fast-repetition-rate
		(80 MHz) femtosecond laser. The THz emitter antenna is electronically
		chopped.
		High-Repetition-Rate Optical Delay Line Using a Micromirror Array and
		Galvanometer Mirror
		<u>H.K. Kitahara¹</u> ; M.T. Tani ² ; M.H. Hangyo ¹
		¹ Osaka university, Japan; ² University of Fukui, Japan
		We have developed a high-speed optical delay line for the terahertz time-
		domain spectroscopy system (THz-TDS). The delay line is composed of a
		galvanometer mirror and a mirror array. We have demonstrated the acquisition
		of the time-domain wave form by using the delay line and a THz-TDS system.

3: 8	 Nanosecond Semiconductor Modulator of MM Waves Controlled by an Optical Laser <u>Grigory Denisov</u>¹; M.L. Kulygin²; Y.V. Rodin²; B.V. Shishkin²; I.E. Ilyakov² ¹Institute of Applied Physics/GYCOM, Russian Federation; ²Institute of Applied Physics, Russian Federation A report of success in numerical modeling and experimental investigation of a new type of microwave commutation device is presented. The modulator is intended to be used in coherent GHz spectroscopy rather than for powerful microwave power flow switching.
	merovare power now switching.
	3: 8

.

Mo-P.51	3: :	Development of a Fast Scan THz-TDS System by using a Repetition Rate
NIO-F.J1	5	Tunable Femtosecond Laser
		<u>Takashi Furuya¹</u> ; K. Horita ¹ ; C.T. Que ¹ ; K. Yamamoto ¹ ; F. Miyamaru ² ; S.
		Nishizawa ³ ; M. Tani ¹
		¹ Research Center for Development of Far-Infrared Region, University of
		Fukui, Japan; ² Shinshu University, Japan; ³ Advanced Infrared Spectroscopy
		Co., Ltd., Japan
		The long scanning time of a THz-TDS is a problem for quality control
		application in an industrial production line. In this study, we developed a fast
		scan system using a repetition rate tunable femtosecond laser. The scan time
		was around one hundred thousandth shorter than a mechanical delay system.
Mo-P.52	3;2	Analysis of the High Frequency Spreading Resistance for Surface
WI0-F.J2	5, 2	Channel Planar Schottky Diodes
		<u>A.Y. Tang¹</u> ; P. Sobis ² ; H. Zhao ¹ ; V. Drakinskiy ³ ; T. Bryllert ¹ ; J. Stake ¹
		¹ GigaHertz Centre, Physical Electronics Laboratory, Chalmers University of
		Technology, Sweden; ² Omnisys Instruments AB, Sweden; ³ Physical
		Electronics Laboratory, Chalmers University of Technology, Sweden
		Spreading resistance of a planar Schottky diode is studied as a function of the
		frequency and buffer layer thickness. The study shows an increase of effective
		high frequency resistance for a buffer layer thicker than skin depth, due to the
		parasitic capacitances induced current in buffer layer.
Mo-P.53	3;4	Terahertz photomixing in Strained Silicon MODFET
		Y.M. meziani ¹ ; <u>A. El Moutaouakil²</u> ; E. Velazquez ¹ ; E. Diez ¹ ; K. Fobelets ³ ; T.
		Otsuji ²
		¹ Salamanca University, Spain; ² RIEC, Tohoku University, Japan; ³ Electrical
		and Electronic Engineering Department, Imperial College London, United
		Kingdom
		Strained-Si modulation doped field effect transistors have been studied as a
		photomixer within terahertz range. It was subjected to two CW lasers where
		$\Delta f = f_1 - f_2 = 4$ THz. A clear signal was observed with maximum around Vg=-
		0.15V and interpreted as due to the oscillaions of the plasma waves.

Mo-P.55	3;6	Monte Carlo study of ballistic effects in high speed InAs-based quantum
WI0-1 .55	5,0	hot electron transistor
		<u>giulio sabatini¹; C. Palermo¹; P. Ziadé¹; T. Laurent¹; H. Marinchio¹; H.</u>
		Rodilla ² ; J. Mateos ² ; T. Gonzales ² ; R. Teissier ¹ ; L. Varani ¹
		¹ Institut d'électronique du Sud – UMR CNRS 5214, France; ² University of
		Salamanca, Spain
		By means of a Monte Carlo simulation, we have studied the collector transit
		region of an innovative InAs/AISb quantum hot electron transistor. This
		original vertical transport device has the potential to efficiently exploit the

		unrivalled transport properties of InAs to reach THz frequencies.
Mo-P.57	3; 8	Enhancement of contrast and spatial resolution in confocal coherent
MO-P.37	5, 8	terahertz imaging system.
		Alexander Andrianov; A.V. Andrianov
		A.F. Ioffe Physical Technical Institute, Russian Federation
		The effect of enhancement of image contrast and spatial resolution without the
		loss of the spectral composition of the radiation under investigation has been
		experimentally demonstrated for a terahertz far-field imaging system. The
Ma D 59	2	result has been achieved by using a technique of confocal filtering.
Mo-P.58	3;:	Plasmonic Apertures for THz QCL Near-Field Imaging
		<u>A.J. Baragwanath</u> ¹ ; J.R. Freeman ² ; A.J. Gallant ³ ; A. Zeitler ⁴ ; H. Beere ² ; D.A.
		Ritchie ² ; J.M. Chamberlain ¹
		¹ Department of Physics, Durham University, United Kingdom; ² Cavendish
		Laboratory, University of Cambridge, United Kingdom; ³ School of
		Engineering and Computing Sciences, Durham University, United Kingdom;
		⁴ Department of Chemical Engineering and Biotechnology, University of
		Cambridge, United Kingdom
		In this paper we report on the fabrication and testing of sub-wavelength
		apertures surrounded by annular plasmonic structures, for use in near-field
		imaging with a QCL source. Preliminary results demonstrate greatly increased
		transmission when using the plasmonic aperture over a bare aperture.
		THz Radiation Based on Femtosecond Electron Bunches and THz
Mo-P.59	422	Imaging
		<u>J. Saisut¹</u> ; K. Kusoljariyakul ¹ ; N. Kangrang ² ; P. Wichaisirimongkol ³ ; C.
		Tengsirivattana ² ; P. Thamboon ³ ; M.W. Rhodes ³ ; C. Thongbai ¹
		¹ Department of Physics and Materials Science, Chiang Mai University,
		Thailand; ² ThEP Center, Commission on Higher Education, Thailand; ³ STIR,
		Chiang Mai University, Thailand
		The THz radiation from femtosecond electron bunches is focused on a sample
		which will be scanned using xy-translation stages. The transmission intensity
		at different points of the sample are detected to construct a THz image. The
		THz images of samples were demonstrated using the THz imaging system.
	40.4	Non-bias inspection of electrical failures in LSI interconnects using
Mo-P.60	424	LTEM prototype system
		Masatsugu Yamashita ¹ ; C. Otani ¹ ; T. Matsumoto ² ; Y. Midoh ³ ; K. Miura ³ ; K.
		Nikawa ³ ; K. Nakamae ³ ; M. Tonouchi ³
		¹ RIKEN ASI, Japan; ² Hamamatsu Photonics, Japan; ³ Osaka University, Japan
		LSI chips fabricated by 180nm process were measured by the LTEM prototype
		system. P-n junctions connected to the defective interconnect can be
		successfully identified under non-bias condition. These results indicate LTEM
		successfully identified under non-oras condition. These results indicate LTEN

Mo-P.61	426	can be a useful tool for the defect localization in LSI failure analysis. Non-destructive determination of the density distribution of polymer foam models with THz-pulses
		<u>A. Brahm¹</u> ; D. Schmidt ² ; S. Riehemann ¹ ; F.J. Woestmann ² ; A. Tuennermann ¹
		¹ Fraunhofer IOF, Germany; ² Fraunhofer IFAM, Germany
		A study of density and glue distributions in polymer foam models for lost
		foam casting processes is reported. THz-pulse measurements were compared
		with destructive measurements according to the principle of buoyancy-floating method to guarantee high quality standards in lost foam casting processes.
Mo-P.62	428	Volumetric analyses using terahertz-tomography techniques
10-1 .02	420	<u>A. Brahm¹</u> ; M. Kunz ² ; S. Riehemann ¹ ; G. Notni ¹ ; A. Tuennermann ¹
		¹ Fraunhofer IOF, Germany; ² Institute of Physics, Ilmenau University of
		Technology, Germany
		We report about an algorithm approach to identify substances inside a sample
		using their complete characteristic absorption spectra from a tomographic
		measurement with ultrashort THz-pulses.
Mo-P.63	42:	A Monolithic Visible, Infrared and Terahertz 2D Detector
		<u>M. Perenzoni¹</u> ; N. Massari ¹ ; S. Pocas ² ; J. Meilhan ² ; F. Simoens ²
		¹ Fondazione Bruno Kessler, Italy; ² CEA-Leti MINATEC, France A monolithic multispectral detector for imaging in the visible, infrared and
		terahertz ranges has been designed for operation at room temperature. This
		sensor is composed of a CMOS readout integrated circuit with visible
		photodiodes and of IR and THz microbolometer pixels processed above the
		CMOS.
Mo-P.64	432	Terahertz Imaging Using Intermediate Thermal Screen
		<u>Alexander Klimov</u> ¹ ; V.V. Kubarev ² ; V.N. Shumsky ¹ ¹ Institute of Semiconductors Physics, Russian Federation; ² Institute of Nuclear
		Physics, Russian Federation
		Parameters of THz imaging system with the intermediate thermal screen are
		analyzed. Experimental data on the prototype which uses the highly sensitive
		PbSnTe:In film as IR photodetector and the microbolometer matrix as the
		thermal screen are also given
Mo-P.65	433	Combined Passive and Active Millimeter-Wave Imaging System for
1010 1 100	155	Concealed Objects Detection
		Jordi Abril Aguilera; E. Nova Lavado; T. Broquetas; F. Torres; J. Romeu; L.
		Jofre Polytechnic University of Catalunya, Spain
		It is expected that the combination of the coherent and incoherent radiation in
		active and passive operation will offer improved detection and identification of
		concealed objects. An interferometric radiometer and an active mills-cross
		have been studied as near field imaging systems.
Mo-P.66	435	Compressed terahertz imaging system using a spin disk
		<u>Yaochun Shen</u> ¹ ; H. Shen ² ; N. Newman ² ; L. Gan ³ ; S. Zhong ²
		¹ University of Liverpool, United Kingdom; ² Dept of Electrical Engineering
		and Electronics, University of Liverpool, Liverpool L69 3GJ, UK, United Kingdom; ³ Electronic and Computer Engineering, Brunel University,
		Uxbridge UB8 3PH, UK, United Kingdom
		Based on the concept of compressive sensing, a spin disk with random patterns
		based on the concept of compressive sensing, a spin disk with random patterns

		was used to modulate the THz beam pattern, and THz image was subsequently reconstructed. Experimental results will be demonstrated using both BWO THz and thermal light sources covering both infrared and visible range.
14 D (7	10-	3D Spectroscopic Computed Tomography Imaging Using Terahertz
Mo-P.67	437	Waves
		<u>Eiji Kato¹</u> ; S. Nishina ¹ ; A. Irisawa ¹ ; T. Yamashita ¹ ; M. Imamura ¹ ; K. Kawase ²
		¹ Advantest corporation, Japan; ² Nagoya University, Japan
		We have developed a three-dimensional spectroscopic imaging system that
		uses terahertz waves and is based on transmission computed tomography.
		Using this system, we demonstrate three-dimensional imaging, with
		identification for chemical components, by analyzing spectroscopic
		information.
Mo-P.68	439	Design and Simulations of a THz Sensor Based on Micromachined Golay-
WI0-1 .00	439	cell for Imaging Applications
		H. Rashid; V. Desmaris; V. Belitsky
		Chalmers University of Technology, Sweden
		A novel sensor for room temperature THz imaging is presented. The sensor's
		response time (t) is optimized by tuning its structural design, using Monte-
		Carlo and transient FEM simulations. The final design offers a 3.5THz
		bandwidth (0.5-4THz) and t of 30ms, suitable for real time radio visualization
Mo-P.69	43;	Differential Scanning Optical Microscopy with a THz quantum cascade
	,	source
		R. Degl'Innocenti; <u>M. Kumar</u> ; J.H. Xu; A. Tredicucci
		NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Italy
		We present a differential Near-field Scanning Optical Microscope (NSOM) operating in the THz spectral region. The system, which employs a quantum
		cascade laser emitting at $\lambda = 105 \ \mu m$ as source, has been tested on metal and
		graphite objects, with a resolution of $\sim \lambda/10$.
		Room Temperature Imaging above one Terahertz by Field Effect
Mo-P.70	443	Transistor as Detector
		<u>Salman NADAR</u> ¹ ; H. Videlier ² ; D. Coquillat ² ; O. Klimenko ² ; F. Teppe ² ; M.
		Sakowicz ² ; N. Dyanonova ² ; W. Knap ² ; D. Siluta ³ ; I. Kasalynas ³ ; G. Valusis ³ ;
		S. NADAR ⁴
		¹ Groupe d'Etudes de Semiconducteurs (GES), France; ² GES, France; ³ THz
		groupe, Semiconductor Physics Institute, Lithuania; ⁴ GES UM2, France
		GaAs field effect-transistors are used for single-pixel imaging using
		frequencies above 1 THz at 300 K. Images obtained in transmission mode at
		1.63 THz are recorded with spatial resolution of $300 \mu\text{m}$. We demonstrate that,
		with applied drain to source current, the imaging at up to 2.5 THz is possible
Mo-P.71	444	MMIC-based Receivers for MM-wave Radiometry
		<u>Vessen Vassilev</u> ¹ ; H. Zirath ² ; N. Wadefalk ² ; R. Kozhuharov ² ; M. Abbasi ³ ; T.
		Pellikka ⁴ ; A. Emrich ⁴ ; I. Kallfass ⁵ ; A. Leuther ⁵
		¹ Microwave Electronics Laboratory, Sweden; ² Microwave Electronics
		Laboratory, Chalmers, Sweden; ³ Microwave Electronics Laborato, Sweden;
		⁴ Omnisys Instruments AB, Sweden; ⁵ Fraunhofer Institute IAF, Germany
		We present results of packaged mm-wave receiver components based on
		100nm mHEMT technology. The components are to be used for observations
		of the atmospheric lines at 118 GHz and 183 GHz.

446	Consideration of refraction losses for time-domain terahertz computed tomography
	<u>Emmanuel Abraham</u> ¹ ; A. Younus ² ; C. Aguerre ³ ; P. Desbarats ³ ; P. Mounaix ¹
	¹ CPMOH - Université de Bordeaux, France; ² CPMOH - Université de
	Bordeaux, Pakistan; ³ LaBRI - Université de Bordeaux, France
	Terahertz computed tomography has been performed using a time-domain
	terahertz spectrometer. Refraction losses induced by the transmission of the
	terahertz radiation through the samples have been taken into account in order
	to reconstruct the three-dimensional aspect of complex shape objects.
448	Discrete Sampling of Continuous Wave Terahertz Radiation
	M. Schwerdtfeger; M. Scheller; M. Stecher; O. Peters; M. Koch
	Philipps-Universität Marburg, Germany
	We present a cost efficient delay technique for terahertz spectrometers based
	on discrete phase shifting of the THz wave. This can be achieved by using a
	polymer disc with segments of different thickness. The approach is
	demonstrated by measurements with a six segment disc placed in the THz
	beam.
11.	Non-destructive inspection of opaque objects with a 3D millimeter-wave
44.	tomographic scanner
	<u>Emmanuel Abraham</u> ¹ ; A. Younus ² ; S. Salort ³ ; J.P. Caumes ³ ; P. Desbarats ⁴ ; P.
	Mounaix ¹
	¹ CPMOH - Université de Bordeaux, France; ² CPMOH - Université de
	Bordeaux, Pakistan; ³ Alphanov - Université de Bordeaux, France; ⁴ LaBRI -
	Université de Bordeaux, France
	Flexible monochromatic millimeter wave system coupled with an infrared
	temperature sensor demonstrates large size 3D visualization of manufactured
	opaque phantoms with different refractive index contrasts. Peculiarities such
	as boundary effects, refraction and diffraction losses will be discussed.

Mo-P.76 45

A 340 GHz CW non-linear imaging system <u>Robin Dahlbäck</u>¹; T. Rubaek²; T. Bryllert¹; M. Persson²; J. Stake¹ ¹Chalmers University of Technology, MC2, Physical Electronics Laboratory, Sweden; ²Chalmers University of Technology, Department of Signals and Systems, Biomedical Engineering Divisio, Sweden A CW sub-millimetre wave imaging system is presented. The system operates around 340GHz with a 6.5% relative bandwidth and uses a non-linear imaging algorithm.

IRMMW-THz 2010

Mo-P.77	454	Development of Laser Scanning Terahertz Imaging System Using Organic
MO-P.//	434	Nonlinear Optical Crystal
		Kazunori Serita ¹ ; S. Mizuno ¹ ; H. Murakami ¹ ; I. Kawayama ¹ ; M. Tonouchi ¹ ; Y.
		Takahashi ² ; M. Yoshimura ² ; Y. Kitaoka ² ; Y. Mori ²
		¹ Institute of Laser Engineering, Osaka University, Japan; ² Graduate School of
		Engineering, Osaka University, Japan
		We constructed a laser scanning terahertz (THz) imaging system for high-
		speed imaging by using a galvano meter and an organic nonlinear optical
		crystal, DASC, as a two-dimensional THz emitter. Using this system, we
		succeeded in obtaining high-resolution THz images of a test sample.
Mo-P.78	456	
MO-P./8	430	High Resolution Terahertz imaging (T-ray) with a Horn Antenna
		<u>G.J. Kim</u> ; J.I. Kim; S.G. Jeon; W.K. Han
		Korea Electrotechnology Research Institute, Korea, Republic of
		We suggest a simple solution the limitation of spatial resolution for
		wavelength by using a horn antenna and verified detection limitation by THz
		imaging for a foreign object in flour.
Mo-P.79	458	Si-MOSFETs Terahertz Photovoltaic Response in High Magnetic Field
		<u>Hadley Videlier</u> ¹ ; O. Klimenko ² ; M. Sakowicz ¹ ; N. Dyakonova ¹ ; F. Teppe ¹ ; C.
		Consejo ¹ ; D. Coquillata ¹ ; W. Knap ¹ ; J. Marczewski ³ ; P. Grabiec ³ ; J.
		Lusakowski ⁴
		¹ GES-UMR5650, Université Montpellier 2 and CNRS, France; ² aGES-
		UMR5650, Université Montpellier 2 and CNRS, France; ³ Institute of Electron
		Technology, Poland; ⁴ Institute of Experimental Physics, Poland
		Terahertz response of Silicon MOSFETs high magnetic fields is studied.
		Subjected to a Terahertz radiation, the MOSFET develops a dc drain-to-source
		voltage that exhibits a resonant structure corresponding to g factor ~2 and can
		be tentatively interpreted as related to spin effects.
Mo-P.80	15.	A preliminary study towards the implementation of MIMO radar system
M0-P.80	45:	for Agriculture applications
		N. Ahmad; J.J. Soraghan
		UNIVERSITY OF STRATHCLYDE, United Kingdom
		The revolution of MIMO radar system has the potential to be applied in many
		areas of applications such as in agriculture sector. It is inspired from MIMO
		system in telecommunications and uses multiple antennas to observe the
		different aspect of targets, hence produce high resolution radar image.
		Terahertz Pulsed Imaging of Surface Variations on Pharmaceutical
Mo-P.81	462	Tablets
		<u>Axel Zeitler¹</u> ; R.K. May ¹ ; M.J. Evans ² ; S. Zhong ³ ; C. Byers ⁴ ; L.F. Gladden ¹ ;
		Y.C. Shen ³ Y.C. Y.C. Shen ³ Y.C. Y.C. Shen ³ Y.C. Y.C. Shen ³ Y.C. Y.C. Y.C. Y.C. Y.C. Y.C. Y.C. Y.C
		¹ University of Cambridge, United Kingdom; ² TeraView Ltd, Virgin Island
		(United Kingdom); ³ University of Liverpool, United Kingdom; ⁴ Oystar-
		Manesty, United Kingdom
		We present an analysis of terahertz pulsed imaging measurements of
		pharmaceutical tablets compacted over a range of compression forces. Using
		THz imaging it was possible to observe, small-scale defects on tablet surfaces
		that may have relevance to the quality of tablet manufacture and performance.

Mo-P.82 464		Terahertz Phase Image Reconstruction Using an Iterative Algorithm
		<u>Y.X. Wang¹</u> ; Z.Q. Chen ² ; Z.R. Zhao ² ; L. Zhang ² ; K.J. Kang ² ; J.K. Deng ¹
		¹ Department of Physics, Tsinghua University, China; ² Department of
		Engineering Physics, Tsinghua University, China
		We present a terahertz phase contrast imaging technique based on the iterative
		phase retrieval method (the Gerchberg CSaxton iterative Fourier transform
		algorithm). Numerical simulations are performed to demonstrate this new
		imaging concept for conventional terahertz intensity measurement system.
Mo-P.83	466	Compact CW-Sub THz Imaging System for Non-destructive Testing
		D.C. Seo; J.S. Jang; I.B. Kwon; D.J. Yoon
		KRISS, Korea, Republic of
		This paper presents compact CW sub-THz imaging system using terahertz
		transmitter (Tx) that generating 0.34 THz electromagnetic wave based on
		electronic device. Using this THz imaging system, we measured transmitting
		terahertz wave magnitude and phase information of samples for non
		destructive test.

Mo-P.85 468 Analysis of Plasma Resonances in Terahertz Devices with Grating Gate Irina Khmyrova; R. Yamase; N. Watanabe University of Aizu, Japan Analytical model is developed and used to calculate spatial distribution of sheet electron density in the channel of grid-grating gated HEMT structure and resonant frequencies of plasma waves excited in the channel. It is shown that increasing number of gates results in spectrum broadening .

Tuesday, September 07, 2010

	09:00 - 1 	0:30	Tuesday Plenary Chair: P. Richards	Aula Magna
PL.06	''''''46:	componen <u>Donal Mu</u> Chalmers This prese processes		x on atmospheric
	11:00 - 1	-	troscopy 1 r: X. Shen	Aula Magna
Tu-A1.1	46;	spectrome Jun SHAC National I Physics, C Recent pro Technical spectral ra to narrow-	Laboratory for Infrared Physics, Shanghai In Chinese Academy o, China ogress in photoreflectance spectroscopy at t Physics was reviewed, with the focus on the ange for the first time from 5 µm to FIR of 2 gap semiconductors and nanostructure mat	nstitute of Technical the Shanghai Institute of ne extension of functional 20 µm and the application terials.
Tu-A1.2	474	of nylon f <u>N. Shimiz</u> NTT Micr Smoke err loss of IR absorption	a of hydrogen cyanide in the smoke emitter Fabric with a continuous-wave THz spect au; Y. Kado rosystem Integration Labs., Japan nitted from the combustion of nylon fabric i light in the smoke was much larger than th a spectra showed the existence of HCN in the advantage of THz waves for remote gas ser	rometer is studied. Transmission hat of THz waves. THz he smoke. These results
Tu-A1.3	477	Comparin Fourier T Giorgio Sa Mauskopf ¹ Universit Institute, U University We have p metal mes Time dom	ng spectra from Time Domain Spectrome Transform Spectrometer. <u>avini</u> ¹ ; I.C. Ho ² ; J. Dai ² ; X.C. Zhang ² ; C. Tu ³ ; G. Zhao ⁴ ty College London, United Kingdom; ² Rens United States; ³ Cardiff University, United K y Beijing, China performed spectroscopic measurements on a sh grids with a THz Fourier transform spect nain spectrometers and compared both the re- of two different spectroscopic techniques.	eters and a polarizing ucker ³ ; P.A.R. Ade ³ ; P.D. sselaer Polytechnic Kingdom; ⁴ Capital Normal a set of materials and trometer and two THz

Tu-A1.4	479	Terahertz Spectroscopy of Double Metal Quantum Cascade Structures
		M. Martl; J. Darmo; D. Dietze; C. Deutsch; A. Benz; M. Brandstetter; K.
		Unterrainer; P. Klang; A.M. Andrews; W. Schrenk; G. Strasser; E. Gornik
		Vienna University of Technology, Austria
		The coupling of broadband Terahertz pulses into metal-metal terahertz
		quantum cascade lasers is presented. A characterization of terahertz generation
		on the subwavelength quantum cascade laser facet is investigated in
		configuration of two separately driven sections of quantum cascade laser.

	11:00 -	12:30 Array Imaging Chair: D. Robertson	Aula Minor
Tu-B1.1	47;	A multi-element THz imaging system F. Eichhorn ¹ ; L. Høgstedt ¹ ; J.C.D. Buron ¹ ; R.K. Olsson ¹ ; A <u>P.U. Jepsen¹</u> ¹ DTU Fotonik, Denmark; ² DTU Space, Denmark We report on a broadband multi-element THz imaging syste coupled, integrated photoconductive emitters and detectors. 32 emitters are arranged in a planar array. Advanced image algorithms are employed to reconstruct an object in the ima	em based on fiber- . 32 detectors and reconstruction
Tu-B1.2	484	Multichannel THz imaging using arrays of photocom <u>S. Wohnsiedler¹</u> ; M. Kolano ¹ ; J. Klier ¹ ; M. Herrmann ¹ ; J. Jo Beigang ¹ ; E. Peytavit ² ; J.F. Lampin ² ¹ Fraunhofer Institute for Physical Measurement Techniques ² Institute of Electronics, Microelectronics and Nanotechnol In a new approach we report on a THz imaging system with type photoconductive switches emitting in-plain. Aim is to flexibility and sensitivity of THz antennas with the measure electro-optic sampling.	aductive antennas onuscheit ¹ ; R. s IPM, Germany; ogy IEMN, France n arrays of horn- combine the
Tu-B1.3	486	Imaging above 1 THz Limit with Si-MOSFET Detect <u>Franz Schuster</u> ¹ ; H. Videlier ² ; M. Sakowicz ² ; F. Teppe ² ; D. Dupont ¹ ; A. Siligaris ¹ ; L. Dussopt ¹ ; B. Giffard ¹ ; W. Knap ² ¹ CEA-LETI, MINATEC, CEA-Grenoble, France; ² Universi and CNRS UMR 5650, France We demonstrate that a proper antenna and transistor design responsivity for Terahertz radiation and imaging capability THz limit with a low-cost 130 nm CMOS technology. This way to CMOS THz imagers with high spatial resolutions –	Coquillat ² ; B. ité Montpellier2 can provide high even above the 1 result opens the

Tu-B1.4	488	THz uncooled microbolometer array development for active imaging and		
1u-D1. 4	400	spectroscopy applications	2	
		<u>François SIMOENS¹</u> ; S. Pocas ² ; J. Meilhan ² ; J.L. Ouvr	rier-Buffet ² ; T.	
		Maillou ³ ; P. Gellié ⁴ ; S. Barbieri ⁴	2	
		¹ CEA Leti-MINATEC, France; ² CEA-LETI, MINATE	C, France; 'CEA Le	
		Ripault, France; ⁴ Université Paris 7, France		
		A first prototype of 320x240 antenna-coupled un-coole		
		bolometers array has been designed and processed. Bea		
		THz QCLs have been imaged while different samples w		
		THz beam optical path. We report first essays of mater	ial identification.	
Tu-B1.5	48:	Talbot effect in the terahertz spectral range		
		<u>Boris Knyazev</u> ¹ ; V.S. Cherkassky ² ; Y.Y. Choporova ³ ; Vlasenko ¹		
		¹ Budker Institute of Nuclear Physics, Russian Federation		
		University, Russian Federation; ³ Novosibirsk State Tec	chnical University,	
		Russian Federation		
		Talbot effect in the terahertz spectral range has been fin	**	
		to metrology applications: measurement of distance, de		
		wavelength and detection in real-time of wavefront dis-	tortion.	
	11:00 -	12:30 Electronic Generation	Room 2	
		Chair: R. Logan		
Tu-C1.1	492	THz Oscillators Using Resonant Tunneling Diode	es at Room Temperature	
		Masahiro Asada; S. Suzuki	_	
		Tokyo Institute of Technology, Japan		
		THz oscillators using resonant tunneling diodes are rep		
		oscillation up to 0.95 THz was obtained until now. This		
		fundamental frequency of room-temperature electronic	0	
		Structures for high output power and spectral character	ristics were also	
		reported.		
Tu-C1.2	495	Increase of Fundamental Oscillation Frequency in I		
10 01.2	195	Diode with Thin Barrier and Graded Emitter Struc		
		<u>S. Suzuki</u> ¹ ; A. Teranishi ¹ ; M. Asada ¹ ; H. Sugiyama ² ; H		
		¹ Tokyo Institute of Technology, Japan; ² NTT Photonic		
		We obtained frequency increase of resonant tunneling	00	
		emitter for improving the transit delay, and thin barrier		
		of the tunneling time. The oscillation frequency of 951		
		an RTD with 0.43-fÊm ² -mesa area and 20-fÊm-long	antenna.	

Tu-C1.3	497	Measurements of THz emission from nanometric-size t J. Torres ¹ ; P. Nouvel ¹ ; H. Marinchio ¹ ; T. Laurent ¹ ; <u>S. Blin</u> ¹ ; Palermo ¹ ; L. Varani ¹ ; P. Shiktorov ² ; E. Starikov ² ; V. Gruzir Coquillat ⁴ ¹ Institut d'Electronique du Sud UMR 5214 - Universite Mon ² Semiconductor Physics Institute, A. Gostauto 11, 2600 Vil Lithuania; ³ S, Lithuania; ⁴ Groupe d'Etude des Semiconductor CNRS, Université Montpellier 2, 34095 Montpellier, Franc, Measurements of terahertz resonant emission due to the exc waves by an optical beating inside AlGaAs/InGaAs/InP hig transistor is reported at 300 K and 200 K.	L. Chusseau ¹ ; C. nski ³ ; F. Teppe ⁴ ; D. ntpellier 2, France; nius, Lithuania, eurs UMR 5650 , France titation of plasma
Tu-C1.4	499	Tunable room temperature THz emission from AlGaN/(mobility transistors <u>Nina Dyakonova¹</u> ; A. El Fatimy ² ; Y. Meziani ³ ; T. Otsuji ⁴ ; E Knap ¹ ; F. Teppe ¹ ; S. Vandenbrouk ⁵ ; K. Madjour ⁵ ; D. Thero M.A. Poisson ⁶ ; S. Delage ⁶ ¹ GES, UMR5650, Université Montpellier II, France; ² Cardi Physics and Astronomy, Cardiff University, United Kingdo de Física Aplicada, Universidad de Salamanca, Spain; ⁴ RIE University, Japan; ⁵ IEMN, UMR CNRS 8520, Villeneuve o ⁶ Thalès, Thales Research and Technology, Orsay, France We present experimental results on the Terahertz radiation f mobility transistors at room temperature, which clearly show the emission frequency by the gate voltage.	D. Coquillat ¹ ; W. n ⁵ ; C. Gaquiere ⁵ ; ff School of m; ³ Departamento C, Tohoku d'Acsq, France; from high electron w the tunability of
Tu-C1.5	49;	Theoretical Study on Terahertz Wave Detection and Rase Semiconductor Nano Structures <u>W.D.C. Chu</u> ; S.Q.D. Duan; W.Z. Zhang Institute of Applied Physics and Computational Mathematic We study the magnetic-field-modulated terahertz absorption GaAs quantum ring and present a possible way to realize tu terahertz ??elds. We also explore the terahertz radiation from harmonics in a coupled triple quantum dots driven by gigah	es, Beijing, China n spectra of a real nable detection of m high order ertz waves.
	11:00 -	12:30 Biology 1 Chair: G.S. Park	Room 3
Tu-D1.1	4: 3	In-Line Monitoring of Coating Thickness of Pharmaceu during Production Scale Film Coating by Terahertz Ima <u>Axel Zeitler</u> ¹ ; R.K. May ¹ ; M.J. Evans ² ; S. Zhong ³ ; I. Warr ⁴ ; Y.C. Shen ³ ¹ University of Cambridge, United Kingdom; ² TeraView Ltd ³ University of Liverpool, United Kingdom; ⁴ Oystar-Manest We present preliminary results from in-line terahertz pulsed measurements of coating thickness on pharmaceutical table production-scale film coating. Results of real-time TPI mea compared to sample tablets removed at discrete time-interva production	aging L.F. Gladden ¹ ; l, United Kingdom; y, United Kingdom l imaging ts made during surements are

Tu-D1.2	4: 5	Near-Infrared Spectroscopy for Non-destructive Coating Analysis
		Calibrated by Terahertz Pulsed Imaging $X_{achere} = S_{achere}^{1} S_{achere}^{2} H_{achere}^{2} M_{acherer}^{3} D_{acherer}^{4} H_{acherer}^{4} H_{acherer}^{4} H_{acherer}^{4}$
		<u>Yaochun Shen</u> ¹ ; S. Zhong ² ; H. Shen ² ; M.J. Evans ³ ; R.K. May ⁴ ; J.A. Zeitler ⁴ ; I. Warr ⁵
		¹ University of Liverpool, United Kingdom; ² Department of Electrical
		Engineering and Electronics, University of Liverpool, L69 3GJ, UK, United
		Kingdom; ³ TeraView Ltd., St. John; s Innovation Park, Cambridge CB4 0WS,
		UK, United Kingdom; ⁴ Department of Chemical Engineering and
		Biotechnology, University of Cambridge, CB2 3RA, UK, United Kingdom;
		⁵ Oystar Manesty, Merseyside L34 9JS, UK, United Kingdom
		Near-infrared (NIR) spectroscopy needs a calibration model for analysis of
		tablet coating thickness. In this work, we demonstrate that Terahertz Pulsed
		Imaging can provide, in a nondestructive fashion, such coating thickness
		information for building the calibration model needed by the NIR technique.
Tu-D1.3	4:7	Continuous-wave Terahertz Spectroscopic Imaging at over 1 THz for
		Pharmaceutical Applications
		<u>K. Ajito¹</u> ; H.J. Song ¹ ; A. Hirata ¹ ; A. Wakatsuki ¹ ; Y. Muramoto ² ; N.
		Shigekawa ² ; T. Kumashiro ³ ; D. Asa ³ ; T. Nagatsuma ³ ; N. Kukutsu ¹ ; Y. Kado ¹
		¹ NTT Microsystem Integration Labs., Japan; ² NTT Photonics Labs., Japan;
		³ Osaka Univ., Japan
		Spectroscopic images were obtained using a system combining a tunable
		continuous-wave terahertz laser with an InP Schottky barrier diode detector
		integrating a broadband log-periodic antenna. The distribution of polymorphic
		forms in pharmaceutical tablets was observed in images at over 1 THz.
Tu-D1.4	4:9	An analytical study of water concentration measurement in tissues with THz-wave
		Y.Y. Wang; H. Minamide; T. Ikari; M. Tang; T. Notake; H. Ito
		Riken, Japan
		THz wave is a viable tool for water content measurement due to its highly
		sensitivity to water. We analyzed the measurement errors of this method. The
		chosen basis for sample thickness and measuring frequency were presented.
		Measurements of water mapping were experimentally verified using TPO
		source
Tu-D1.5	4:;	Terahertz Pulse Imaging of Human Lymph Nodes
		<u>M. Lim¹</u> ; E. Jung ¹ ; H. Choi ² ; H. Han ¹
		¹ POSTECH, Korea, Republic of; ² Asan Medical Center, University of Ulsan,
		Korea, Republic of
		We present terahertz pulse imaging of human lymph nodes. By analyzing the
		reflected terahertz pulses from paraffin embedded lymph nodes, we have
		successfully demonstrated significant imaging contrast between metastatic and
		normal lymph nodes.

	11:00	- 12:30 Gyrotrons 2	Room 7
		Chair: M. Thumm	
Tu-E1.1	4;2	Recent Results of Development in Russia of 170 GE <u>Alexander Litvak</u>	Iz Gyrotron for ITER
		Institute of Applied Physics of RAS, Russian Federation	n
		The industrial production prototype of the ITER gyrotro	
		new test stand in Kurchatov institute with power 1.02 M	
		pulses, and 0.65MW in 800 second pulses. simultaneous	
		gyrotron with an increased size cavity was tested at pow	
Tu-E1.2	4;4	Recent Results with the European 2 MW Coaxial-Ca	avity Pre-Prototype
14-11.2	т, т	Gyrotron for ITER	
		T. Rzesnicki; B. Piosczyk; A.R. Choudhury; S. Illy; J. J	in; <u>S. Kern;</u> A.
		Samartsev; A. Schlaich; M. Thumm	
		Karlsruhe Institute of Technology, Germany	
		A 2 MW, CW, 170 GHz coaxial-cavity gyrotron for ITH	
		development within the European Gyrotron Consortium	*
		used for verification of critical components, as electron cavity and quasi-optical system. The paper gives an upd	-
Tu-E1.3	4;6	To the Theory of High-power Gyrotrons with Up	
1u-L1.5	4,0	<u>Olgerts Dumbrajs¹</u> ; G.S. Nusinovich ²	hapered Resonators
		¹ Institute of Solid State Physics, University of Latvia, L	atvia ^{, 2} University of
		Maryland, United States	atvia, emperately of
		The effect of a slight uptapering of the resonator wall or	n the efficiency
		enhancement and the purity of the radiation spectrum in	-
		gyrotron start-up and power modulation are studied for	
		170 GHz gyrotron which is currently under development	it in Europe for ITER.
Tu-E1.4	4;8	Multi-Frequency ECRH at ASDEX Upgrade, Stat	
		<u>Dietmar Wagner¹</u> ; J. Stober ¹ ; F. Leuterer ¹ ; F. Monaco ¹ ;	
		Schmid-Lorch ¹ ; H. Schütz ¹ ; H. Zohm ¹ ; M. Thumm ² ; T.	Scherer ² ; A. Meier ² ;
		G. Gantenbein ² ; J. Flamm ² ; W. Kasparek ³ ; H. Höhnle ³ ;	C. Lechte ³ ; A.G.
		Litvak ⁴ ; G.G. Denisov ⁴ ; A. Chirkov ⁴ ; L.G. Popov ⁵ ; V.O	Nichiporenko ³ ; V.E.
		Myasnikov ⁵ ; E.M. Tai ⁵ ; E.A. Solyanova ⁵ ; V.E. Malygin	
		¹ IPP Garching, Germany; ² KIT Karlsruhe, Germany; ³ II	
		⁴ IAP Nizhny Novgorod, Russian Federation; ⁵ GYCOM The multi-frequency ECRH system at the ASDEX Upg	
		depressed collector gyrotrons, step-tunable in the range	1 · ·
		system contains fast steerable launchers for remote steer	
		plasma discharges. The polarization can be controlled in	
		Collector Design Studies for a 1 MW Cylindrical-Ca	
Tu-E1.5	4; :	Coaxial-Cavity Gyrotron	
		<u>S. Illy</u> ¹ ; M. Beringer ¹ ; S. Kern ¹ ; M. Thumm ²	
		¹ Karlsruhe Institute of Technology (KIT) / IHM, Germa	any; ² Karlsruhe
		Institute of Technology (KIT) / IHM, IHE, Germany	
		In this paper we will present design studies for the colle	
		sweeping systems of two different high power CW gyro	
		170 GHz cylindrical-cavity gyrotron for ITER, b) A 4 M	/IW 170 GHz coaxial-

Tu-E1.6	522	cavity gyrotron which at present is in the state of a design study. Development of high power gyrotron for ITER application <u>Keishi Sakamoto¹</u> ; K. Kajiwara ¹ ; K. Takahashi ¹ ; Y. Oda ¹ ; A. Kasugai ¹ ; T. Kobayashi ¹ ; N. Kobayashi ¹ ; M. Henderson ² ; C. Darbos ² ¹ Japan Atomic Energy Agency, Japan; ² ITER Organization, France Recent progress of 170GHz gyrotron development is presented. Demonstration of 800kW/600s repetitive operation, 5kHz power modulation at 1MW for 60s are presented. And a dual frequency gyrotron was fabricated and tested which operated at 170GHz and 137GHz.	
	11:00	- 12:30 Synchrotron Radiation Sources Chair: U. Shade	Room 11
Tu-F1.1	524	Coherent Synchrotron Terahertz Radiation Using El <u>I. Katayama¹</u> ; H. Shimosato ² ; M. Bito ² ; K. Furusawa ² ; M. Shimada ⁴ ; H. Zen ³ ; S. Kimura ³ ; N. Yamamoto ⁵ ; M. Hosal Ashida ⁶ ¹ Yokohama National University, Japan; ² Osaka Universit Molecular Science, Japan; ⁴ KEK, Japan; ⁵ Nagoya Universit University, PRESTO JST, Japan Coherent and strong terahertz wave is generated from a sy ring using laser bunch slicing. The electric field is detected optic sampling method using a Ti:sapphire oscillator for p long large mode-area photonic crystal fiber for delivering	Adachi ³ ; M. ka ⁵ ; M. Katoh ³ ; M. y, Japan; ³ Institute of sity, Japan; ⁶ Osaka ynchrotron storage ed with the electro- probe and a 24-m it
Tu-F1.2	526	 Production of high power terahertz radiation through Electron Laser <u>Stefano Lupi</u> Department of Physics, University of Rome La Sapienza, We present the TERASPARC project at the SPARC Free picosecond, nearly 100 microJ energy terahertz pulses ext are produced using a coherent transition radiation source. possibility to produce exotic pulse shape and planned pum 	Italy -Electron Laser. Sub- tended until 5 THz We discuss the
Tu-F1.3	528	LINAC Based Coherent fs-THz Source at PAL Jaehun Park ¹ ; J. Lee ² ; H. Kang ¹ ; C. Kim ¹ ; S. Jung ¹ ; T. Joc ¹ Pohang Accelerator Laboratory, Korea, Republic of; ² Po Science and Technology, Korea, Republic of The fs-THz beamline at PAL can supply ultrafast and inte from 75 MeV linac. The radiation covers up to 3 THz and less than 200 fs. This intense THz source has a great pote science.	2 hang University of ense fs-THz radiation l the pulse width is
Tu-F1.4	52:	 The AILES Beamline for THz and IR spectroscopy <u>P. Roy</u>¹; J.B. Brubach¹; L. Manceron²; M. Rouzieres¹; O. Peng¹; F. Kwabia-Tchana⁴ ¹Synchrotron-soleil, France; ²LADIR, U. P. & M. Curie – ³LPPM, Orsay, France; ⁴LISA-U. Paris XII- Créteil, Franc The new infrared beamline (AILES) exploits infrared and radiation from both edge emission and the constant field of The performances and the main research themes and future 	CNRS, France; ce THz synchrotron conventional source.

		be presented.	
Tu-F1.5	532	Cerenkov Radiation from Plasmonic Metamaterials G.S. Park; <u>J.K. So</u> Center for THz-Bio Application Systems, Department of Ph Astronomy, Korea, Republic of We explore the capability of various plasmonic metamateria	•
		Cerenkov radiation in the THz frequency range. The resultir radiation confirms the effective medium description of the c metamaterials.	ng Cerenkov
	14:00	- 15:30 Detectors 2 Chair: M.F. Kimmitt	Aula Magna

Tu-A2.1 534
Perspectives in the Design of Monolithic Focal Plane Arrays for Terahertz Active Spectroscopic Imaging <u>Michele Ortolani¹</u>; E. Giovine¹; A. Di Gaspare¹; S. Cibella¹; R. Leoni¹; G. Torrioli¹; F. Evangelisti¹; V. Foglietti¹; M.S. Vitiello¹; G. Scamarcio¹; A. Cetronio²; C. Lanzieri²; M. Peroni²; A. Doria³; E. Giovenale³; A. Petralia³; G.P. Gallerano³
¹CNR-IFN, Italy; ²SELEX S.I., Italy; ³ENEA Frascati, Italy Active spectroscopic imaging is based on arrays of broadband, short-response-time detectors observing a scene illuminated by a number of THz sources. We present system design, fabrication process and single-pixel test for 3 detector technologies: GaAs Schottky diodes, GaN transistors, Nb bolometers

Tu-A2.3 537		Thin-Film Antennas for Terahertz Radiation Detectors
		Y. Yasuoka; <u>T. Uchida</u>
		National Defense Academy, Japan
		Receiving properties of thin-film antennas for antenna-coupled terahertz
		radiation detectors, especially receiving properties of thin-film slot antennas
		are discussed comparing the antenna theory and the data obtained at the
		frequencies of 5 GHz, 94 GHz, 700 GHz, 2.5 THz and 28 THz.
Tu-A2.4	539	Plasmonic terahertz detectors/spectrometers
		Viacheslav Muravev; I.V. Kukushkin
		Terasense Development Labs, Russian Federation
		A miniature high speed THz and GHz electromagnetic radiation
		detector/spectrometer has been created. The operation principle is based on the
		excitation of distinct sets of plasma modes in the two-dimensional electron
		system of semiconductor heterostructure with embedded nonlinear defect.

Tu-A2.5	53:	Design and optimization of Microwave Kinetic Inducta <u>M. Calvo</u> ¹ ; C. Giordano ² ; A. Cruciani ¹ ; P. De Bernardis ¹ ¹ Università di Roma La Sapienza, Italy; ² Fondazione Bruno Italy We describe the design, optimization and optical tests of M Inductance Detectors for the mm and sub-mm wavelengths. based on a novel resonator design, and can be easily tuned t experimental needs by choosing the correct geometry.	Kessler, Trento, icrowave Kinetic Our detectors are
	14:00	- 15:30 Guiding Devices 1 & Thz Radiation Properties Chair: A. Doria	Aula Minor
Tu-B2.1	542	Squeezing THz waves below /250 using plasmonic parall waveguides H. Zhan; R. Mendis; <u>D.M. Mittleman</u> Rice University, United States By tapering the width and the plate separation of a parallel- we experimentally demonstrate THz confinement down to a $\mu m (\sim \lambda/260)$ by 18 $\mu m (\sim \lambda/145)$, corresponding to a mode $\lambda 2$	plate waveguide, spot-size of 10
Tu-B2.2	545	 Return Loss Measurement of a Microfabricated Slow-W Backward-Wave Oscillation <u>Chan-Wook Baik</u>¹; S.Y. Jun²; H.Y. Ahn¹; S. Hong¹; J.H. Le Kim¹ ¹Samsung Advanced Institute of Technology, Korea, Republiof Physics, Hankuk University of Foreign Studies, Korea, R A RF return loss was measured for a microfabricated W-bar structure. A deep reactive ion etching showed a good sidew curved bottom surface. The result represents the etch rate w dependent on the mask-opening area, which caused a frequence 5%. 	e ¹ ; S.G. Yu ² ; J.M. lic of; ² Department epublic of nd slow-wave all but inaccurately as strongly
Tu-B2.3	546	Extension of Thompson Scattering Concept to Terah Dariush Sardari Islamic Azad University, Iran Thomson scattering is a phenomenon taking place for low e gamma ray photons. Using existing data on terahertz reflect shown that Thompson scattering is a plausible explanation f reflection from surfaces.	nergy X and ion coefficient, it is
Tu-B2.4	548	Ag/PS hollow cylindrical waveguides for transmissionOleg Mitrofanov ¹ ; T.K. Mavrogordatos ² ; R. James ¹ ; F.A. FeHarrington ³ ¹ University College London, United Kingdom; ² CambridgeKingdom; ³ Rutgers University, United StatesDielectric-lined silver waveguides provide a solution for guwhich exhibits low losses, excellent mode quality and low cunderstand the waveguide characteristics modal dispersion forTHz near-field microscopy, time-domain spectroscopy and	ernandez ^r ; J.A. University, United iding THz pulses lispersion. To is analyzed using

Tu-B2.5	 54: modeling 54: High refractive index titania-doped polymers for THz hollow Bragg fibers: how absorption losses limit the index contrast B. Ung¹; A. Dupuis²; <u>M. Skorobogatiy¹</u> ¹Ecole Polytechnique de Montreal, Canada; ²Ecole Polytechnique, Canada The bandgaps of Bragg fibers are tuned by the refractive index contrast a thicknesses of the multilayer dielectric reflector. We demonstrate that the design of reflectors based on composite polymers depends on finding a compromise between the increase in index contrast and the accompanyin losses. 		chnique, Canada ndex contrast and nstrate that the on finding a
	14:00	- 15:30 Laser Driven Sources 1 Chair: D. Abbott	Room 2
Tu-C2.1	552	Mesa Structured Photoconductive Antennas for 1.5 µm TDS Spectroscopy Beyond 4 THz <u>R.J.B. Dietz</u> ; H. Roehle; D. Stanze; V. Montanaro; H.J. He Sartorius Fraunhofer Heinrich-Hertz-Institut, Germany Photoconductive antennas based on InGaAs/InAlAs for op are improved by employing special structuring techniques, The detected THz amplitude is increased by a factor of over show a significantly increased bandwidth exceeding 4 THz	ensel; M. Schell; B. peration at 1.5 μm i.e. mesa etching. er 27. The spectra z.
Tu-C2.2	555	THz Wave Generation Inside a Fiber Laser Pumped H Cavity OPO Walter Hurlbut ¹ ; V.G.K. Kozlov ¹ ; K.L.V. Vodopyanov ² ¹ Microtech Instruments, United States; ² Stanford Universit We produce tunable (1.3-3 THz) narrow-band THz waves pumped near-degenerate type 0 PPLN OPO. Over 130 μ W waves were generated at 1.5 THz in a periodically-inverted sample using intracavity difference frequency generation.	ty, United States using a fiber-laser of narrowband THz d gallium arsenide
Tu-C2.3	557	 Experimental and theoretical study of photoconductive pulses generation at high repetition rate J.L. Coutaz; J.F. Roux IMEP-LAHC, Universite de Savoie, France We have studied the generation of ps electrical pulses at his using photoconductive antenna. Experimentation and simula screening of the biasing electrical field occurs much after the scale of the free carriers leading to a strong decrease of the scale of the free carriers leading to a strong decrease of the scale of the free carriers leading to a strong decrease of the scale of the free carriers leading to a strong decrease of the scale of the free carriers leading to a strong decrease of the scale of the free carriers leading to a strong decrease of the scale of the free carriers leading to a strong decrease of the scale of the free carriers leading to a strong decrease of the free carriers	gh repetition rate lation show that he trapping time signal.
Tu-C2.4	559	 Enhanced Terahertz Emission from Metaatom-Loaded Antennas <u>K. Takano</u>¹; T. Kawabata¹; K. Murata²; K. Masuda³; F. Mi Hangyo¹ ¹Osaka University, Japan; ²AIST, Japan; ³SIJTechnology, ¹ ⁴Shinshu University, Japan Photoconductive antennas loaded with metaatoms have bes super-fine ink-jet printing technology to control terahertz e characteristics. The resonant enhancement has been observed. 	yamaru ⁴ ; M. Inc., Japan; en fabricated by the emission

Tu-C2.5	55;	resonant frequencies of the metaatom and it is analyzed by the Fl simulation. Terahertz Wave Generation from GaP Waveguide Emitter P	
14 02.5		Compact Photonic Crystal Fiber Femtosecond Laser <u>F. Liu¹</u> ; Y.F. Li ² ; L. Chai ² ; Y.J. Song ² ; C.L. Wang ¹ ; M.L. Hu ² ; Q C.Y. Wang ² ¹ Ultrafast Laser Lab., Center for Terahertz Wave, Tianjin University	-
		² Ultrafast Laser Lab., Tianjin University, China We present a terahertz pulse train generated from rectangular Ga emitter pumped by a photonic crystal fiber (PCF) femtosecond la and studied the effects of the pump pulse shape working on the te	aser system,
		conversion efficiency and the generated THz spectrum.	
	14:00	- 15:30 Biology 2 Chair: A. Ramundo Orlando	Room 3
Tu-D2.1	563	Molecular Imaging with Terahertz Waves	
		<u>Joo-Hiuk Son</u> University of Seoul, Korea, Republic of	
		A novel terahertz molecular imaging technique using nanopartic	le probes is
		discussed in terms of sensitivity, resolution, and quantification. T	
		diagnostic results of cancers are also presented as an example.	
Tu-D2.2	564	Temperature and Hydration-Dependent THz Investigation	is on Proteins
		Martin Dressel; c. Stehle; W. Abuillan; B. Gompf	
		Universitat Stuttgart, Germany	nonoococ with
		The FIR absorption of proteins decreases with temperature and in hydration. The amount of water attached to the protein is calcula	
		general sorption isotherm equation. Comparing with the measure	•
		the specific dynamic of the hydration shell can be extracted.	d dosorption
Tu-D2.3	565	Hydration Dynamics of Proteins Probed by THz Spectrosc	copv
		B.P. Born; M. Heyden; M. Havenith	
		Physikalische Chemie 2, Ruhr-Universitaet, Germany	
		We applied THz spectroscopy to study water dynamics around p	roteins.
		Unexpectedly we found extended dynamical hydration up to 20 A	Å from protein
		surfaces. Moreover by kinetic THz absorption (KITA) spectrosco	
		figured out that protein and water network dynamics are coupled	during
		protein folding.	• • •
Tu-D2.4	567	Time Domain Terahertz Spectroscopy for investigating the d	ielectric
		relaxation dynamics of water in model membranes	$\mathbf{M} \mathbf{D}_{onn}^2$
		<u>Domenico Paparo</u> ¹ ; K.J. Tielrooij ² ; L. Piatkowski ² ; H.J. Bakker ² ; ¹ CNR-SPIN, Italy; ² FOM-AMOLF, Netherlands	, M. Bonn
		We have investigated hydrated model membranes, formed by sta	cked bilavers
		of unsaturated lipids, by means of terahertz time-domain and infi	•
		spectroscopy. When the membrane hydration level is decreased t	
		of new types of water dynamics is observed due to the lipid-water	

.

Tu-D2.5	569	Study on hydrogen bonding patterns in biological molecules by reaction induced far infrared spectroscopy Petra Hellwig ¹ ; Y. El Khoury ² ; A. Trivella ² ; R. Hielscher ² ¹ Université de Strasbourg, Institut de Chimie, France; ² University of Strasbourg, France The use of the far IR spectral range presents a novel approach for analysis of proteins. Here it is presented for the analysis of Fe–S vibrations (500–200 cm- 1) and of the intra- and intermolecular H-bonding signature (300–50 cm-1) in Rieske proteins and lipids in function of T, redox state and pH.
	14:00	- 15:30 Microscopy Room 7 Chair: R. Lewis
Tu-E2.1	56;	Chemical Imaging of -TAS using Terahertz Chemical Microscope <u>Toshihiko Kiwa</u> ¹ ; Y.M. Yuji Minami ¹ ; Y.K. Yusuke Kondo ¹ ; Y.H. Yohei Hashimoto ¹ ; I.K. Iwao Kawayama ² ; M.T. Masayoshi Tonouchi ² ; K.T. Keiji Tsukada ¹ ¹ Graduate School of Natural Science & Technology, Okayama University, Japan; ² Institute of Laser Engineering, Osaka University, Japan A terahertz chemical microscope (TCM) has been carried out to visualize the chemical potential distribution in μ -TAS. The μ -TAS was fabricated on the sensing chip and the distribution of chemical potential was successfully visualized using TCM.
Tu-E2.2	573	 Pump and Probe THz Emission Microscope <u>M. Tonouchi</u>; S. Fujiwara; D. Kaneko; I. Kawayama; H. Murakami Osaka University, Japan Pump and probe THz emission microscope has been developed with a special resolution of less than 1 μm, and applied for the study of dynamic response of photoconductive antennas made of SI- GaAs, LT- GaAs, and Fe-InP.
Tu-E2.3	575	 Influence of the Dielectric Substrate on the Terahertz Electric Near-Field of a Hole in a Metal <u>Aurele Adam</u>¹; L. Guestin¹; P.C.M. Planken² ¹Technical University of Delft, Netherlands; ²technical University of Delft, Netherlands We have studied theoretically and experimentally the influence of a dielectric substrate on the frequency-dependent terahertz electric near-field of a small hole in a metal layer. The thickness of the metal layers dramatically influences this result.
Tu-E2.4	576	 Scattering near-field microscopy in the THz region using a free-electron laser <u>H.G.R. von Ribbeck</u>¹; M.T.W. Wenzel¹; R.J. Rainer Jacob²; L.M.E. Eng¹ ¹Institut für Angewandte Photophysik, Technische Universität Dresden, Germany, Germany; ²Institut für Ionenstrahlphysik und Materialforschung, FZ Dresden-Rossendorf, Germany We present scattering-type scanning near-field optical micro-spectroscopy (s-SNOM) investigations operated in the THz range with a wavelength independent spatial resolution of <150 nm. As a variable and monochromatic

Tu-E2.5	577	radiation source we use the free-electron laser (FELBE) a Rossendorf. Image contrast of THz near-field microscope <u>K. Moon</u> ; E. Jung; M. Lim; H. Han POSTECH, Korea, Republic of We present an apertureless THz pulse near field microsco system. Approach curves are obtained for Au films and fl and are analyzed by using self-consistent image method (opy (THz-NFM) loat-zone Si wafers, (SCIM).
	14:00	- 15:30 Vacuum Electron Devices Chair: N. Luhmann	Room 11
Tu-F2.1	579	Design and Fabrication of Terahertz Extended Inter <u>Richard Dobbs</u> ¹ ; A. Roitman ¹ ; P. Horoyski ¹ ; M. Hyttinen Steer ¹ ; K. Nguyen ² ; E. Wright ² ; D. Chernin ³ ; A. Burke ³ ; J. Levush ⁴ ; N.S. Barker ⁵ ; J. Booske ⁶ ; M. Blank ⁷ ¹ Communications & Power Indutries Canada, Canada; ² B United States; ³ Science Applications International Corp, Research Laboratory, United States; ⁵ University of Virgin ⁶ University of Wisconsin, United States; ⁷ Communication Industries, United States The development of new terahertz power amplifiers at 0.0 THz presents significant challenges in both design and fa describes the design challenges and methodology and an new device and an analysis of fabrication techniques const	 ¹; D. Sweeney¹; B. J. Calame⁴; B. Beam-Wave Research, United States; ⁴Naval nia, United States; ns & Power 67, 0.85 and 1.03 (brication. This paper outline design of the
Tu-F2.2	582	 High Current Density, Reservoir Cathodes for High F Applications <u>R. Lawrence Ives</u>¹; L.R. Falce²; G. Collins¹; D. Marsden¹ Schwartzkopf³; B. Smith³ ¹Calabazas Creek Research, Inc., United States; ²Consulta ³Ron Witherspoon, Inc., United States Sintered tungsten wire, reservoir cathodes offer high curr with very long life time. The diffusion rate can be selecte current emission density. This presentation will describe technology, and present the latest test results. 	; G. Miram ¹ ; S. ant, United States; rent density operation ed consistent with the
Tu-F2.3	584	Modeling of the G-band Extended Interaction Klystro signal Code TESLA <u>Igor Chernyavskiy</u> ¹ ; A.N. Vlasov ² ; T.M. Antonsen ³ ; D. C. M. Hyttinen ⁴ ; A. Roitman ⁴ ; P. Horoyski ⁴ ; R. Dobbs ⁴ ; D. I ¹ SAIC, United States; ² Naval Research Laboratory, Unite of Maryland, United States; ⁴ CPI, Canada Large-signal modeling of the 220 GHz Extended Interact were performed by using the klystron code TESLA. The simulations are discussed and compared with the known of	Chernin ¹ ; B. Levush ² ; Berry ⁴ ed States; ³ University tion Klystron (EIK) results of TESLA

Tu-F2.4	586	Numerical and Experimental Investigation of a 35 GHz 20-Vane Spatial- Harmonic Magnetron	
		<u>J.I. Kim¹</u> ; S.G. Jeon ¹ ; G.J. Kim ¹ ; J.H. Kim ¹ ; V.D. Yeryomka ² ; A	S.
		Tishchenko ² ; V.D. Naumenko ³ ¹ Korea Electrotechnology Research Institute, Korea, Republic o	f: ² Institute of
		Radio Physics and Electronics, Ukraine; ³ Institute of Radio Astr	
		Ukraine A 35 GHz 3 kW spatial-harmonic magnetron employing 20-van numerically and experimentally investigated. Simulated output J kW at beam voltage of 6.5 kV and anode current of 4 A using 31	power is 3.2 D PIC
		simulation. The measured resonant frequency for operation mod	le of $p = 16$ is
Tu-F2.5	588	34.96 GHz. Surface field cavity based on a two-dimensional cylindrical <u>Alan Phelps</u> ¹ ; I.V. Konoplev ¹ ; L. Fisher ¹ ; A.W. Cross ¹ ; K. Rona	
		Robertson ¹ ; M. Thumm ²	
		¹ University of Strathclyde, United Kingdom; ² Karlsruhe Institut Technology, Germany	e of
		A Ka-band cavity based on a two-dimensional periodic lattice is	
		apparatus designed to excite the cavity is discussed. Coupling be	
		surface and volume fields is demonstrated and pulse propagation cavity is investigated. The measurements agree well with simula	•
		eavity is investigated. The measurements agree went with simula	
	16.00 1	17:45 Materials 3	A 1 M
	10:00 - 1		Aula Magna
TT 40.1		Chair: M. Tonouchi	Aula Magna
Tu-A3.1	58:	Chair: M. Tonouchi Time-resolved terahertz spectroscopy of black silicon <u>H.P. Porte¹</u> ; D. Turchinovich ¹ ; S. Persheyev ² ; Y. Fan ² ; M.J. Ros	
Tu-A3.1		Chair: M. Tonouchi Time-resolved terahertz spectroscopy of black silicon <u>H.P. Porte¹</u> ; D. Turchinovich ¹ ; S. Persheyev ² ; Y. Fan ² ; M.J. Ros Jepsen ¹ ¹ DTU Fotonik - Department of Photonics Engineering, Technica of Denmark, Denmark; ² School of Engineering, Physics and Ma	e ² ; P.U. al University
Tu-A3.1		Chair: M. Tonouchi Time-resolved terahertz spectroscopy of black silicon <u>H.P. Porte¹</u> ; D. Turchinovich ¹ ; S. Persheyev ² ; Y. Fan ² ; M.J. Ros Jepsen ¹ ¹ DTU Fotonik - Department of Photonics Engineering, Technica of Denmark, Denmark; ² School of Engineering, Physics and Ma University of Dundee, United Kingdom	e ² ; P.U. al University thematics,
Tu-A3.1		Chair: M. Tonouchi Time-resolved terahertz spectroscopy of black silicon <u>H.P. Porte¹</u> ; D. Turchinovich ¹ ; S. Persheyev ² ; Y. Fan ² ; M.J. Ros Jepsen ¹ ¹ DTU Fotonik - Department of Photonics Engineering, Technica of Denmark, Denmark; ² School of Engineering, Physics and Ma University of Dundee, United Kingdom The ultrafast photoconductivity dynamics of black silicon is mea time-resolved terahertz spectroscopy. We show that the maximu	e ² ; P.U. al University athematics, asured by
Tu-A3.1		Chair: M. Tonouchi Time-resolved terahertz spectroscopy of black silicon <u>H.P. Porte¹</u> ; D. Turchinovich ¹ ; S. Persheyev ² ; Y. Fan ² ; M.J. Ros Jepsen ¹ ¹ DTU Fotonik - Department of Photonics Engineering, Technica of Denmark, Denmark; ² School of Engineering, Physics and Ma University of Dundee, United Kingdom The ultrafast photoconductivity dynamics of black silicon is mea time-resolved terahertz spectroscopy. We show that the maximu photoconductivity as well as the decay time of the photoconduct	e ² ; P.U. al University thematics, asured by im tivity depends
	58:	Chair: M. Tonouchi Time-resolved terahertz spectroscopy of black silicon <u>H.P. Porte</u> ¹ ; D. Turchinovich ¹ ; S. Persheyev ² ; Y. Fan ² ; M.J. Ros Jepsen ¹ ¹ DTU Fotonik - Department of Photonics Engineering, Technica of Denmark, Denmark; ² School of Engineering, Physics and Ma University of Dundee, United Kingdom The ultrafast photoconductivity dynamics of black silicon is mea time-resolved terahertz spectroscopy. We show that the maximu photoconductivity as well as the decay time of the photoconduct on the annealing method and fluence used in the production pro-	e ² ; P.U. al University thematics, asured by m tivity depends cess.
Tu-A3.1 Tu-A3.2		Chair: M. Tonouchi Time-resolved terahertz spectroscopy of black silicon <u>H.P. Porte¹</u> ; D. Turchinovich ¹ ; S. Persheyev ² ; Y. Fan ² ; M.J. Ros Jepsen ¹ ¹ DTU Fotonik - Department of Photonics Engineering, Technica of Denmark, Denmark; ² School of Engineering, Physics and Ma University of Dundee, United Kingdom The ultrafast photoconductivity dynamics of black silicon is mea time-resolved terahertz spectroscopy. We show that the maximu photoconductivity as well as the decay time of the photoconduct	e ² ; P.U. al University thematics, asured by m tivity depends cess.
	58:	Chair: M. Tonouchi Time-resolved terahertz spectroscopy of black silicon <u>H.P. Porte</u> ¹ ; D. Turchinovich ¹ ; S. Persheyev ² ; Y. Fan ² ; M.J. Ros Jepsen ¹ ¹ DTU Fotonik - Department of Photonics Engineering, Technica of Denmark, Denmark; ² School of Engineering, Physics and Ma University of Dundee, United Kingdom The ultrafast photoconductivity dynamics of black silicon is mea time-resolved terahertz spectroscopy. We show that the maximu photoconductivity as well as the decay time of the photoconduct on the annealing method and fluence used in the production pro- Material parameter extraction in THz-TDS using a converging transfer function <u>A.L. Chung</u> ¹ ; Z. Mihoubi ¹ ; G.J. Daniell ¹ ; A.H. Quarterman ¹ ; K.C. H.E. Beere ² ; D.A. Ritchie ² ; A.C. Tropper ¹ ; V. Apostolopoulos ¹	e ² ; P.U. al University thematics, asured by im tivity depends cess. ing beam G. Wilcox ¹ ;
	58:	Chair: M. Tonouchi Time-resolved terahertz spectroscopy of black silicon <u>H.P. Porte¹</u> ; D. Turchinovich ¹ ; S. Persheyev ² ; Y. Fan ² ; M.J. Ros Jepsen ¹ ¹ DTU Fotonik - Department of Photonics Engineering, Technica of Denmark, Denmark; ² School of Engineering, Physics and Ma University of Dundee, United Kingdom The ultrafast photoconductivity dynamics of black silicon is mea time-resolved terahertz spectroscopy. We show that the maximu photoconductivity as well as the decay time of the photoconduct on the annealing method and fluence used in the production prod Material parameter extraction in THz-TDS using a converging transfer function A.L. Chung ¹ ; Z. Mihoubi ¹ ; G.J. Daniell ¹ ; A.H. Quarterman ¹ ; K.C.	e ² ; P.U. al University thematics, asured by im tivity depends cess. ing beam G. Wilcox ¹ ;
	58:	Chair: M. Tonouchi Time-resolved terahertz spectroscopy of black silicon <u>H.P. Porte</u> ¹ ; D. Turchinovich ¹ ; S. Persheyev ² ; Y. Fan ² ; M.J. Ros Jepsen ¹ ¹ DTU Fotonik - Department of Photonics Engineering, Technica of Denmark, Denmark; ² School of Engineering, Physics and Ma University of Dundee, United Kingdom The ultrafast photoconductivity dynamics of black silicon is mea time-resolved terahertz spectroscopy. We show that the maximu photoconductivity as well as the decay time of the photoconduct on the annealing method and fluence used in the production prod Material parameter extraction in THz-TDS using a convergit transfer function <u>A.L. Chung¹; Z. Mihoubi¹; G.J. Daniell¹; A.H. Quarterman¹; K.C. H.E. Beere²; D.A. Ritchie²; A.C. Tropper¹; V. Apostolopoulos¹</u>	e ² ; P.U. al University thematics, asured by im tivity depends cess. ing beam G. Wilcox ¹ ; ambridge, coretical am. Using this

 Hiromichi Hoshina¹; Y. Morisawa²; H. Sato²; Y. Ozaki²; C. Otani¹ ¹RIKEN Advanced Science Institute, Japan; ²Kwansei Gakuin University, Japan Terahertz absorption spectra of Poly(3- hydroxybutyrate)s were measured. The orientation of the transition dipole moment was investigated by the polarization spectra. The temperature dependence of the spectra reflects the change in the hydrogen bonding distance of the crystalline structure. Effectiveness of microwave electromagnetic shielding in carbon based epoxy nanocomposites Stefano Bellucci¹; L. Coderoni¹; F. Micciulla¹; G. Rinaldi²; I. Sacco¹; A. Paddubskaya³; D. Bychanok³; A. Plushch³; P. Kuzhir³; S. Maksimenko³; M. Shuba³; S. Slepyan³; J. Macutkevic⁴; D. Seliuta⁴, G. Valusis⁴; J. Banys⁵ ¹INFN-LNF, Italy; ²University of Rome "Sapienza", Italy; ³Belarusian State University, Belarus; ⁴Semiconductor Physics Institute, Lithuania; ⁵University of Vilnius, Lithuania We report on the comparative study of the effectiveness of electromagnetic shielding provided by different forms of nanocarbon dispersed in resin. Photon Helicity Driven Electric Currents in Graphene Sergey Ganichev¹; J. Wurstbauer¹; N.M. Glazov²; S.A. Tarasenko²; D. Weiss¹; J. Eroms¹; R. Yakimova³; S. Lara-Avila³; S. Kubatkin⁴; E.L. Ivchenko² ¹Terahertz Center, Germany; ²Ioffe Physical-Techanical Institute, Russian Federation; ³Linkoeping University, Sweden; ⁴Chalmers University of Technology, Sweden We observed photon helicity driven currents in graphene. Illuminating unbiased monolayer graphene samples with THz laser radiation at room temperature under oblique and normal incidence causes directed electric currents. This includes currents, which are solely driven by the light's helicity. Dielectric RF properties of CVD diamond disks from sub-mm wave to THz frequencies T.A.	Tu-A3.3	595	Higher Order Conformation of Poly(3-hydroxyalkanoate)s Studied by
 ¹RIKEN Advanced Science Institute, Japan; ²Kwansei Gakuin University, Japan Terahertz absorption spectra of Poly(3- hydroxybutyrate)s were measured. The orientation of the transition dipole moment was investigated by the polarization spectra. The temperature dependence of the spectra reflects the change in the hydrogen bonding distance of the crystalline structure. Effectiveness of microwave electromagnetic shielding in carbon based epoxy nanocomposites Stefano Bellucci²; L. Coderoni¹; F. Micciulla¹; G. Rinaldi²; I. Sacco¹; A. Paddubskaya³; D. Bychanok³; A. Plushch³; P. Kuzhir³; S. Maksimenko³; M. Shuba³, S. Slepyan³; J. Macutkevic⁴; D. Seliuta⁴; G. Valusis⁴; J. Banys⁵ ¹INFN-LNF, Italy; ²University of Rome "Sapienza", Italy; ³Belarusian State University, Belarus; ⁴Semiconductor Physics Institute, Lithuania; ⁹University of Vilnius, Lithuania We report on the comparative study of the effectiveness of electromagnetic shielding provided by different forms of nanocarbon dispersed in resin. Photon Helicity Driven Electric Currents in Graphene Sergey Ganichev¹; J. Karch¹; P. Olbrich¹; M. Schmalzbauer¹; C. Zoth¹; C. Brinsteiner¹; U. Wurstbauer¹; M.M. Glazov²; S.A. Tarasenko²; D. Weiss¹; J. Eroms¹; R. Yakimova³; S. Lara-Avila³; S. Kubatkin⁴; E.L. Ivchenko² ¹Terahertz Center, Germany; ²Ioffe Physical-Techanical Institute, Russian Federation; ³Linkoeping University, Sweden; ⁴Chalmers University of Technology, Sweden We observed photon helicity driven currents in graphene. Illuminating unbiased monolayer graphene samples with THz laser radiation at room temperature under oblique and normal incidence causes directed electric currents. This includes currents, which are solely driven by the light's helicity. Dielectric RF properties of CVD diamond disks from sub-mm wave to THz frequencies T.A. Scherer; D. Strauss KI			Terahertz Time-Domain Spectroscopy $U^{2} = \frac{1}{2} U^{2} + \frac{1}{2} U^{2} +$
 Japan Terahertz absorption spectra of Poly(3- hydroxybutyrate)s were measured. The orientation of the transition dipole moment was investigated by the polarization spectra. The temperature dependence of the spectra reflects the change in the hydrogen bonding distance of the crystalline structure. Effectiveness of microwave electromagnetic shielding in carbon based epoxy nanocomposites 			Hiromichi Hoshina; Y. Morisawa; H. Sato; Y. Ozaki; C. Otani
 Terahertz absorption spectra of Poly(3- hydroxybutyrate)s were measured. The orientation of the transition dipole moment was investigated by the polarization spectra. The temperature dependence of the spectra reflects the change in the hydrogen bonding distance of the crystalline structure. Effectiveness of microwave electromagnetic shielding in carbon based epoxy nanocomposites Stefano Bellucci¹; L. Coderoni¹; F. Micciulla¹; G. Rinaldi²; I. Sacco¹; A. Paddubskaya³; D. Bychanok³; A. Plushch³; P. Kuzhir³; S. Maksimenko³; M. Shuba³; S. Slepyan³; J. Macutkevic⁴; D. Seliuta⁴; G. Valusis⁴; J. Banys⁵ ¹INFN-LNF, Italy; ²University of Rome "Sapienza", Italy; ³Belarusian State University, Belarus; ⁴Semiconductor Physics Institute, Lithuania; ⁵University of Vilnius, Lithuania We report on the comparative study of the effectiveness of electromagnetic shielding provided by different forms of nanocarbon dispersed in resin. Tu-A3.5 598 Photon Helicity Driven Electric Currents in Graphene Sergey Ganichev¹; J. Karch¹; P. Olbrich¹; M. Schmalzbauer¹; C. Zoth¹; C. Brinsteiner¹; U. Wurstbauer¹; M.M. Glazov²; S.A. Tarasenko²; D. Weiss¹; J. Eroms¹; R. Yakimova³; S. Lara-Avila³; S. Kubatlin⁴; E.L. Ivchenko² ¹Terahertz Center, Germany; ²Ioffe Physical-Techanical Institute, Russian Federation; ³Linkoeping University, Sweden; ⁴Chalmers University of Technology, Sweden We observed photon helicity driven currents in graphene. Illuminating unbiased monolayer graphene samples with THz laser radiation at room temperature under oblique and normal incidence causes directed electric currents. This includes currents, which are solely driven by the light's helicity. Dielectric RF properties of CVD diamond disks from sub-mm wave to THz frequencies T.A. Scherer; A. Scheuring; P. Probs			· · ·
 ru-A3.4 596 Tu-A3.4 596 Effectiveness of microwave electromagnetic shielding in carbon based epoxy nanocomposites Stefano Bellucci¹; L. Coderoni¹; F. Micciulla¹; G. Rinaldi²; I. Sacco¹; A. Paddubskaya³; D. Bychanok³; A. Plushch³; P. Kuzhir³; S. Maksimenko³; M. Shuba³; S. Slepyan³; J. Macutkevic⁴; D. Seliuta⁴; G. Valusis⁴; J. Banys⁵ ¹INFN-LNF, Italy; ²University of Rome "Sapienza", Italy; ³Belarusian State University, Belarus; ⁴Semiconductor Physics Institute, Lithuania; ⁵University of Vilnius, Lithuania We report on the comparative study of the effectiveness of electromagnetic shielding provided by different forms of nanocarbon dispersed in resin. Photon Helicity Driven Electric Currents in Graphene Sergey Ganichev¹; J. Karch¹; P. Olbrich¹; M. Schmalzbauer¹; C. Zoth¹; C. Brinsteiner¹; U. Wurstbauer¹; M.M. Glazov²; S.A. Tarasenko²; D. Weiss¹; J. Eroms¹; R. Yakimova³; S. Lara-Avila³; S. Kubatkin⁴; E.L. Ivchenko² ¹Terahertz Center, Germany; ²Ioffe Physical-Techanical Institute, Russian Federation; ³Linkoeping University, Sweden; ⁴Chalmers University of Technology, Sweden We observed photon helicity driven currents in graphene. Illuminating unbiased monolayer graphene samples with THz laser radiation at room temperature under oblique and normal incidence causes directed electric currents. This includes currents, which are solely driven by the light's helicity. Dielectric RF properties of CVD diamond disks from sub-mm wave to THz frequencies <u>T.A. Scherer</u>; A. Scheuring; P. Probst; A. Stockhausen; K. Illin; M. Prof. Dr. Siegel; A. Meier; D. Strauss KIT Karlsruhe, Germany 			
 Tu-A3.4 596 polarization spectra. The temperature dependence of the spectra reflects the change in the hydrogen bonding distance of the crystalline structure. Effectiveness of microwave electromagnetic shielding in carbon based epoxy nanocomposites Stefano Bellucci¹; L. Coderoni¹; F. Micciulla¹; G. Rinaldi²; I. Sacco¹; A. Paddubskaya³; D. Bychanok³; A. Plushch³; P. Kuzhir³; S. Maksimenko³; M. Shuba³; S. Slepyan³; J. Macutkevic⁴; D. Seliuta⁴; G. Valusis⁴; J. Banys⁵ ¹INFN-LNF, Italy; ²University of Rome "Sapienza", Italy; ³Belarusian State University, Belarus; ⁴Semiconductor Physics Institute, Lithuania; ⁵University of Vilnius, Lithuania We report on the comparative study of the effectiveness of electromagnetic shielding provided by different forms of nanocarbon dispersed in resin. Photon Helicity Driven Electric Currents in Graphene Sergey Ganichev¹; J. Karch¹; P. Olbrich¹; M. Schmalzbauer¹; C. Zoth¹; C. Brinsteiner¹; U. Wurstbauer¹; M.M. Glazov²; S.A. Tarasenko²; D. Weiss¹; J. Eroms¹; R. Yakimova³; S. Lara-Avila³; S. Kubatkin⁴; E.L. Ivchenko² ¹Terahertz Center, Germany; ²Ioffe Physical-Techanical Institute, Russian Federation; ³Linkoeping University, Sweden; ⁴Chalmers University of Technology, Sweden We observed photon helicity driven currents in graphene. Illuminating unbiased monolayer graphene samples with THz laser radiation at room temperature under oblique and normal incidence causes directed electric currents. This includes currents, which are solely driven by the light's helicity. Dielectric RF properties of CVD diamond disks from sub-mm wave to THz frequencies T.A. Scherer; A. Scheuring; P. Probst; A. Stockhausen; K. Illin; M. Prof. Dr. Siegel; A. Meier; D. Strauss KIT Karlsruhe, Germany 			
 Tu-A3.4 596 Tu-A3.4 596 Effectiveness of microwave electromagnetic shielding in carbon based epoxy nanocomposites Stefano Bellucci¹; L. Coderoni¹; F. Micciulla¹; G. Rinaldi²; I. Sacco¹; A. Paddubskaya³; D. Bychanok³; A. Plushch³; P. Kuzhir³; S. Maksimenko³; M. Shuba³; S. Slepyan³; J. Macutkevic⁴; D. Seliuta⁴; G. Valusis⁴; J. Banys⁵ ¹INFN-LNF, Italy; ²University of Rome "Sapienza", Italy; ³Belarusian State University, Belarus; ⁴Semiconductor Physics Institute, Lithuania; ⁵University of Vilnius, Lithuania We report on the comparative study of the effectiveness of electromagnetic shielding provided by different forms of nanocarbon dispersed in resin. Photon Helicity Driven Electric Currents in Graphene Sergey Ganichev¹; J. Karch¹; P. Olbrich¹; M. Schmalzbauer¹; C. Zoth¹; C. Brinsteiner¹; U. Wurstbauer¹; M.M. Glazov²; S.A. Tarasenko²; D. Weiss¹; J. Eroms¹; R. Yakimova³; S. Lara-Avila³; S. Kubatkin⁴; E.L. Ivchenko² ¹Terahertz Center, Germany; ²Ioffe Physical-Techanical Institute, Russian Federation; ³Linkoeping University, Sweden; ⁴Chalmers University of Technology, Sweden We observed photon helicity driven currents in graphene. Illuminating unbiased monolayer graphene samples with THz laser radiation at room temperature under oblique and normal incidence causes directed electric currents. This includes currents, which are solely driven by the light's helicity. Dielectric RF properties of CVD diamond disks from sub-mm wave to THz frequencies T.A. Scherer; A. Scheuring; P. Probst; A. Stockhausen; K. Illin; M. Prof. Dr. Siegel; A. Meier; D. Strauss KIT Karlsruhe, Germany 			
 Tu-A3.4 596 Effectiveness of microwave electromagnetic shielding in carbon based epoxy nanocomposites <u>Stefano Bellucci</u>¹; L. Coderoni¹; F. Micciulla¹; G. Rinaldi²; I. Sacco¹; A. Paddubskaya³; D. Bychanok³; A. Plushch³; P. Kuzhir³; S. Maksimenko³; M. Shuba³; S. Slepyan³; J. Macutkevic⁴; D. Selinut⁴; G. Valusis⁴; J. Banys⁵ ¹INFN-LNF, Italy; ²University of Rome "Sapienza", Italy; ³Belarusian State University, Belarus; ⁴Semiconductor Physics Institute, Lithuania; ⁵University of Vilnius, Lithuania We report on the comparative study of the effectiveness of electromagnetic shielding provided by different forms of nanocarbon dispersed in resin. Photon Helicity Driven Electric Currents in Graphene <u>Sergey Ganichev¹; J. Karch¹; P. Olbrich¹; M. Schmalzbauer¹; C. Zoth¹; C. Brinsteiner¹; U. Wurstbauer¹; M.M. Glazov²; S.A. Tarasenko²; D. Weiss¹; J. Eroms¹; R. Yakimova³; S. Lara-Avila³; S. Kubatkin⁴; E.L. Ivchenko² ¹Terahertz Center, Germany; ²Ioffe Physical-Techanical Institute, Russian Federation; ³Linkoeping University, Sweden; ⁴Chalmers University of Technology, Sweden We observed photon helicity driven currents in graphene. Illuminating unbiased monolayer graphene samples with THz laser radiation at room temperature under oblique and normal incidence causes directed electric currents. This includes currents, which are solely driven by the light's helicity. Dielectric RF properties of CVD diamond disks from sub-mm wave to THz frequencies <u>T.A. Scherer</u>; A. Scheuring; P. Probst; A. Stockhausen; K. Illin; M. Prof. Dr. Siegel; A. Meier; D. Strauss KIT Karlsruhe, Germany</u> 			
 10-A3.4 596 epoxy nanocomposites <u>Stefano Bellucci</u>¹; L. Coderoni¹; F. Micciulla¹; G. Rinaldi²; I. Sacco¹; A. Paddubskaya³; D. Bychanok³; A. Plushch³; P. Kuzhir³; S. Maksimenko³; M. Shuba³; S. Slepyan³; J. Macutkevic⁴; D. Seliuta⁴; G. Valusis⁴; J. Banys⁵ ¹INFN-LNF, Italy; ²University of Rome "Sapienza", Italy; ³Belarusian State University, Belarus; ⁴Semiconductor Physics Institute, Lithuania, ⁵University of Vilnius, Lithuania We report on the comparative study of the effectiveness of electromagnetic shielding provided by different forms of nanocarbon dispersed in resin. Photon Helicity Driven Electric Currents in Graphene <u>Sergey Ganichev¹</u>; J. Karch¹; P. Olbrich¹; M. Schmalzbauer¹; C. Zoth¹; C. Brinsteiner¹; U. Wurstbauer¹; M.M. Glazov²; S.A. Tarasenko²; D. Weiss¹; J. Eroms¹; R. Yakimova³; S. Lara-Avila³; S. Kubatkin⁴; E.L. Ivchenko² ¹Terahertz Center, Germany; ²Ioffe Physical-Techanical Institute, Russian Federation; ³Linkoeping University, Sweden; ⁴Chalmers University of Technology, Sweden We observed photon helicity driven currents in graphene. Illuminating unbiased monolayer graphene samples with THz laser radiation at room temperature under oblique and normal incidence causes directed electric currents. This includes currents, which are solely driven by the light's helicity. Dielectric RF properties of CVD diamond disks from sub-mm wave to THz frequencies T.A. Scherer; A. Scheuring; P. Probst; A. Stockhausen; K. Illin; M. Prof. Dr. Siegel; A. Meier; D. Strauss KIT Karlsruhe, Germany 			
 cpoxy nanocomposites <u>Stefano Bellucci</u>¹; L. Coderoni¹; F. Micciulla¹; G. Rinaldi²; I. Sacco¹; A. Paddubskaya³; D. Bychanok³; A. Plushch³; P. Kuzhir³; S. Maksimenko³; M. Shuba³; S. Slepyan³; J. Macutkevic⁴; D. Seliuta⁴; G. Valusis⁴; J. Banys⁵ ¹INFN-LNF, Italy; ²University of Rome "Sapienza", Italy; ³Belarusian State University, Belarus; ⁴Semiconductor Physics Institute, Lithuania; ⁵University of Vilnius, Lithuania We report on the comparative study of the effectiveness of electromagnetic shielding provided by different forms of nanocarbon dispersed in resin. Photon Helicity Driven Electric Currents in Graphene <u>Sergey Ganichev</u>¹; J. Karch¹; P. Olbrich¹; M. Schmalzbauer¹; C. Zoth¹; C. Brinsteiner¹; U. Wurstbauer¹; M.M. Glazov²; S.A. Tarasenko²; D. Weiss¹; J. Eroms¹; R. Yakimova³; S. Luara-Avila³; S. Kubatkin⁴; E.L. Ivchenko² ¹Terahertz Center, Germany; ²Ioffe Physical-Techanical Institute, Russian Federation; ³Linkoeping University, Sweden; ⁴Chalmers University of Technology, Sweden We observed photon helicity driven currents in graphene. Illuminating unbiased monolayer graphene samples with THz laser radiation at room temperature under oblique and normal incidence causes directed electric currents. This includes currents, which are solely driven by the light's helicity. Dielectric RF properties of CVD diamond disks from sub-mm wave to THz frequencies <u>T.A. Scherer</u>; A. Scheuring; P. Probst; A. Stockhausen; K. Illin; M. Prof. Dr. Siegel; A. Meier; D. Strauss KIT Karlsruhe, Germany ⁴	Τυ Δ34	506	Effectiveness of microwave electromagnetic shielding in carbon based
 Paddubskaya³; D. Bychanok³; A. Plushch³; P. Kuzhir³; S. Maksimenko³; M. Shuba³; S. Slepyan³; J. Macutkevic⁴; D. Seliuta⁴; G. Valusis⁴; J. Banys⁵ ¹INFN-LNF, Italy; ²University of Rome "Sapienza", Italy; ³Belarusian State University, Belarus; ⁴Semiconductor Physics Institute, Lithuania; ⁵University of Vilnius, Lithuania We report on the comparative study of the effectiveness of electromagnetic shielding provided by different forms of nanocarbon dispersed in resin. Photon Helicity Driven Electric Currents in Graphene Sergey Ganichev¹; J. Karch¹; P. Olbrich¹; M. Schmalzbauer¹; C. Zoth¹; C. Brinsteiner¹; U. Wurstbauer¹; M.M. Glazov²; S.A. Tarasenko²; D. Weiss¹; J. Eroms¹; R. Yakimova³; S. Lara-Avila³; S. Kubatkin⁴; E.L. Ivchenko² ¹Terahertz Center, Germany; ²Ioffe Physical-Techanical Institute, Russian Federation; ³Linkoeping University, Sweden; ⁴Chalmers University of Technology, Sweden We observed photon helicity driven currents in graphene. Illuminating unbiased monolayer graphene samples with THz laser radiation at room temperature under oblique and normal incidence causes directed electric currents. This includes currents, which are solely driven by the light's helicity. Dielectric RF properties of CVD diamond disks from sub-mm wave to TLA Scherer; A. Scheuring; P. Probst; A. Stockhausen; K. Illin; M. Prof. Dr. Siegel; A. Meier; D. Strauss KIT Karlsruhe, Germany 	1u-AJ. 4	590	
 Shuba³; S. Slepyan³; J. Macutkevic⁴; D. Seliuta⁴; G. Valusis⁴; J. Banys⁵ ¹INFN-LNF, Italy; ²University of Rome "Sapienza", Italy; ³Belarusian State University, Belarus; ⁴Semiconductor Physics Institute, Lithuania; ⁵University of Vilnius, Lithuania We report on the comparative study of the effectiveness of electromagnetic shielding provided by different forms of nanocarbon dispersed in resin. Photon Helicity Driven Electric Currents in Graphene Sergey Ganichev¹; J. Karch¹; P. Olbrich¹; M. Schmalzbauer¹; C. Zoth¹; C. Brinsteiner¹; U. Wurstbauer¹; M.M. Glazov²; S.A. Tarasenko²; D. Weiss¹; J. Eroms¹; R. Yakimova³; S. Lara-Avila³; S. Kubatkin⁴; E.L. Ivchenko² ¹Terahertz Center, Germany; ²Ioffe Physical-Techanical Institute, Russian Federation; ³Linkoeping University, Sweden; ⁴Chalmers University of Technology, Sweden We observed photon helicity driven currents in graphene. Illuminating unbiased monolayer graphene samples with THz laser radiation at room temperature under oblique and normal incidence causes directed electric currents. This includes currents, which are solely driven by the light's helicity. Dielectric RF properties of CVD diamond disks from sub-mm wave to THz frequencies <u>T.A. Scherer</u>; A. Scheuring; P. Probst; A. Stockhausen; K. Illin; M. Prof. Dr. Siegel; A. Meier; D. Strauss KIT Karlsruhe, Germany 			
 ¹INFN-LNF, Italy; ²University of Rome "Sapienza", Italy; ³Belarusian State University, Belarus; ⁴Semiconductor Physics Institute, Lithuania; ⁵University of Vilnius, Lithuania We report on the comparative study of the effectiveness of electromagnetic shielding provided by different forms of nanocarbon dispersed in resin. Photon Helicity Driven Electric Currents in Graphene Sergey Ganichev¹; J. Karch¹; P. Olbrich¹; M. Schmalzbauer¹; C. Zoth¹; C. Brinsteiner¹; U. Wurstbauer¹; M.M. Glazov²; S.A. Tarasenko²; D. Weiss¹; J. Eroms¹; R. Yakimova³; S. Lara-Avila³; S. Kubatkin⁴; E.L. Ivchenko² ¹Terahertz Center, Germany; ²Ioffe Physical-Techanical Institute, Russian Federation; ³Linkoeping University, Sweden; ⁴Chalmers University of Technology, Sweden We observed photon helicity driven currents in graphene. Illuminating unbiased monolayer graphene samples with THz laser radiation at room temperature under oblique and normal incidence causes directed electric currents. This includes currents, which are solely driven by the light's helicity. Dielectric RF properties of CVD diamond disks from sub-mm wave to THz frequencies T.A. Scherer; A. Scheuring; P. Probst; A. Stockhausen; K. Illin; M. Prof. Dr. Siegel; A. Meier; D. Strauss KIT Karlsruhe, Germany 			Paddubskaya ³ ; D. Bychanok ³ ; A. Plushch ³ ; P. Kuzhir ³ ; S. Maksimenko ³ ; M.
 Tu-A3.5 598 University, Belarus; ⁴Semiconductor Physics Institute, Lithuania; ⁵University of Vilnius, Lithuania We report on the comparative study of the effectiveness of electromagnetic shielding provided by different forms of nanocarbon dispersed in resin. Photon Helicity Driven Electric Currents in Graphene Sergey Ganichev¹; J. Karch¹; P. Olbrich¹; M. Schmalzbauer¹; C. Zoth¹; C. Brinsteiner¹; U. Wurstbauer¹; M.M. Glazov²; S.A. Tarasenko²; D. Weiss¹; J. Eroms¹; R. Yakimova³; S. Lara-Avila³; S. Kubatkin⁴; E.L. Ivchenko² ¹Terahertz Center, Germany; ²Ioffe Physical-Techanical Institute, Russian Federation; ³Linkoeping University, Sweden; ⁴Chalmers University of Technology, Sweden We observed photon helicity driven currents in graphene. Illuminating unbiased monolayer graphene samples with THz laser radiation at room temperature under oblique and normal incidence causes directed electric currents. This includes currents, which are solely driven by the light's helicity. Dielectric RF properties of CVD diamond disks from sub-mm wave to THz frequencies T.A. Scherer; A. Scheuring; P. Probst; A. Stockhausen; K. Illin; M. Prof. Dr. Siegel; A. Meier; D. Strauss KIT Karlsruhe, Germany 			Shuba ³ ; S. Slepyan ³ ; J. Macutkevic ⁴ ; D. Seliuta ⁴ ; G. Valusis ⁴ ; J. Banys ⁵
 ru-A3.5 598 of Vilnius, Lithuania We report on the comparative study of the effectiveness of electromagnetic shielding provided by different forms of nanocarbon dispersed in resin. Photon Helicity Driven Electric Currents in Graphene Sergey Ganichev¹; J. Karch¹; P. Olbrich¹; M. Schmalzbauer¹; C. Zoth¹; C. Brinsteiner¹; U. Wurstbauer¹; M.M. Glazov²; S.A. Tarasenko²; D. Weiss¹; J. Eroms¹; R. Yakimova³; S. Lara-Avila³; S. Kubatkin⁴; E.L. Ivchenko² ¹Terahertz Center, Germany; ²Ioffe Physical-Techanical Institute, Russian Federation; ³Linkoeping University, Sweden; ⁴Chalmers University of Technology, Sweden We observed photon helicity driven currents in graphene. Illuminating unbiased monolayer graphene samples with THz laser radiation at room temperature under oblique and normal incidence causes directed electric currents. This includes currents, which are solely driven by the light's helicity. Dielectric RF properties of CVD diamond disks from sub-mm wave to THz frequencies T.A. Scherer; A. Scheuring; P. Probst; A. Stockhausen; K. Illin; M. Prof. Dr. Siegel; A. Meier; D. Strauss KIT Karlsruhe, Germany 			¹ INFN-LNF, Italy; ² University of Rome "Sapienza", Italy; ³ Belarusian State
 ru-A3.5 598 of Vilnius, Lithuania We report on the comparative study of the effectiveness of electromagnetic shielding provided by different forms of nanocarbon dispersed in resin. Photon Helicity Driven Electric Currents in Graphene Sergey Ganichev¹; J. Karch¹; P. Olbrich¹; M. Schmalzbauer¹; C. Zoth¹; C. Brinsteiner¹; U. Wurstbauer¹; M.M. Glazov²; S.A. Tarasenko²; D. Weiss¹; J. Eroms¹; R. Yakimova³; S. Lara-Avila³; S. Kubatkin⁴; E.L. Ivchenko² ¹Terahertz Center, Germany; ²Ioffe Physical-Techanical Institute, Russian Federation; ³Linkoeping University, Sweden; ⁴Chalmers University of Technology, Sweden We observed photon helicity driven currents in graphene. Illuminating unbiased monolayer graphene samples with THz laser radiation at room temperature under oblique and normal incidence causes directed electric currents. This includes currents, which are solely driven by the light's helicity. Dielectric RF properties of CVD diamond disks from sub-mm wave to THz frequencies T.A. Scherer; A. Scheuring; P. Probst; A. Stockhausen; K. Illin; M. Prof. Dr. Siegel; A. Meier; D. Strauss KIT Karlsruhe, Germany 			University, Belarus; ⁴ Semiconductor Physics Institute, Lithuania; ⁵ University
 Tu-A3.5 598 shielding provided by different forms of nanocarbon dispersed in resin. Photon Helicity Driven Electric Currents in Graphene Sergey Ganichev¹; J. Karch¹; P. Olbrich¹; M. Schmalzbauer¹; C. Zoth¹; C. Brinsteiner¹; U. Wurstbauer¹; M.M. Glazov²; S.A. Tarasenko²; D. Weiss¹; J. Eroms¹; R. Yakimova³; S. Lara-Avila³; S. Kubatkin⁴; E.L. Ivchenko² ¹Terahertz Center, Germany; ²Ioffe Physical-Techanical Institute, Russian Federation; ³Linkoeping University, Sweden; ⁴Chalmers University of Technology, Sweden We observed photon helicity driven currents in graphene. Illuminating unbiased monolayer graphene samples with THz laser radiation at room temperature under oblique and normal incidence causes directed electric currents. This includes currents, which are solely driven by the light's helicity. Tu-A3.6 599 Telectric RF properties of CVD diamond disks from sub-mm wave to THz frequencies T.A. Scherer; A. Scheuring; P. Probst; A. Stockhausen; K. Illin; M. Prof. Dr. Siegel; A. Meier; D. Strauss KIT Karlsruhe, Germany 			
 Tu-A3.5 598 shielding provided by different forms of nanocarbon dispersed in resin. Photon Helicity Driven Electric Currents in Graphene Sergey Ganichev¹; J. Karch¹; P. Olbrich¹; M. Schmalzbauer¹; C. Zoth¹; C. Brinsteiner¹; U. Wurstbauer¹; M.M. Glazov²; S.A. Tarasenko²; D. Weiss¹; J. Eroms¹; R. Yakimova³; S. Lara-Avila³; S. Kubatkin⁴; E.L. Ivchenko² ¹Terahertz Center, Germany; ²Ioffe Physical-Techanical Institute, Russian Federation; ³Linkoeping University, Sweden; ⁴Chalmers University of Technology, Sweden We observed photon helicity driven currents in graphene. Illuminating unbiased monolayer graphene samples with THz laser radiation at room temperature under oblique and normal incidence causes directed electric currents. This includes currents, which are solely driven by the light's helicity. Tu-A3.6 599 Telectric RF properties of CVD diamond disks from sub-mm wave to THz frequencies T.A. Scherer; A. Scheuring; P. Probst; A. Stockhausen; K. Illin; M. Prof. Dr. Siegel; A. Meier; D. Strauss KIT Karlsruhe, Germany 			We report on the comparative study of the effectiveness of electromagnetic
 Tu-A3.5 598 Photon Helicity Driven Electric Currents in Graphene <u>Sergey Ganichev¹</u>; J. Karch¹; P. Olbrich¹; M. Schmalzbauer¹; C. Zoth¹; C. Brinsteiner¹; U. Wurstbauer¹; M.M. Glazov²; S.A. Tarasenko²; D. Weiss¹; J. Eroms¹; R. Yakimova³; S. Lara-Avila³; S. Kubatkin⁴; E.L. Ivchenko² ¹Terahertz Center, Germany; ²Ioffe Physical-Techanical Institute, Russian Federation; ³Linkoeping University, Sweden; ⁴Chalmers University of Technology, Sweden We observed photon helicity driven currents in graphene. Illuminating unbiased monolayer graphene samples with THz laser radiation at room temperature under oblique and normal incidence causes directed electric currents. This includes currents, which are solely driven by the light's helicity. Dielectric RF properties of CVD diamond disks from sub-mm wave to THz frequencies T.A. Scherer; A. Scheuring; P. Probst; A. Stockhausen; K. Illin; M. Prof. Dr. Siegel; A. Meier; D. Strauss KIT Karlsruhe, Germany 			
 Tu-A3.6 599 Sergey Ganichev¹; J. Karch¹; P. Olbrich¹; M. Schmalzbauer¹; C. Zoth¹; C. Brinsteiner¹; U. Wurstbauer¹; M.M. Glazov²; S.A. Tarasenko²; D. Weiss¹; J. Eroms¹; R. Yakimova³; S. Lara-Avila³; S. Kubatkin⁴; E.L. Ivchenko² ¹Terahertz Center, Germany; ²Ioffe Physical-Techanical Institute, Russian Federation; ³Linkoeping University, Sweden; ⁴Chalmers University of Technology, Sweden We observed photon helicity driven currents in graphene. Illuminating unbiased monolayer graphene samples with THz laser radiation at room temperature under oblique and normal incidence causes directed electric currents. This includes currents, which are solely driven by the light's helicity. Dielectric RF properties of CVD diamond disks from sub-mm wave to THz frequencies T.A. Scherer; A. Scheuring; P. Probst; A. Stockhausen; K. Illin; M. Prof. Dr. Siegel; A. Meier; D. Strauss KIT Karlsruhe, Germany 	Tu-A3.5	598	
 Brinsteiner¹; U. Wurstbauer¹; M.M. Glazov²; S.A. Tarasenko²; D. Weiss¹; J. Eroms¹; R. Yakimova³; S. Lara-Avila³; S. Kubatkin⁴; E.L. Ivchenko² ¹Terahertz Center, Germany; ²Ioffe Physical-Techanical Institute, Russian Federation; ³Linkoeping University, Sweden; ⁴Chalmers University of Technology, Sweden We observed photon helicity driven currents in graphene. Illuminating unbiased monolayer graphene samples with THz laser radiation at room temperature under oblique and normal incidence causes directed electric currents. This includes currents, which are solely driven by the light's helicity. Dielectric RF properties of CVD diamond disks from sub-mm wave to THz frequencies <u>T.A. Scherer</u>; A. Scheuring; P. Probst; A. Stockhausen; K. Illin; M. Prof. Dr. Siegel; A. Meier; D. Strauss KIT Karlsruhe, Germany 			
 Eroms¹; R. Yakimova³; S. Lara-Avila³; S. Kubatkin⁴; E.L. Ivchenko² ¹Terahertz Center, Germany; ²Ioffe Physical-Techanical Institute, Russian Federation; ³Linkoeping University, Sweden; ⁴Chalmers University of Technology, Sweden We observed photon helicity driven currents in graphene. Illuminating unbiased monolayer graphene samples with THz laser radiation at room temperature under oblique and normal incidence causes directed electric currents. This includes currents, which are solely driven by the light's helicity. Dielectric RF properties of CVD diamond disks from sub-mm wave to THz frequencies <u>T.A. Scherer</u>; A. Scheuring; P. Probst; A. Stockhausen; K. Illin; M. Prof. Dr. Siegel; A. Meier; D. Strauss KIT Karlsruhe, Germany 			
 ¹Terahertz Center, Germany; ²Ioffe Physical-Techanical Institute, Russian Federation; ³Linkoeping University, Sweden; ⁴Chalmers University of Technology, Sweden We observed photon helicity driven currents in graphene. Illuminating unbiased monolayer graphene samples with THz laser radiation at room temperature under oblique and normal incidence causes directed electric currents. This includes currents, which are solely driven by the light's helicity. Tu-A3.6 599 Tu-A3.6 599 Dielectric RF properties of CVD diamond disks from sub-mm wave to THz frequencies T.A. Scherer; A. Scheuring; P. Probst; A. Stockhausen; K. Illin; M. Prof. Dr. Siegel; A. Meier; D. Strauss KIT Karlsruhe, Germany 			
 Federation; ³Linkoeping University, Sweden; ⁴Chalmers University of Technology, Sweden We observed photon helicity driven currents in graphene. Illuminating unbiased monolayer graphene samples with THz laser radiation at room temperature under oblique and normal incidence causes directed electric currents. This includes currents, which are solely driven by the light's helicity. Dielectric RF properties of CVD diamond disks from sub-mm wave to THz frequencies <u>T.A. Scherer</u>; A. Scheuring; P. Probst; A. Stockhausen; K. Illin; M. Prof. Dr. Siegel; A. Meier; D. Strauss KIT Karlsruhe, Germany 			
 Technology, Sweden We observed photon helicity driven currents in graphene. Illuminating unbiased monolayer graphene samples with THz laser radiation at room temperature under oblique and normal incidence causes directed electric currents. This includes currents, which are solely driven by the light's helicity. Tu-A3.6 599 Dielectric RF properties of CVD diamond disks from sub-mm wave to THz frequencies T.A. Scherer; A. Scheuring; P. Probst; A. Stockhausen; K. Illin; M. Prof. Dr. Siegel; A. Meier; D. Strauss KIT Karlsruhe, Germany 			
 We observed photon helicity driven currents in graphene. Illuminating unbiased monolayer graphene samples with THz laser radiation at room temperature under oblique and normal incidence causes directed electric currents. This includes currents, which are solely driven by the light's helicity. Dielectric RF properties of CVD diamond disks from sub-mm wave to THz frequencies T.A. Scherer; A. Scheuring; P. Probst; A. Stockhausen; K. Illin; M. Prof. Dr. Siegel; A. Meier; D. Strauss KIT Karlsruhe, Germany 			
 unbiased monolayer graphene samples with THz laser radiation at room temperature under oblique and normal incidence causes directed electric currents. This includes currents, which are solely driven by the light's helicity. Dielectric RF properties of CVD diamond disks from sub-mm wave to THz frequencies T.A. Scherer; A. Scheuring; P. Probst; A. Stockhausen; K. Illin; M. Prof. Dr. Siegel; A. Meier; D. Strauss KIT Karlsruhe, Germany 			
 Tu-A3.6 599 Tu-A3.6 599 temperature under oblique and normal incidence causes directed electric currents. This includes currents, which are solely driven by the light's helicity. Dielectric RF properties of CVD diamond disks from sub-mm wave to THz frequencies T.A. Scherer; A. Scheuring; P. Probst; A. Stockhausen; K. Illin; M. Prof. Dr. Siegel; A. Meier; D. Strauss KIT Karlsruhe, Germany 			
 Tu-A3.6 599 Tu-A3.6 599 Currents. This includes currents, which are solely driven by the light's helicity. Dielectric RF properties of CVD diamond disks from sub-mm wave to THz frequencies T.A. Scherer; A. Scheuring; P. Probst; A. Stockhausen; K. Illin; M. Prof. Dr. Siegel; A. Meier; D. Strauss KIT Karlsruhe, Germany 			
Tu-A3.6599Dielectric RF properties of CVD diamond disks from sub-mm wave to THz frequencies T.A. Scherer; A. Scheuring; P. Probst; A. Stockhausen; K. Illin; M. Prof. Dr. Siegel; A. Meier; D. Strauss KIT Karlsruhe, Germany			
THz frequencies <u>T.A. Scherer;</u> A. Scheuring; P. Probst; A. Stockhausen; K. Illin; M. Prof. Dr. Siegel; A. Meier; D. Strauss KIT Karlsruhe, Germany			
<u>T.A. Scherer;</u> A. Scheuring; P. Probst; A. Stockhausen; K. Illin; M. Prof. Dr. Siegel; A. Meier; D. Strauss KIT Karlsruhe, Germany	Tu-A3.6	599	
Siegel; A. Meier; D. Strauss KIT Karlsruhe, Germany			•
KIT Karlsruhe, Germany			
			ITER torus windows with CVD diamond disks for high power heating
applications (170 GHz, 1-2 MW) are being investigated by different low- and			
high power measurement setups in the frequency range of 90 to 170 GHz.			

	16:00	- 17:45 Near Field Devices 1	Aula Minor
	_	Chair: J.L. Coutaz	
Tu-B3.1	59;	Terahertz near-field imaging using a Y splitter and waves on bare metal rods	Sommerfeld wire
		<u>J.P. Guillet¹</u> ; L. Chusseau ¹ ; R. Adam ¹ ; T. Laurent ¹ ; T. D. Charraut ²	Grosjean ² ; A. Penarier ² ;
		¹ Institut d'Électronique du Sud, France; ² FEMTO-ST,	
		We describe a near-field experiment using a Y splitter Sommerfeld wire modes coupled and decoupled with a	differential phase plates.
		Owing to a taper up to \sim 50 µm of one of the Y ends, a resolution of \sim 90 µm is demonstrated in agreement wi	
Tu-B3.2	5:4	Resonance frequency shifts of rectangular holes on	finite dielectric
		substrates <u>H.R. Park¹</u> ; S.M. Koo ¹ ; O.K. Suwal ² ; Y.M. Park ¹ ; J.S. S.S. Choi ² ; N.K. Park ¹ ; D.S. Kim ¹ ; K.J. Ahn ¹	Kyoung ¹ ; M.A. Seo ¹ ;
		¹ Seoul National University, Korea, Republic of; ² Sun I Republic of	Moon University, Korea,
		We observe that rectangular holes fabricated in a gold	film with a sub-
		skindepth thickness show blue-shifted resonance frequ	
		increases. Moreover, for rectangular holes on a finite s and the hole width are crucial factors determining the	
T D A A		Frequency Selective Surfaces (FSS) and Metal Mes	· ·
Tu-B3.3	5:6	Applications	
		Carole Tucker; P.A.R. Ade	
		Cardiff University, United Kingdom	·
		FSSs have been used for over 30 years to make filters submm region, which can have low-, high- and band-p	
		present the current state of the art with respect to these	
		components in the form of spectral data for fully realize	
Tu-B3.4	5:7	Metal-mesh broadband anti-reflection coatings in	the THz frequencies.
		Jin Zhang ¹ ; P.A.R. Ade ¹ ; P.D.M. Mauskopf ¹ ; G. Savin	u ²
		¹ Cardiff University, United Kingdom; ² University Col	lege London, United
		Kingdom We have recently designed, built and measured an alte	rnative to the use of
		classical dielectric material in anti-reflection coatings.	
		has been designed to cover a frequency band greater th	-
		measurements and illustrate the extension for bi-refrin	-
Tu-B3.5	5:9	Study of Optically Controlled Active Frequency Sel	lective Surfaces with
		Organic Semiconductor	ai. T. Varauria
		H. Su; X. Liu; D. Li; <u>X. Chen</u> ; R.S. Donnan; C.G. Pari Queen Mary, University of London, United Kingdom	ini; 1. Kerouzis
		Active Freugency Selective Surfaces having tunable on	r reconfigurable
		frequency response received more and more attention.	
		means of active FSS is reported. By printing the unit e	
		organic semiconductor, the optically controlled frequer achieved.	ncy response is

Design of Terahertz Tunable Filter Using Subwavelength Metallic Slit Tu-B3.6 5:; Arrays Sanaz Zarei University of Michigan, United States A high quality tunable filter at terahertz frequencies has been designed using subwavelength metallic slit arrays. The bandpass center frequency is tunable over the range of 0.592THz to 0.994THz. Tunning is achieved by relative vertical movement of the subwavelength metallic slit layers. 16:00 - 17:45 Laser Driven Sources 2 Room 2

Chair: J. Alton

Tu-C3.1

Wide frequency range high resolution THz spectroscopy with using 5;3 continuous-wave GaP THz Signal Generator and its application to defect detection

<u>Tetsuo Sasaki¹</u>; J.-.i. Nishizawa¹; T. Tanabe²

¹Sophia University, Japan; ²Tohoku University, Japan We developed automatic scanning GaP continuous wave THz Signal Generator and Spectrometer. The features of the spectrometer are higher resolution, higher measurement speed, smaller size, easier operation, etc. compared with the spectrometer using pulse-type THz Signal Generator as a light source.

Tu-C3.3	5;6	THz Emission from a Femtosecond Laser Focus in a Bicolor Scheme in the Ionization-free Regime
		A.P. Shkurinov; A.V. Andreev; A.V. Borodin; M.N. Esaulkov; M.M.
		Nazarov; S.Y. Stremoukhov
		Department of Physics, M.V.Lomonosov Moscow State University, Russian
		Federation
		The interaction between high intensity ultrashort laser pulses and the atomic gas in the ionization-free regime leads to the emission of coherent, short pulse radiation at terahertz frequency. In this work we discuss a model for this effect and its experimental realization.
Tu-C3.4	5.0	Terahertz generation in locally plasma-activated silicon nanophotonic
10-05.4	5; 8	waveguides
		M. Nagel ¹ ; M. Wächter ¹ ; <u>C. Matheisen¹</u> ; M. Waldow ¹ ; T. Wahlbrink ² ; J.
		Bolten ² ; H. Kurz ²
		¹ RWTH Aachen University, Germany; ² AMO GmbH, Germany We present a novel approach for efficient terahertz signal generation at silicon nanophotonic waveguides via electro-optic difference frequency generation

Tu-C3.5	5; :	using telecom wavelengths excitation pulses. Second-ord silicon is achieved by plasma-activated surface modifica Generation of THz Radiation in a Laser Spark <u>Evgeny Suvorov</u> Institute of Applied Physicsa of Russian Academy of Sci Federation A brief review of experimental and theoretical activity in generation of THz radiation in a laser spark produced by pulses has been presented.	tion. iences, Russian 1 IAP RAS on the
	16:00 -	17:45 Detectors 3 Chair: A. Hadni	Room 3
Tu-D3.1	622	Terahertz Detection and Emission by Field Effect Tra of transistor geometry and high magnetic fields <u>W. Knap</u> ¹ ; D. Coquillat ¹ ; F. Teppe ² ; N. Dyakonova ² ¹ GES, UMR5650, Universite Montpellier II, France; ² GE Université Montpellier II, France We review the most important results concerning the phy of FETs as Terahertz detectors and emitters [1, 2]. Partic results on THz detection and emission as a function of th external quantizing magnetic fields.	ES, UMR5650, ysics and applications sularly we stress recent

Tu-D3.3625An integrated 520-600 GHz sub-harmonic mixer and tripler combination
based on GaAs MMIC membrane planar Schottky diodes
<u>A. Maestrini¹; B. Thomas²; C. Lee²; R. Lin²; S. Sin²; I. Mehdi²

¹Observatoire de Paris, LERMA, France; ²NASA - Jet Propulsion Laboratory,

United States

We present the design, development and test of an integrated 560 GHz sub-

harmonic mixer and a 280 GHz frequency tripler based on GaAs MMIC planar

Schottky diodes in a single cavity. The mixer/tripler block has been fabricated

using conventional metal and silicon micromachining. Tests are presented.</u>

Tu-D3.4	627	AlGaN/GaN Heterostructure Transistors for the Ger Detection of THz Radiation	eration and
		<u>Ennio Giovine</u> ¹ ; A. Di Gaspare ² ; M. Ortolani ² ; F. Evang Cetronio ³ ; C. Lanzieri ³ ; M. Peroni ³ ; A. Doria ⁴ ; E. Giove I. Spassovsky ⁶ ; D. Dominijanni ⁷	elisti ² ; F. Foglietti ² ; A. nale ⁴ ; G.P. Gallerano ⁵ ;
		 ¹CNR- Istituto di Fotonica e Nanotecnologie, Italy; ²CN: ²CNR- Istituto di Fotonica e Nanotecnologie, Italy; ³SELEX Sistemi Integra Centro Ricerche Frascati, Italy; ⁵ENEA, Italy; ⁶ENEA- C ⁵Frascati, Rome, Italy; ⁷CNR- Istituto di Fotonica e Nano Italy 	ti, Italy; ⁴ ENEA - Centro Ricerche
		AlGaN/GaN heterostructure is an excellent candidate fo amplifiers, which can serve as integrated power source f multipliers. We discuss the operation of AlGaN/GaN tra detectors, which provides information on the electron sy frequencies.	or THz frequency nsistors as THz
Tu-D3.5	629	Room Temperature Terahertz Detection in High-Ele Transistor Structure using InAlAs/InGaAs/InP Mate	
		<u>A. El Moutaouakil</u> ¹ ; T. Suemitsu ¹ ; T. Otsuji ¹ ; D. Coquill ¹ Research Institute of Electrical Communication, Tohok ² Groupe d'Etude des Semiconducteurs (GES), Montpell	lat ² ; W. Knap ² u University, Japan;
		France We report on non-resonant terahertz detection using the mechanism of the two-dimensional plasmons in InAlAs/ electron-mobility transistors at 300K, demonstrating exc performances of ~125 V/W and ~10-11 W/Hz0.5 for 0.3	/InGaAs/InP high- cellent sensitivity/noise
Tu-D3.6	62;	A Wide-Band Wavelength-Tunable Terahertz Detect Transistor	tor Using a Graphene
		<u>Yukio Kawano;</u> K. Ishibashi RIKEN, Advanced Device Laboratory, Japan	
		We report on a novel type of wavelength-tunable teraher based on a graphene transistor. We have demonstrated the a magnetic field has the ability to detect THz waves in a 33THz. Further enhancement of the detection performant	hat the graphene under wide range of 1.6-
	16:00 -	17:45 Gyrotrons 3 Chair: A. Phelps	Room 7
Tu-E3.1	632	140 GHz, 1 MW CW Gyrotron Development for the Stellarator W7-X	ECH System of the
		Gerd Gantenbein ¹ ; V. Erckmann ² ; S. Illy ¹ ; S. Kern ¹ ; W. W. Leonhardt ¹ ; C. Lievin ⁴ ; A. Samartsev ¹ ; A. Schlaich ¹ ; Thumm ¹ ¹ Karlsruhe Institute of Technology (KIT), Association E Germany; ² Max-Planck-Institut fuer Plasmaphysik, Teil Association EURATOM, Germany; ³ Universitaet Stuttg Plasmaforschung, Germany; ⁴ Thales Electron Devices, F A 10 MW, 140 GHz ECRH system is currently under co stellarator W7-X. The RF power will be provided by 10	M. Schmid ¹ ; M. CURATOM-KIT, institut Greifswald, art, Institut fuer France onstruction for the

		European collaboration has been established to develop a gyrotrons each with an output power of 1 MW for continu	
		operation.	
Tu-E3.2	635	Amplification of Picosecond Pulses in a 140 GHz Gyr	•o-TWT
		Emilio Nanni; H.J. Kim; M.A. Shapiro; R.J. Temkin; P. V	
		Massachusetts Institute of Technology, United States	
		We report amplification of pulses as short as 400 ps in a 1	kW. 140 GHz gyro-
		TWT. The pulses are broadened by group velocity dispers	
		narrowing due to finite gain bandwidth. To our knowledg	
		observation of picosecond pulse amplification in a vacuu	
Tu-E3.3	638	Collector loading during high frequency power mod	
		Harald Braune ¹ ; V. Erckmann ¹ ; S. Illy ² ; H.P. Laqua ¹ ; G. I	Michel ¹ ; F. Noke ¹ ; F.
		Purps ¹	_
		¹ Max-Planck-Institut für Plasmaphysik Greifswald, Germ	any; ² Karlsruher
		Institute of Technology (KIT), Germany	
		The high frequency power modulation of cw gyrotrons wa	
		up to 1MW is limited by collector loading. 2 power modu	
		applied and waste power remains which must be dissipate	
		Different sweep technologies have been developed in ord	er to avoid
		overheating	
Tu-E3.4	63:	Numerical Simulation of Low-Frequency Collective Pr	rocesses in
		Gyrotron Electron Beams	
		<u>O. Louksha</u> St. Datarshung State Deluteshnicel University, Dussian Fe	danation
		St. Petersburg State Polytechnical University, Russian Fe We simulate collective processes in the electron space cha	
		the cathode and the magnetic mirror in gyrotrons. The cha	
		parasitic low-frequency oscillations in the trap and their in	
		parameters of the electron beam entering the cavity are st	
		Operational capabilities studies of the 140GHz/1MW/	
Tu-E3.5	642	gyrotron operated at 126GHz/TE26,7 in view of the up	-
10 2010	0.2	EC-system	
		Stefano Alberti; J.P. Hogge; I. Pagonakis; T.M. Tran; M.	Q. Tran
		CRPP/EPFL, Switzerland	
		A detailed study of the operational capabilities of the W7	-X gyrotron operated
		at 126GHz/TE26,7 is presented. This study is associated	with the foreseen
		upgrade of TCV in which it is planned to add to the prese	nt EC system 3MW
		of additional rf power bringing the total EC-power to 7.51	MW.
	16:00	- 17:45 Ultra Fast Measurements	Room 11
		Chair: D. Mittleman	
Tu-F3.1	644	Longitudinal Fields in Focused Radially Polarized Te	erahertz Beams
		Stephan Winnerl; R. Hubrich; F. Peter; H. Schneider; M.	Helm
		FZ Dresden-Rossendorf, Germany	
		We study the spatial and temporal structure of focused TH	
		polarization. Strong longitudinal field components localiz	
		propagation are observed. The phase of the longitudinal f	-
		shifted by $\pi/2$ with respect to the transverse field compon-	ents.

Tu-F3.2	646	Measurement of higher-order exciton resonances in GaAs quantum wells
10-F3.2	040	via shift-current-THz-spectroscopy at room temperature
		Shekhar Priyadarshi ¹ ; K. Pierz ¹ ; U. Siegner ¹ ; P. Dawson ² ; M. Bieler ¹
		¹ Physikalisch-Technische Bundesanstalt, Germany; ² School of Physics and
		Astronomy, University of Manchester, United Kingdom
		We generate ultrafast photocurrents in GaAs quantum wells and measure the
		simultaneously emitted THz radiation. This THz spectroscopy allows for the
		detection of higher-order exciton resonances at room temperature. This
		method can be more sensitive than conventional photoluminescence
		experiments.
		Intraexciton terahertz nonlinear optics in semiconductor quantum wells:
Tu-F3.3	648	
		sideband generation and AC Stark splitting
		<u>Manfred Helm</u> ¹ ; M. Wagner ¹ ; H. Schneider ¹ ; D. Stehr ¹ ; S. Winnerl ¹ ; A.M. Andrews ² ; S. Schartner ² ; G. Strasser ²
		¹ Forschungszentrum Dresden-Rossendorf, Germany; ² TU Wien, Austria
		We investigate nonlinear optics related to the intra-excitonic 1s-2p heavy-hole
		transition in GaAs/AlGaAs quantum wells. Tuning intense terahertz (THz)
		light around this resonance we report (i) efficient second order sideband
		generation and (ii) first clear evidence of the Autler-Townes effect.
T T2 4	<i>C</i> 1	Pulsed cyclotron resonance measurements with a rapid-scanning, fiber-
Tu-F3.4	64:	coupled THz TDS system
		<u>D. Molter¹</u> ; S. Georges ² ; M. Goiran ² ; F. Keilmann ³ ; R. Beigang ¹ ; J. Leotin ⁴
		¹ Fraunhofer Institute for Physical Measurement Techniques IPM, Germany;
		² Laboratoire National des Champs MAgnetiques Intenses, France; ³ Max Plank
		Institute of Quantum Optics, Germany; ⁴ Laboratoire National des Champs
		Magnetiques Intenses, France
		We present time-resolved cyclotron resonance spectra of holes in p-
		germanium measured during a single magnetic field pulse by using a rapid-
		scanning, fiber-coupled THz time-domain spectroscopy system.
Tu-F3.5	652	Time-Resolved THz-Spectroscopy of InAs Nano-Wires
1415.5	052	S.S. Prabhu
		Tata Institute of Fundamental Research, India
		We study the emission mechanisms of THz radiation from InAs nanowires
		(NWs) using femtosecond infra-red (IR) pump beam and THz probe in a time-
		resolved reflection geometry setup at room temperature. We compare the
		spectra of InAs NWs with that of a p-InAs crystal which is standard THz
		emitter.
Tu-F3.6	653	Equivalent Circuit Analysis of a Planar Helix Slow-Wave Structure for
		Application in High Frequency Traveling-Wave Tubes
		S.K. Datta
		Microwave Tube Research & Development Centre, India
		A planar helix slow-wave structure was analyzed for its equivalent circuit
		parameters. For identical situations with respect to the structure parameters,
		the planar helix shows a greater promise for higher device efficiency over a
		wider frequency range than the circular helix.

	17:45	- 19:15 Tuesday Poster	Chiostro
Tu-P.01	655	Influence of Possible Reflections on the Operation of Cylindrical Cavity Gyrotron for ITER <u>Olgerts Dumbrajs</u> Institute of Solid State Physics, University of Latvia, La Influence of reflections on operation of gyrotrons with r both theoretically and experimentally. By way of examp cylindrical cavity gyrotron operating in the TE32,09 mo GHz is considered.	atvia adial output is studied ble the European ITER
Tu-P.02	657	Status of the EU 170 GHz/2 MW/CW Coaxial Cavity The Dummy Gun Experiment I. Pagonakis ¹ ; S. Alberti ¹ ; S. Illy ² ; S. Kern ² ; C. Liévin ³ ; <u>Hogge¹</u> ; Q.M.T. Tran, Q.M. ¹ ¹ CRPP-EPFL, Switzerland; ² IHM-KIT, Germany; ³ TED A mock-up gun has been manufactured exact replica of prototype EU 170 GHz/2MW/CW coaxial cavity gyrotr	B. Piosczyk ² ; <u>JP.</u> D, France the refurbishment first
Tu-P.04	659	 ring, in order to validate the voltage standoff stability. T results will be presented. Progress of a Multi-Megawatt Gyrotron System for I Heating on the Large Helical Device 	The experimental
		 <u>Takashi Shimozuma</u>¹; S. Kubo¹; Y. Yoshimura¹; H. Igan Kobayashi¹; S. Ito¹; Y. Mizumo¹; K. Okada¹; Y. Takita¹ R. Minami³; T. Kariya³; T. Imai³ ¹National Institute for Fusion Science, Japan; ²Kyushu U ³University of Tsukuba, Japan In LHD, an ECH system for fusion-relevant plasma hea progressed with the development of megawatt gyrotrons MW could be injected into LHD. For stable operation, a profile monitor of the mmw-beams in evacuated transm developed. 	T. Mutoh ¹ ; H. Idei ² ; University, Japan; ting has been greatly Net power of 3.7 a new position and
Tu-P.05	65;	 Multi-frequency Gyrotron for ASDEX Upgrade <u>Vadim Myasnikov</u>¹; V.O. Nichiporenko¹; L.G. Popov¹; M.V. Agapova¹; Y.N. Belov¹; A.P. Gnedenkov¹; V.N. I. Kazansky¹; A.V. Kruglov¹; V.G. Rukavishnikova¹; N.A Soluyanova¹; E.M. Tai¹; S.V. Usachev¹; A.G. Litvak²; <i>A</i> Denisov²; A.N. Kuftin²; V.I. Malygin²; V.E. Zapevalov² Stober³; D.H. Wagner³; F. Leuterer³; F. Monaco³; M.J. I. V.E. Myasnikov⁴ ¹GYCOM, Russian Federation; ²IAP RAS, Russian Fed Germany; ⁴GYCOM Ltd, Russian Federation Abstract — a multi-frequency gyrotron for modernization ECRH system is under development in GYCOM/IAP by The gyrotron must produce 10-s pulses with 1MW outp and over 800-kW power at 3 additional frequencies with 	A. Shamanova ¹ ; E.A. A.V. Chirkov ² ; G.G. ² ; H. Zohm ³ ; J.K. Munich ³ ; H. Schuetz ³ ; eration; ³ IPP, on of ASDEX Upgrade y contract with IPP. ut power at 140GHz

		frequency range.
Tu-P.07	662	Radiation generation at 94 GHz with a pseudospark-sourced electron beam
		H. Yin ¹ ; D. Bowes ¹ ; A.W. Cross ¹ ; W. He ¹ ; K. Ronald ¹ ; <u>A.D.R. Phelps</u> ¹ ; D. Li ² ; J. Zhou ² ; X. Chen ²
		¹ University of Strathclyde, United Kingdom; ² Queen Mary, University of London, United Kingdom
		A small-scale pseudospark discharge is being investigated as the electron beam source for a klystron operating at 94GHz, and single-gap discharge experiments have been carried out. The klystron has been designed using the particle-in-cell (PiC) code MAGIC-2D with promising expected output.
Tu-P.08	664	Numerical Study of Pseudospark Discharge Based Electron Beam and
		Propagation for Terahertz Source Generation <u>Daohui Li¹</u> ; X. Chen ¹ ; H. Yin ² ; D. Bowes ² ; W. He ² ; A.W. Cross ² ; K. Ronald ² ; A.D.R. Phelps ²
		¹ Queen Mary University of London, United Kingdom; ² University of Strathclyde, United Kingdom
		To feed demand of high power and compact THz source, pseudospark discharge driven microklystron has been designed to generate THz radiation. Pseudospark discharge can provide high current density electron beam with
		tiny size. Numberical study has been utilised to investigate the detailed process.
Tu-P.09	666	Photo-electron gun generating sub-pico second bunch
		<u>M.R. Asakawa¹</u> ; S. Sone ¹ ; H. Yamamoto ¹ ; R. Sonomura ¹ ; S. Yamaguchi ¹ ; Y. Tsunawaki ²
		¹ Kansai University, Japan; ² Osaka Sangyo University, Japan
		A 50 kV photo-electron gun was developed to construct a powerful broad-
		band terahertz radiation source. A magnesium cathode was irradiated by a frequency tripled Ti:sapphire laser. Train of electron bunch of 50 pC was
		generated. The bunch produced the optical transition radiation at the beam dumper.
Tu-P.10	668	Status of the THz activities at the MLS
		<u>Ralph Müller</u> ¹ ; A. Hoehl ¹ ; A. Serdyukov ¹ ; G. Ulm ¹ ; J. Feikes ² ; M. Ries ² ; G. Wüstefeld ²
		¹ Physikalisch-Technische Bundesanstalt, Germany; ² Helmholtz-Zentrum Berlin, Germany
		We report the status of the MLS as a source of powerful, stable, and pulsed THz radiation. Additionally we show results from the commissioning of the experimental stations and first measurements in the THz spectral range.
		I I I I I I I I I I I I I I I I I I I

Tu-P.11	66:	Terahertz coherent synchrotron radiation at the synchrotron SOLEIL
		C. Evain; M.E. Couprie; A. Loulergue; L. Nadolski; M.A. Tordeux; J. Barros;
		L. Manceron; J.B. Brubach; G. Creff; P. Roy
		Synchrotron SOLEIL, France
		We present experimental and numerical results on Terahertz coherent
		synchrotron radiation obtained in the beamline AILES at the synchrotron
		SOLEIL. Depending on the storage ring configuration and on the electron
		bunch current we observed either stable or instable signals.
Tu-P.12	66;	Bunch anomalies in SR-IR time domain emission
	,	<u>Gian Luigi Zangari</u>
		LNF-INFN Frascati, Italy
		SHT analysis shows a direct evidence of a delayed component in the SR-IR
		spectra of $e+/e$ - bunches at DA Φ NE and HLS (Hefei). To avoid a relativistic
		paradox, we are forced to discard the "Rigid Bunch Model" and allow higher
		degrees of freedom (internal modes and/or "super-motions")
		Frequency-Dependent Response of Two-Contact Photoconductive
Tu-P.13	673	Antenna
		H. Dong ¹ ; <u>Y.D. Gong¹</u> ; X.L. Tian ¹ ; S.P. Thong ² ; R. Bhuvaneswari ² ; M. Olivo ²
		¹ Institute for Infocomm Research, Singapore; ² National Cancer Centre,
		Singapore
		A two-contact photoconductive antenna has been experimentally found to be
		frequency-dependent and respond to the mixture of both polarization
		components of terahertz radiation. This effect leads to wrong polarization state
		measurement results. It may also result in a fake ;°absorption peak;±.
Tu-P.14	675	Far infrared detection of pulsed lasers with AFM microcantilevers
		<u>Jean-Michel Ortega¹</u> ; F.G. glotin ² ; R.P. Prazeres ¹ ; A.D. Dazzi ³
		¹ CLIO/LCP/CNRS, France; ² Univ. Paris-Sud, France; ³ Univ Paris-Sud, France
		We have used an AFM microcantilever as a far infrared detector. When hit by
		a pulsed laser, the cantilever starts damped oscillations which amplitude can
		be recorded and laser spectra can be recorded at $\lambda > 25 \mu m$ which is the limit
		of 77K HCT detectors.
Tu-P.15	677	Characterization of SIS Array Mixers on Si Substrates at 350 GHz
		S. Andree; M. Justen; M. Schultz; C.E. Honingh; K. Jacobs; J. Stutzki
		Universität zu Köln, Germany
		We present performance measurements of Nb-
		Al2O3-Nb (SIS) mixers on Si-membranes for radio frequencies
		(280-380 GHz) with an IF band from 4 to 12 GHz. We use
		beamlead technology to mount the devices in waveguide
		mixerblocks. These mixers will be used in a 7 pixel focal plane
		array for astronomy.
т., D 1((70	A Modal Approach to the Modeling of Rectangular Detector Horns and
Tu-P.16	679	Cavities at THz Frequencies
		Stephen Doherty; N. Trappe; C. O'Sullivan; J.A. Murphy
		NUI-Maynooth, Ireland
		Far-IR space telescopes use horn antenna coupled bolometers for achieving
		high levels of sensitivity. Unfortunately at THz frequencies large cavity
		coupled horns prove significantly challenging to simulate accurately. This
		paper will outline alternative simulation concepts for such problems.

Tu-P.17	67:	A Thin-Film Spiral Antenna Coupled with Bi Microbolometer Operating
1u-r.1/	07.	at 100 GHz Band
		Son Le; T. Tachiki; T. Uchida; Y. Yasuoka
		National Defense Academy, Japan
		A thin-film 2-arm spiral antenna with Bi microbolometer operating at 100
		GHz band was fabricated. In the video detection, detected voltages, which
		were proportional to the power of signal wave at 100 GHz and a bias current,
		were obtained. DC sensitivity of the microbolometer was about 35 W-1.
Tu-P.18	682	Efficient detection of THz pulses using low-temperature-grown GaAs
1u-P.10	082	photoconductive antennas excited at 1560 nm
		Y. Kadoya ¹ ; <u>K. Kajikawa¹</u> ; T. Kataoka ¹ ; J. Kitagawa ¹ ; Y. Takemura ²
		¹ Hiroshima University, Japan; ² Sumitomo Osaka Cement Co. Ltd., Japan
		Low-temperature-grown GaAs photoconductive antenna was investigated as
		the detector of THz pulses for 1560 nm excitation. A S/N value higher than 50
		dB obtained with a standard measurement condition suggests that the antenna
		can be used as a detector in 1560 nm-based commercial time domain systems.
Tu-P.19	683	A 340 GHz 2SB Schottky Receiver for the STEAMR Limb Sounder
		Peter Sobis ¹ ; J. Stake ² ; A. Emrich ¹
		¹ Omnisys Instruments AB, Sweden; ² Chalmers University of Technology,
		Sweden
		A low VSWR sideband separating receiver topology employing subharmonic
		Schottky diode mixers has been implemented at 340 GHz as an integrated
		module housing mixers, commercial LNA's and waveguide hybrids. Image
		rejection levels of around 20 dB and a receiver SSB noise of 9000 K are
		measured.
Tu-P.20	605	Extremely Broadband Characterization of a Schottky Diode Based THz
1 u- P.20	685	Detector
		Daniel Schoenherr ¹ ; C. Bleasdale ² ; T. Goebel ¹ ; C. Sydlo ¹ ; H.L. Hartnagel ¹ ; R.
		Lewis ² ; P. Meissner ¹
		¹ Technische Universitaet Darmstadt, Germany; ² University of Wollongong,
		Australia
		A Schottky diode based module for direct detection of THz power provides
		fast measurement capabilities at room temperature. This paper presents the
		extremely broadband spectral characterization of a Schottky diode in
		comparison to a Golay cell in the frequency range from 0.1 THz up to 2 THz.
Tu-P.21	687	Microwave heterodyne receiver based on AlGaAs/GaAs 2DEG bolometer
		Kai Wang; R. Ramaswamy; M. Bell; A. Sergeev; G. Strasser; A. Verevkin; V.
		Mitin
		University at Buffalo, SUNY, United States
		A hot-electron bolometric mixer, which uses the nonlinearities of the heated
		2DEG medium in AlGaAs/GaAs heterostructure, is fabricated and
		characterized. It's shown that such hot electron bolometer is promising for THz
		detection, when integrated with a Quantum Cascade Laser as the local
		oscillator.

 Tu-P.22 689 Tu-P.22 689 Kesonance detection of teraneriz radiation in hanometer neut-effect transistors with two-dimensional electron gas <u>Kirill Maremyanin¹</u>; V.I. Gavrilenko¹; S.V. Morozov¹; D.M. Ermolaev²; V.E. Zemlyakov²; S.Y. Shapoval²; N.A. Maleev³; D.V. Fateev⁴; V.V. Popov⁴; F. Teppe⁵; W. Knap⁵ ¹Institute for Physics of Microstructures RAS, Russian Federation; ²Institute of Microelectronic Technology and Ultra-High-Purity Materials RAS, Russian Federation; ³Ioffe Physical-Technical Institute RAS, Russian Federation;
Zemlyakov ² ; S.Y. Shapoval ² ; N.A. Maleev ³ ; D.V. Fateev ⁴ ; V.V. Popov ⁴ ; F. Teppe ⁵ ; W. Knap ⁵ ¹ Institute for Physics of Microstructures RAS, Russian Federation; ² Institute of Microelectronic Technology and Ultra-High-Purity Materials RAS, Russian
Teppe ⁵ ; W. Knap ⁵ ¹ Institute for Physics of Microstructures RAS, Russian Federation; ² Institute of Microelectronic Technology and Ultra-High-Purity Materials RAS, Russian
¹ Institute for Physics of Microstructures RAS, Russian Federation; ² Institute of Microelectronic Technology and Ultra-High-Purity Materials RAS, Russian
Microelectronic Technology and Ultra-High-Purity Materials RAS, Russian
Enderstions ³ Leffe Deviced Technical Institute DAS, Dyssion Enderstions
rederation; fore Physical-rechnical institute RAS, Russian Federation;
⁴ Kotelnikov Institute of Radio Engineering and Electronics RAS, Russian
Federation; ⁵ Groupe d'Etude de Semiconducteurs, CNRS–Universite
Montpellier 2, France
Resonance detection of THz radiation by nanometer FETs GaAs/AlGaAs and
transistor structure GaAs/InGaAs with large area slit-grating gate has been
measured. For these transistors peaks in the resonance photoresponse curve ar
tunable with gate voltages in accordance with the Dyakonov–Shur theory.
Tu-P.23 68; Temperature dependence of dark current mechanisms in long-wavelengt
arsenic doped HgCdTe photovoltaic devices
j. liang; <u>w.d. hu</u> ; z.h. ye; x.s. chen; w. lu
Shanghai Institute of Technical Physics, Chinese Academy Sciences, China
A simultaneous-mode nonlinear resistance Cvoltage curve is applied in the
analysis of dark current mechanisms in long-wavelength arsenic doped
HgCdTe devices at various temperatures. Six characteristic parameters as
function of temperature are extracted from measured current-voltage curves.
Tu-P.24 693 High differential gain single photon avalanche photodiode with improved
structure
W.J. Wang; L. Lin; T.X. Li; N. Li; W.D. Hu; W. Lu; X.S. Chen
National Laboratory for Infrared Physics, Shanghai Institute of Technical
Physics, Chinese Academy o, China
An InGaAs/InP single-photon avalanche photodiode (SPAD) with a high
differential gain was achieved by changing the multiplication region thickness
and the sheet charge density of the charge layer. A gain of more than 100 was
Tu-P.25695obtained. The DCR is less than 1k with the frequency up to 250 kHz.Field Effect Transistors For Fast Terahertz Detection and Imaging
S. Boubanga Tombet
RIEC TOHOKU UNVIVERSITY, Japan
Recent results on THz detection by FETs are reported. THz Imaging with FET
and detection in quantizing magnetic field. Results of THz Imaging show that
FETs arrays are good candidate for real time imaging. In magnetic field we
report an enhancement of signal at the cyclotron resonance condition.

Tu-P.26	697	Detection of high power THz radiation by GaAs High Electron Mobility
Tu-P.20	097	and Si Field Effect Transistors
		<u>C.J. Drexler¹</u> ; N. Dyakonova ² ; M. Schafberger ¹ ; K. Karpierz ³ ; J. Karch ¹ ; H.
		Videlier ² ; Y. Meziani ⁴ ; P. Olbrich ¹ ; W. Knap ⁵ ; S.D. Ganichev ¹
		¹ Terahertz Center, University of Regensburg, Germany; ² GES, UMR5650
		CNRS et Universite Montpellier 2, France; ³ Institute of Experimental Physics,
		University of Warsaw, Poland; ⁴ Departamento de Fisica Aplicada,
		Universidad de Salamanca, Spain; ⁵ GES, UMR5650 CNRS et Universite
		Montpellier 2, Germany
		We report on the observation of photocurrents in GaAs High Electron Mobility
		and Si Field Effect Transistors . We show that illuminating the samples with
		high power terahertz laser radiation causes electric currents. These currents are
		driven by plasmonic effects in two dimensional electron gases.
		Terahertz Detection by InGaAs HEMTs in Quantizing Magnetic Fields:
Tu-P.27	698	relation between magnetoresistance and photovoltaic response
		<u>Oleg klimenko¹</u> ; Y.A. Mityagin ² ; H. Videlier ¹ ; S. Boubanga Tombet ³ ; F.
		Teppe ¹ ; N.V. Dyakonova ¹ ; S.H. Nadar ¹ ; S.A. Savinov ² ; C. Consejo ¹ ; V.N.
		Murzin ² ; W. Knap ¹
		¹ University Montpellier 2, France; ² P.N. Lebedev Physical Institute of RAS,
		Russian Federation; ³ Tohoku University, Japan
		THz detection by plasma wave mechanism in InGaAs HEMTs is studied in
		high/quantizing magnetic fields regime. The correlation between the
		photovoltaic response and magnetoresistance is revealed. It allows to explain the nature of strong oscillations observed in the transistor Terahertz
		-
Tu-P.28	69:	photoresponse.
Tu-P.28	09:	Sub-Terahertz imaging with AlGaN/GaN MISFETs <u>Dominique Coquillat</u> ¹ ; S. Nadar ¹ ; O. Klimenko ¹ ; H. Videlier ¹ ; N. Dyakonova ¹ ;
		F. Teppe ¹ ; W. Knap ¹ ; K. Madjour ² ; G. Ducournau ² ; C. Gaquière ² ; M.A.
		Poisson ³ ; J. Torres ⁴ ; A. Dobroiu ⁵ ; C. Otani ⁵
		¹ Groupe d'Etude des Semiconducteurs UMR5650, France; ² IEMN UMR8520
		Villeneuve d'Ascq, France; ³ Thales Research and Technology, Orsay, France;
		⁴ IES UMR5214 Montpellier, France; ⁵ RIKEN Sendai Miyagi, Japan
		We evaluate the optical performance of AlGaN/GaN MISFETs as a non-
		resonant sub-terahertz, room temperature detector. The photoresponse and the
		noise equivalent power is determined and single-pixel, room temperature
		imaging demonstrated.
Tu-P.29	6:2	Terahertz responsivity enhancement of silicon CMOS transistor-based
		detectors using a current bias
		S. Boppel ¹ ; A. Lisauskas ¹ ; F. Voltolina ² ; P. Haring Bolívar ² ; <u>H.G. Roskos¹</u>
		¹ Physikalisches Institut, Johann Wolfgang Goethe-Universität Frankfurt,
		Germany; ² The Institute of High Frequency and Quantum Electronics,
		University of Siegen, Germany
		We report on a responsivity enhancement of silicon CMOS transistor-based
		detectors for terahertz radiation by the application of a source-to-drain bias
		current.

Tu-P.30	6: 3	Localized THz detection in YBCO sensors patterned by heavy-ion
		lithography F. Laviano ¹ ; R. Gerbaldo ¹ ; <u>G. Ghigo</u> ¹ ; L. Gozzelino ¹ ; B. Minetti ¹ ; A. Rovelli ² ; E. Mezzetti ¹
		¹ Politecnico di Torino and INFN-Sez.Torino, Italy; ² INFN, Laboratori Nazionali del Sud, Catania, Italy
		Measurements of the photoresponse of superconducting YBa2Cu3O7-x film devices to THz radiation are reported. The properties of the film were modulated in a functional way by High-Energy-Heavy-Ion lithography, an effective tool to locally enhance the response of the sensor to the infrared spectrum
Tu-P.31	6: 5	Characterization of Carbon Deposits during Heterogeneous Catalysis using Terahertz Time-Domain Spectroscopy
		<u>Axel Zeitler</u> ¹ ; M.N. de-Silva ¹ ; C.T. McElroy ¹ ; J. McGregor ¹ ; A.P.E. York ² ; L.F. Gladden ¹
		¹ University of Cambridge, United Kingdom; ² Johnson Matthey Technology centre, United Kingdom
		Terahertz spectroscopy was used to quantitatively assess the degree of graphitic order in the hydrocarbonaceous deposits formed during the reaction of n-butane over the catalyst ZSM-5.
T., D 22	6.7	The Photoresponse of HgCdTe Infrared Photodiodes with a Heavily
Tu-P.33	6: 7	Doped n Region
		X.S. Chen ¹ ; J. Wang ² ; W.D. Hu ³ ; W. Lu ³ ; F.Q. Xu ²
		¹ National Laboratory for Infrared Physics, Shanghai Institute of Technical
		Physics, Chinese Academy of, China; ² National Synchrotron Radiation
		Laboratory, University of Science and Technology of China, China; ³ National
		Laboratory for Infrared Physics, Shanghai Institute of Technical Physics,
		Chinese Academy o, China
		By taking into account the contributions: (i) the BM shift considering a non- parabolic conduction band, (ii) the BGN effect, and (iii) the Hg-vacancy-
		induced acceptor trap level, we have calculated the shift of the photoresponse
		between n and p regions of Hg <0.722 >Cd <0.278 >Te infrared photodiode.
Tu-P.34	6:9	Nondestructive detection of delaminations in plastic weld joints
101101	0.7	<u>O. Peters¹</u> ; S. Wietzke ¹ ; C. Jansen ¹ ; M. Scheller ¹ ; M. Koch ²
		¹ Universität Marburg, Universität Braunschweig, Germany; ² Universität
		Marburg, Germany
		Nondestructive evaluation has an increased interest in the plastic industry. One
		of the tasks is the detection of delaminations in plastic weld joints. We present
		a technique to find delaminations employing contact-free, terahertz
		spectroscopy and an algorithm employing a cascaded fourier transform.
Tu-P.35	6:;	Electric and magnetic dipole-dipole interaction of two plane split-ring
		resonators 1. Huang ¹ , y , $Zang2$, y , g , $Chan1$, g , f , L ; ¹ , w , L , u^1
		1.j. Huang ¹ ; y. Zeng ² ; <u>x.s. Chen¹</u> ; z.f. Li ¹ ; w. Lu ¹ ¹ Shanghai Institute of Technical Physics, Chinese Academy of Sciences,
		China; ² Pennsylvania State University, United States
		Extinction cross section of two split-ring resonators is calculated by means of
		Finite-Difference-Time-Domain. The magnetic resonance of dimer shows
		blueshifts and redshifts with decreasing the distance between them. The finds

 Paolo Prosposito¹; L. Brigo²; G. Della Giustina²; A. Perucchi³; S. Lupi⁴; G. Brusatin⁴ ¹Università di Roma Tor Vergata, Italy; ¹Università degli Studi di Padova, Italy; ³Sincrotrone Trieste S.C.p.A. Italy; ⁴Università di Roma La Sapienza, Italy ¹We report on the transmission of hybrid organic-inorganic sol-gel materials in THz region. Their transmission is very good and comparable with the most transparent polymers. An attempt to explain the relationship between material compositional characteristics and their behaviour has been given. Absorption Spectra of High Purity Metallic and Semiconducting Single-Walled Carbon Nanotube Thin Films in a Broad Frequency Region M. Ichida¹; S. Saito²; T. Nakano³; H. Atado³; Y. Feng⁵; Y. Miyata⁴; K. Yanagi⁵; H. Kataura³; S. Ogawa¹ ¹Konan University, Japan; ⁴National Institute for Information and Communications Technology, Japan; ³Advanced Industrial Science and Technology, Japan; ⁴Tokyo Metropolitan University, Japan; ⁴Nagoya University, Japan Absorption band around 100-1000 cm-1 of the metallic sample can correspond to the optical transition between small energy gap in gmetallic h nanotubes. High resolution measurements to determine the permittivity in artificial structures Christian Krebs; A. Hommes; D. Nüßler; R. Brauns Fraunhofer FHR, Germany The knowledge of material properties is a task for quality control applications. Therefore the determination of the permittivity a is essential to get insight in material volume information. The following paper describes a measurement method to determine år. Tu-P.39 6; 8 Theres Terahertz Field-Induced Electroabsorption in Carbon Nanotubes <u>Ryo Shimano</u>; T.O. Ogawa; S.W. Watanabe University of Tokyo, Japan The effect of intense terahertz (THz) pulses on single-walled carbon nanotubes is investigated by THz -pump and optical-probe experiments. A			can be interpreted in terms of electric and magnetic dipole interaction
 Paolo Prosposito¹; L. Brigo²; G. Della Giustina²; A. Perucchi³; S. Lupi⁴; G. Brusatin² ¹Università di Roma Tor Vergata, Italy; ¹Università degli Studi di Padova, Italy; ³Sincrotrone Trieste S.C.p.A, Italy; ⁴Università di Roma La Sapienza, Italy ¹We report on the transmission of hybrid organic-inorganic sol-gel materials in THz region. Their transmission is very good and comparable with the most transparent polymers. An attempt to explain the relationship between material compositional characteristics and their behaviour has been given. Absorption Spectra of High Purity Metallic and Semiconducting Single-Walled Carbon Nanotube Thin Films in a Broad Frequency Region M. Ichida¹; S. Saito²; T. Nakano²; H. Ando²; Y. Feng²; Y. Miyata⁴; K. Yanagi³; H. Kataura³; S. Ogawa¹ ¹Konan University, Japan; 'National Institute for Information and Communications Technology, Japan; ⁴Advanced Industrial Science and Technology, Japan; ⁴Tokyo Metropolitan University, Japan; Astorption spectra of high purity metallic and semiconducting single-walled carbon nanotubes have been measured from THz to UV region. The broad absorption band around 100-1000 cm-1 of the metallic sample can correspond to the optical transition between small energy gap in gmetallic h nanotubes. High resolution measurements to determine the permittivity in artificial structures Christian Krebs; A. Hommes; D. Nüßler; R. Brauns Fraunhofer FHR, Germany The knowledge of material properties is a task for quality control applications. Therefore the determination of the permittivity a ris essential to get insight in material volume information. The following paper describes a measurement method to determine år. Tu-P.39 6; 8 Intense Terahertz Field-Induced Electroabsorption in Carbon Nanotubes Ryo Shimano; T.O. Ogawa; S.W. Watanabe University of Tokyo, Japan Tu-P.41 6; : Vafoconductivity of Pb1-XSnXTe(In) Narrow-Gap Semiconductors with	Tu-P.36	6; 3	Hybrid sol-gel materials with high transmittance in the THz region
 Brusatin² ¹Università di Roma Tor Vergata, Italy; ²Università degli Studi di Padova, Italy; ¹Sincrotrone Trieste S.C.p.A. Italy; ⁴Università di Roma La Sapienza, Italy We report on the transmission of hybrid organic-inorganic sol-gel materials in THz region. Their transmission is very good and comparable with the most transparent polymers. An attempt to explain the relationship between material compositional characteristics and their behaviour has been given. Absorption Spectra of High Purity Metallic and Semiconducting Single- Walled Carbon Nanotube Thin Films in a Broad Frequency Region M. Ichida'; <u>S. Saito</u>²; T. Nakano'; H. Ando'; Y. Feng'; Y. Miyata'; K. Yanagi⁵; H. Kataura'; S. Ogawa¹ ¹Konan University, Japan; ⁴National Institute for Information and Communications Technology, Japan; ³Advanced Industrial Science and Technology, Japan; ⁴Tokyo Metropolitan University, Japan; ⁵Nagoya University, Japan ⁴Nosono band around 100-1000 cm-1 of the metallic sample can correspond to the optical transition between small energy gap in gmetallic h nanotubes. High resolution measurements to determine the permittivity in artificial structures <u>Christian Krebs</u>; A. Hommes; D. Nüßler; R. Brauns Fraunhofer FHR, Germany The knowledge of material properties is a task for quality control applications. Therefore the determination. The following paper describes a measurement method to determine år. Tu-P.39 6; 8 Intense Terahertz Field-Induced Electroabsorption in Carbon Nanotubes is investigated by THz -pump and optical-probe experiments. An ultrafast electroabsorption possessing a THz bandwidth is observed at exciton resonances near the optical communication wavelength and at room temperature. Photoconductivity of Pb1-XSNTe(In) Narrow-Gap Semiconductors with Variable Composition and Microstructure in the Terahertz Range Ludmila Ryaboval'; A. Diobro			
 ¹Università di Roma Tor Vergata, Italy; ²Università degli Studi di Padova, Italy; ³Sincrotrone Trieste S.C.p.A. Italy; ⁴Università di Roma La Sapienza, Italy ¹We report on the transmission is very good and comparable with the most transparent polymers. An attempt to explain the relationship between material compositional characteristics and their behaviour has been given. Absorption Spectra of High Purity Metallic and Semiconducting Single- Walled Carbon Nanotube Thin Films in a Broad Frequency Region M. Ichida¹; <u>S. Saito²</u>; T. Nakano¹; H. Ando¹; Y. Feng²; Y. Miyata¹; K. Yanagi⁵; H. Kataura³; S. Ogawa¹ ¹Konan University, Japan; ⁴National Institute for Information and Communications Technology. Japan; ³Avanced Industrial Science and Technology, Japan; ⁴Tokyo Metropolitan University, Japan; ⁵Nagoya University, Japan Absorption spectra of high purity metallic and semiconducting single-walled carbon nanotubes have been measured from THz to UV region. The broad absorption spectra of high purity metallic and semiconducting single-walled carbon nanotubes have been measured from THz to UV region. The broad absorption band around 100-1000 cm-1 of the metallic sample can correspond to the optical transition between small energy gap in gmetallic h nanotubes. High resolution measurements to determine the permittivity in artificial structures Christian Krebs; A. Hommes; D. Nüßler; R. Brauns Fraunhofer FHR, Germany The knowledge of material properties is a task for quality control applications. Therefore the determination of the permittivity ar is essential to get insight in material volume information. The following paper describes a measurement method to determine år. Tu-P.39 6; 8 Tutense Terahertz Field-Induced Electroabsorption in Carbon Nanotubes <u>Ryo Shimano;</u> T.O. Ogawa; S.W. Watanabe University of Tokyo, Japan The effect of intense terahertz (THz) pulses o			Brusatin ²
 Italy; ³Sincrotrone Trieste S.Č.p.A. Italy; ⁴Università di Roma La Sapienza, Italy We report on the transmission of hybrid organic-inorganic sol-gel materials in THz region. Their transmission is very good and comparable with the most transparent polymers. An attempt to explain the relationship between material compositional characteristics and their behaviour has been given. Absorption Spectra of High Purity Metallic and Semiconducting Single- Walled Carbon Nanotube Thin Films in a Broad Frequency Region M. Ichidal; <u>S. Saito</u>²; T. Nakano¹; H. Ando¹; Y. Feng³; Y. Miyata⁴; K. Yanagi⁵; H. Kataura³; S. Ogawa¹ ¹Konan University, Japan; ⁵National Institute for Information and Communications Technology, Japan; ³Advanced Industrial Science and Technology, Japan; ⁴Tokyo Metropolitan University, Japan; ³Nagoya University, Japan ⁴Tokyo Metropolitan University, Japan; ³Nagoya University, Japan ⁴Tokyo Metropolitan University in artificial structures ⁴High resolution measurements to determine the permittivity in artificial structures ⁴Christian Krebs; A. Hommes; D. Nüßler; R. Brauns Fraunhofer FHR, Germany The knowledge of material properties is a task for quality control applications. Therefore the determine information. The following paper describes a measurement method to determine âr. ⁴Tu-P.39 ⁶Si ¹Intense Terahertz Field-Induced Electroabsorption in Carbon Nanotubes is investigated by THz -pump and optical-probe experiments. An ultrafast electroabsorption possessing a THz bandwidth is observed at exciton resonances near the optical communication wavelength and at room temperature. ¹Potoconductivity of Pb1-XSNXTe(In) Narrow-Gap Semiconductors with Variable Composition and Microstructure in the Terahertz Range Ludmila Ryaboya¹; A. Nicorich³; S. Ganilov⁴; S. Danilov⁴, W. Bel'kov⁴ Noscow State University, Russia			
 Italy We report on the transmission of hybrid organic-inorganic sol-gel materials in THz region. Their transmission is very good and comparable with the most transparent polymers. An attempt to explain the relationship between material compositional characteristics and their behaviour has been given. Absorption Spectra of High Purity Metallic and Semiconducting Single- Walled Carbon Nanotube Thin Films in a Broad Frequency Region M. Ichida¹; S. Saito²; T. Nakano¹; H. Ando¹; Y. Feng³; Y. Miyata⁴; K. Yanagi²; H. Kataura³; S. Ogawa¹ 'Konan University, Japan; 'National Institute for Information and Communications Technology, Japan; 'Advanced Industrial Science and Technology, Japan; 'Tokyo Metropolitan University, Japan; 'Nagoya University, Japan Absorption spectra of high purity metallic and semiconducting single-walled carbon nanotubes have been measured from THz to UV region. The broad absorption band around 100-1000 cm-1 of the metallic sample can correspond to the optical transition between small energy gap in gmetallic h nanotubes. High resolution measurements to determine the permittivity in artificial structures Christian Krebs; A. Hommes; D. Nüßler; R. Brauns Fraunhofer FHR, Germany The knowledge of material properties is a task for quality control applications. Therefore the determination of the permittivity ari is essential to get insight in material volume information. The following paper describes a measurement method to determine år. Tut-P.39 6; 8 Intense Terahertz Field-Induced Electroabsorption in Carbon Nanotubes <u>Ryo Shimano; TO. Ogawa; S.W. Watanabe</u> University of Tokyo, Japan The effect of intense terahertz (THz) pulses on single-walled carbon nanotubes is investigated by THz -pump and optical-probe experiments. An ultrafast electroabsorption possessing a THz bandwidth is observed at exciton resonances near the optical communication wavelength and at			
 We report on the transmission of hybrid organic-inorganic sol-gel materials in THz region. Their transmission is very good and comparable with the most transparent polymers. An attempt to explain the relationship between material compositional characteristics and their behaviour has been given. Tu-P.37 6; 5 Absorption Spectra of High Purity Metallic and Semiconducting Single-Walled Carbon Nanotube Thin Films in a Broad Frequency Region M. Ichida', S. Saito', T. Nakano', H. Ando', Y. Feng³, Y. Miyata', K. Yanagi⁵, H. Kataura³, S. Ogawa¹ ¹⁴Konan University, Japan, ²National Institute for Information and Communications Technology, Japan; ³Advanced Industrial Science and Technology, Japan; ⁴Tokyo Metropolitan University, Japan; ⁵Nagoya University, Japan ⁴Konan University, Japan; ¹⁰Tokyo Metropolitan University, Japan; ⁵Nagoya University, Japan ⁴Konan University, Japan; ¹⁰Tokyo Metropolitan University, Japan; ⁵Nagoya University, Japan ⁴Tokyo Metropolitan University, Japan; ⁵Nagoya University, Japan; ⁴Tokyo Metropolitan University, Japan; ⁵Nagoya University, Japan; ⁴Tokyo Metropolitan University in attificial structures ⁴Tu-P.38 ⁶G ⁶Tu-P.39 ⁶G ⁷Ita-P.39 ⁸A ⁷Ita-Senteriz Field-Induced Electroabsorption in Carbon Nanotubes is investigated by THz -pump and optical-probe experiments. An ultrafast electroabsorption posse			· · · · ·
 Tu-P.37 6; 5 This region. Their transmission is very good and comparable with the most transparent polymers. An attempt to explain the relationship between material compositional characteristics and their behaviour has been given. Absorption Spectra of High Purity Metallic and Semiconducting Single-Walled Carbon Nanotube Thin Films in a Broad Frequency Region M. Ichida¹; S. Saito²; T. Nakano¹; H. Ando¹; Y. Feng³; Y. Miyata⁴; K. Yanagi⁵; H. Kataura³; S. Ogawa¹ ¹Konan University, Japan; ²National Institute for Information and Communications Technology, Japan; ³Advanced Industrial Science and Technology, Japan; ⁴Tokyo Metropolitan University, Japan; ⁵Nagoya University, Japan Absorption spectra of high purity metallic and semiconducting single-walled carbon nanotubes have been measured from THz to UV region. The broad absorption band around 100-1000 cm⁻¹ of the metallic sample can correspond to the optical transition between small energy gap in gmetallic h nanotubes. High resolution measurements to determine the permittivity in artificial structures Christian Krebs; A. Hommes; D. Nüßler; R. Brauns Fraunhofer FHR, Germany The knowledge of material properties is a task for quality control applications. Therefore the determination of the permittivity år is essential to get insight in material volume information. The following paper describes a measurement method to determine år. Tu-P.39 6; 8 Intense Terahertz Field-Induced Electroabsorption in Carbon Nanotubes is investigated by THz -pump and optical-probe experiments. An ultrafast electroabsorption possessing a THz bandwidth is observed at exciton resonances near the optical communication wavelength and at room temperature. Tu-P.41 6; : Photoconductivity of Pb1-XSnXTe(In) Narrow-Gap Semiconductors with Variable Composition and Microstructure in the Terahertz Range Ludmila Ryabova¹; A. Aborvoksky²; V. Chern			•
 Tu-P.37 6; 5 Absorption Spectra of High Purity Metallic and Semiconducting Single-Walled Carbon Nanotube Thin Films in a Broad Frequency Region M. Ichida¹; <u>S. Saito²</u>; T. Nakano¹; H. Ando¹; Y. Feng³; Y. Miyata⁴; K. Yanagi⁵; H. Kataura³; S. Ogawa¹ ¹Konan University, Japan; ³National Institute for Information and Communications Technology, Japan; ³Advanced Industrial Science and Technology, Japan; ⁴Tokyo Metropolitan University, Japan; ³Nagoya University, Japan Absorption spectra of high purity metallic and semiconducting single-walled carbon nanotubes have been measured from THz to UV region. The broad absorption band around 100-1000 cm-1 of the metallic sample can correspond to the optical transition between small energy gap in gmetallic h nanotubes. High resolution measurements to determine the permittivity in artificial structures Christian Krebs; A. Hommes; D. Nüßler; R. Brauns Fraunhofer FHR, Germany The knowledge of material properties is a task for quality control applications. Therefore the determine information. The following paper describes a measurement method to determine år. Tu-P.39 6; 8 Intense Terahertz Field-Induced Electroabsorption in Carbon Nanotubes is investigated by THz -pump and optical-probe experiments. An ultrafast electroabsorption possessing a THz bandwidth is observed at exciton resonances near the optical communication wavelength and at room temperature. Photoconductivity of Pb1-XSnXTe(In) Narrow-Gap Semiconductors with Variable Composition and Microstructure in the Terahertz Range Ladmila Ryaboya²; V. Kasiyan²; A. Nicorici³; S. Ganichev⁴; S. Danilov⁴; V. Bel'kov⁴ 'Noscow State University, Russian Federation; ²Ben-Gurion University, 			
 Tu-P.37 6; 5 Absorption Spectra of High Purity Metallic and Semiconducting Single-Walled Carbon Nanotube Thin Films in a Broad Frequency Region M. Ichida¹; S. Saito²; T. Nakano¹; H. Ando¹; Y. Feng³; Y. Miyata⁴; K. Yanagi³; H. Kataura³; S. Ogawa¹ ¹Konan University, Japan; ¹National Institute for Information and Communications Technology, Japan; ³Advanced Industrial Science and Technology, Japan; ⁴Tokyo Metropolitan University, Japan; ⁵Nagoya University, Japan Absorption spectra of high purity metallic and semiconducting single-walled carbon nanotubes have been measured from THz to UV region. The broad absorption band around 100-1000 cm-1 of the metallic sample can correspond to the optical transition between small energy gap in gmetallic h nanotubes. High resolution measurements to determine the permittivity in artificial structures Christian Krebs; A. Hommes; D. Nüßler; R. Brauns Fraunhofer FHR, Germany The knowledge of material properties is a task for quality control applications. Therefore the determination of the permittivity år is essential to get insight in material volume information. The following paper describes a measurement method to determine år. Tu-P.39 6; 8 Intense Terahertz Field-Induced Electroabsorption in Carbon Nanotubes is investigated by THz -pump and optical-probe experiments. An ultrafast electroabsorption possessing a THz bandwidth is observed at exciton resonances near the optical communication wavelength and at room temperature. Photoconductivity of Pb1-XSNXTe(In) Narrow-Gap Semiconductors with Variable Composition and Microstructure in the Terahertz Range Ludmila Ryabova¹; A. Dobrovolsky¹; V. Chernichkin¹; D. Khokhlo¹; Z. Dashevsky²; V. Kasiyan²; A. Nicorici³; S. Ganichev⁴; S. Danilov⁴, V. Bel'kov⁴ 			
 Tu-P.37 6; 5 Absorption Spectra of High Purity Metallic and Semiconducting Single-Walled Carbon Nanotube Thin Films in a Broad Frequency Region M. Ichida¹; S. Saito²; T. Nakano¹; H. Ando¹; Y. Feng³; Y. Miyata⁴; K. Yanagi⁵; H. Kataura¹; S. Ogawa¹ ¹Konan University, Japan; ²National Institute for Information and Communications Technology, Japan; ³Advanced Industrial Science and Technology, Japan; ⁴Tokyo Metropolitan University, Japan; ⁵Nagoya University, Japan ⁴Konson University, Japan; ⁴Tokyo Metropolitan University, Japan; ⁵Nagoya University, Japan ⁴Konson David Polyo Metropolitan University, Japan; ⁵Nagoya University, Japan ⁴Kosorption spectra of high purity metallic and semiconducting single-walled carbon nanotubes have been measured from THz to UV region. The broad absorption band around 100-1000 cm-1 of the metallic sample can correspond to the optical transition between small energy gap in gmetallic h nanotubes. High resolution measurements to determine the permittivity in artificial structures Christian Krebs; A. Hommes; D. Nüßler; R. Brauns Fraunhofer FHR, Germany The knowledge of material properties is a task for quality control applications. Therefore the determine information. The following paper describes a measurement method to determine år. Tu-P.39 6; 8 Intense Terahertz Field-Induced Electroabsorption in Carbon Nanotubes <u>Rvo Shimano;</u> T.O. Ogawa; S.W. Watanabe University of Tokyo, Japan The effect of intense terahertz (THz) pulses on single-walled carbon nanotubes is investigated by THz -pump and optical-probe experiments. An ultrafast electroabsorption possessing a THz bandwidth is observed at exciton resonances near the optical communication wavelength and at room temperature. Tu-P.41 6; : Photoconductivity of Pb1-XSnXTe(In) Narrow-Gap Semiconductors with Variable Composition and Microstructure in the Terahertz Range Ludmila Ryaboya¹; A.			
 Tu-P.37 6, 3 Walled Carbon Nanotube Thin Films in a Broad Frequency Region M. Ichida¹; <u>S. Saito²</u>; T. Nakano¹; H. Ando¹; Y. Feng³; Y. Miyata⁴; K. Yanagi⁵; H. Kataura³; S. Ogawa¹ ¹Konan University, Japan; ¹National Institute for Information and Communications Technology, Japan; ³Advanced Industrial Science and Technology, Japan; ⁴Tokyo Metropolitan University, Japan; ⁵Nagoya University, Japan ^{Absorption} spectra of high purity metallic and semiconducting single-walled carbon nanotubes have been measured from THz to UV region. The broad absorption band around 100-1000 cm-1 of the metallic sample can correspond to the optical transition between small energy gap in gmetallic h nanotubes. High resolution measurements to determine the permittivity in artificial structures Christian Krebs; A. Hommes; D. Nüßler; R. Brauns Fraunhofer FHR, Germany The knowledge of material properties is a task for quality control applications. Therefore the determination of the permittivity år is essential to get insight in material volume information. The following paper describes a measurement method to determine år. Tu-P.39 6; 8 Intense Terahertz Field-Induced Electroabsorption in Carbon Nanotubes <u>Ryo Shimano</u>; T.O. Ogawa; S.W. Watanabe University of Tokyo, Japan Tu-eft of intense terahertz (THz) pulses on single-walled carbon nanotubes is investigated by THz -pump and optical-probe experiments. An ultrafast electroabsorption possessing a THz bandwidth is observed at exciton resonances near the optical communication wavelength and at room temperature. Photoconductivity of Pb1-XSnXTe(In) Narrow-Gap Semiconductors with Variable Composition and Microstructure in the Terahertz Range Ludmila Ryabova¹; A. Dobrovolsky¹; V. Chernichkin¹; D. Khokhlov¹; Z. Dashevsky²; V. Kasiyan²; A. Nicorici²; S. Ganichev⁴; S. Danilov⁴, V. Bel'kov⁴ ¹Moscow State University, Russian Federation; ²Ben-Gurio			· · · · · · · · · · · · · · · · · · ·
 Walled Carbon Nanotube Thin Films in a Broad Frequency Region M. Ichida'; S. Saito²; T. Nakano¹; H. Ando¹; Y. Feng³; Y. Miyata⁴; K. Yanagi⁵; H. Kataura³; S. Ogawa¹ ¹Konan University, Japan; ⁵National Institute for Information and Communications Technology, Japan; ³Advanced Industrial Science and Technology, Japan; ⁴Tokyo Metropolitan University, Japan; ⁵Nagoya University, Japan Absorption spectra of high purity metallic and semiconducting single-walled carbon nanotubes have been measured from THz to UV region. The broad absorption band around 100-1000 cm⁻¹ of the metallic sample can correspond to the optical transition between small energy gap in gmetallic h nanotubes. High resolution measurements to determine the permittivity in artificial structures Christian Krebs; A. Hommes; D. Nüßler; R. Brauns Fraunhofer FHR, Germany The knowledge of material properties is a task for quality control applications. Therefore the determination of the permittivity år is essential to get insight in material volume information. The following paper describes a measurement method to determine år. Tu-P.39 6; 8 Intense Terahertz Field-Induced Electroabsorption in Carbon Nanotubes Ryo Shimano; T.O. Ogawa; S.W. Watanabe University of Tokyo, Japan The effect of intense terahertz (THz) pulses on single-walled carbon nanotubes is investigated by THz -pump and optical-probe experiments. An ultrafast electroabsorption possessing a THz bandwidth is observed at exciton resonances near the optical communication wavelength and at room temperature. Photoconductivity of Pb1-XSnXTe(In) Narrow-Gap Semiconductors with Variable Composition and Microstructure in the Terahertz Range Ludmila Ryabova¹; N. Kolskilov¹; Z. Dashevsky²; V. Kasiyan²; A. Nicorici²; S. Ganichev⁴; S. Danilov⁴; V. Bel'kov⁴ ¹Moscow State University, Russian Federation; ²Ben-Gurion University, 	Ти-Р 37	6.2	
 Yanagi⁵; H. Kataura³; S. Ogawa¹ ¹Konan University, Japan; ²National Institute for Information and Communications Technology, Japan; ³Advanced Industrial Science and Technology, Japan; ⁴Tokyo Metropolitan University, Japan; ⁵Nagoya University, Japan Absorption spectra of high purity metallic and semiconducting single-walled carbon nanotubes have been measured from THz to UV region. The broad absorption band around 100-1000 cm-1 of the metallic sample can correspond to the optical transition between small energy gap in gmetallic h nanotubes. High resolution measurements to determine the permittivity in artificial structures Christian Krebs; A. Hommes; D. Nüßler; R. Brauns Fraunhofer FHR, Germany The knowledge of material properties is a task for quality control applications. Therefore the determination of the permittivity år is essential to get insight in material volume information. The following paper describes a measurement method to determine år. Tu-P.39 6; 8 Thense Terahertz Field-Induced Electroabsorption in Carbon Nanotubes <u>Ryo Shimano</u>; T.O. Ogawa; S.W. Watanabe University of Tokyo, Japan The effect of intense terahertz (THz) pulses on single-walled carbon nanotubes is investigated by THz -pump and optical-probe experiments. An ultrafast electroabsorption possessing a THz bandwidth is observed at exciton resonances near the optical communication wavelength and at room temperature. Photoconductivity of Pb1-XSnXTe(In) Narrow-Gap Semiconductors with Variable Composition and Microstructure in the Terahertz Range Ludmila Ryaboya¹; A. Dobrovolsky¹; V. Chernichkin¹; D. Khokhlov¹; Z. Dashevsky²; V. Kasiyan²; A. Nicorici²; S. Ganichev⁴; S. Danilov⁴; V. Bel'kov⁴ ¹Moscow State University, Russian Federation; ²Ben-Gurion University, 	141.57	0,5	
 ¹Konan University, Japan; ²National Institute for Information and Communications Technology, Japan; ³Advanced Industrial Science and Technology, Japan; ⁴Tokyo Metropolitan University, Japan; ⁵Nagoya University, Japan Absorption spectra of high purity metallic and semiconducting single-walled carbon nanotubes have been measured from THz to UV region. The broad absorption band around 100-1000 cm-1 of the metallic sample can correspond to the optical transition between small energy gap in gmetallic h nanotubes. High resolution measurements to determine the permittivity in artificial structures Christian Krebs; A. Hommes; D. Nüßler; R. Brauns Fraunhofer FHR, Germany The knowledge of material properties is a task for quality control applications. Therefore the determination of the permittivity år is essential to get insight in material volume information. The following paper describes a measurement method to determine år. Tu-P.39 6; 8 Intense Terahertz Field-Induced Electroabsorption in Carbon Nanotubes Ryo Shimano; T.O. Ogawa; S.W. Watanabe University of Tokyo, Japan The effect of intense terahertz (THz) pulses on single-walled carbon nanotubes is investigated by THz -pump and optical-probe experiments. An ultrafast electroabsorption possessing a THz bandwidth is observed at exciton resonances near the optical communication wavelength and at room temperature. Photoconductivity of Pb1-XSnXTe(In) Narrow-Gap Semiconductors with Variable Composition and Microstructure in the Terahertz Range Ludmila Ryabova¹; A. Nobrovlsky¹; V. Chernichkin¹; D. Khokhlov¹; Z. Dashevsky²; V. Kasiyan²; A. Nicorici²; S. Ganichev⁴; S. Danilov⁴; V. Bel'kov⁴ ¹Moscow State University, Russian Federation; ²Ben-Gurion University, 			M. Ichida ¹ ; <u>S. Saito²</u> ; T. Nakano ¹ ; H. Ando ¹ ; Y. Feng ³ ; Y. Miyata ⁴ ; K.
 Communications Technology, Japan; ³Advanced Industrial Science and Technology, Japan; ⁴Tokyo Metropolitan University, Japan; ⁵Nagoya University, Japan Absorption spectra of high purity metallic and semiconducting single-walled carbon nanotubes have been measured from THz to UV region. The broad absorption band around 100-1000 cm-1 of the metallic sample can correspond to the optical transition between small energy gap in gmetallic h nanotubes. High resolution measurements to determine the permittivity in artificial structures Christian Krebs; A. Hommes; D. Nüßler; R. Brauns Fraunhofer FHR, Germany The knowledge of material properties is a task for quality control applications. Therefore the determination of the permittivity år is essential to get insight in material volume information. The following paper describes a measurement method to determine år. Tu-P.39 6; 8 Intense Terahertz Field-Induced Electroabsorption in Carbon Nanotubes Rvo Shimano; T.O. Ogawa; S.W. Watanabe University of Tokyo, Japan The effect of intense terahertz (THz) pulses on single-walled carbon nanotubes is investigated by THz -pump and optical-probe experiments. An ultrafast electroabsorption possessing a THz bandwidth is observed at exciton resonances near the optical communication wavelength and at room temperature. Tu-P.41 6; : Photoconductivity of Pb1-XSnXTe(In) Narrow-Gap Semiconductors with Variable Composition and Microstructure in the Terahertz Range Ludmila Ryaboya¹; A. Dobrovolsky¹; V. Chernichkin¹; D. Khokhlov¹; Z. Dashevsky²; V. Kasiyan²; A. Nicorici³; S. Ganichev⁴; S. Danilov⁴; V. Bel'Kov⁴ 'Moscow State University, Russian Federation; ²Ben-Gurion University, 			
 Technology, Japan; ⁴Tokyo Metropolitan University, Japan; ⁵Nagoya University, Japan Absorption spectra of high purity metallic and semiconducting single-walled carbon nanotubes have been measured from THz to UV region. The broad absorption band around 100-1000 cm-1 of the metallic sample can correspond to the optical transition between small energy gap in gmetallic h nanotubes. High resolution measurements to determine the permittivity in artificial structures Christian Krebs; A. Hommes; D. Nüßler; R. Brauns Fraunhofer FHR, Germany The knowledge of material properties is a task for quality control applications. Therefore the determination of the permittivity år is essential to get insight in material volume information. The following paper describes a measurement method to determine år. Tu-P.39 6; 8 Intense Terahertz Field-Induced Electroabsorption in Carbon Nanotubes Ryo Shimano; T.O. Ogawa; S.W. Watanabe University of Tokyo, Japan The effect of intense terahertz (THz) pulses on single-walled carbon nanotubes is investigated by THz -pump and optical-probe experiments. An ultrafast electroabsorption possessing a THz bandwidth is observed at exciton resonances near the optical communication wavelength and at room temperature. Tu-P.41 6; : Photoconductivity of Pb1-XSnXTe(In) Narrow-Gap Semiconductors with Variable Composition and Microstructure in the Terahertz Range Ludmila Ryaboya¹; A. Dobrovolsky¹; V. Chernichkin¹; D. Khokhlov¹; Z. Dashevsky²; V. Kasiyan²; A. Nicorici³; S. Ganichev⁴; S. Danilov⁴; V. Bel'kov⁴ 			
 Technology, Japan; ⁴Tokyo Metropolitan University, Japan; ⁵Nagoya University, Japan Absorption spectra of high purity metallic and semiconducting single-walled carbon nanotubes have been measured from THz to UV region. The broad absorption band around 100-1000 cm-1 of the metallic sample can correspond to the optical transition between small energy gap in gmetallic h nanotubes. High resolution measurements to determine the permittivity in artificial structures Christian Krebs; A. Hommes; D. Nüßler; R. Brauns Fraunhofer FHR, Germany The knowledge of material properties is a task for quality control applications. Therefore the determination of the permittivity år is essential to get insight in material volume information. The following paper describes a measurement method to determine år. Tu-P.39 6; 8 Intense Terahertz Field-Induced Electroabsorption in Carbon Nanotubes Ryo Shimano; T.O. Ogawa; S.W. Watanabe University of Tokyo, Japan The effect of intense terahertz (THz) pulses on single-walled carbon nanotubes is investigated by THz -pump and optical-probe experiments. An ultrafast electroabsorption possessing a THz bandwidth is observed at exciton resonances near the optical communication wavelength and at room temperature. Tu-P.41 6; : Photoconductivity of Pb1-XSnXTe(In) Narrow-Gap Semiconductors with Variable Composition and Microstructure in the Terahertz Range Ludmila Ryaboya¹; A. Dobrovolsky¹; V. Chernichkin¹; D. Khokhlov¹; Z. Dashevsky²; V. Kasiyan²; A. Nicorici³; S. Ganichev⁴; S. Danilov⁴; V. Bel'kov⁴ 			Communications Technology, Japan; ³ Advanced Industrial Science and
 University, Japan Absorption spectra of high purity metallic and semiconducting single-walled carbon nanotubes have been measured from THz to UV region. The broad absorption band around 100-1000 cm-1 of the metallic sample can correspond to the optical transition between small energy gap in gmetallic h nanotubes. High resolution measurements to determine the permittivity in artificial structures Christian Krebs; A. Hommes; D. Nüßler; R. Brauns Fraunhofer FHR, Germany The knowledge of material properties is a task for quality control applications. Therefore the determination. The following paper describes a measurement method to determine år. Tu-P.39 6; 8 Intense Terahertz Field-Induced Electroabsorption in Carbon Nanotubes <u>Ryo Shimano;</u> T.O. Ogawa; S.W. Watanabe University of Tokyo, Japan The effect of intense terahertz (THz) pulses on single-walled carbon nanotubes is investigated by THz -pump and optical-probe experiments. An ultrafast electroabsorption possessing a THz bandwidth is observed at exciton resonances near the optical communication wavelength and at room temperature. Photoconductivity of Pb1-XSnXTe(In) Narrow-Gap Semiconductors with Variable Composition and Microstructure in the Terahertz Range Ludmila Ryaboya¹; A. Dobrovolsky¹; V. Chernichkin¹; D. Khokhlov¹; Z. Dashevsky²; V. Kasiyan²; A. Nicorici³; S. Ganichev⁴; S. Danilov⁴; V. Bel'kov⁴ ¹Moscow State University, Russian Federation; ²Ben-Gurion University, 			
 Tu-P.38 6; 6 Tu-P.38 6; 6 Absorption spectra of high purity metallic and semiconducting single-walled carbon nanotubes have been measured from THz to UV region. The broad absorption band around 100-1000 cm-1 of the metallic sample can correspond to the optical transition between small energy gap in gmetallic h nanotubes. High resolution measurements to determine the permittivity in artificial structures Christian Krebs; A. Hommes; D. Nüßler; R. Brauns Fraunhofer FHR, Germany The knowledge of material properties is a task for quality control applications. Therefore the determination of the permittivity år is essential to get insight in material volume information. The following paper describes a measurement method to determine år. Tu-P.39 6; 8 Intense Terahertz Field-Induced Electroabsorption in Carbon Nanotubes Ryo Shimano; T.O. Ogawa; S.W. Watanabe University of Tokyo, Japan The effect of intense terahertz (THz) pulses on single-walled carbon nanotubes is investigated by THz -pump and optical-probe experiments. An ultrafast electroabsorption possessing a THz bandwidth is observed at exciton resonances near the optical communication wavelength and at room temperature. Tu-P.41 6; : Photoconductivity of Pb1-XSnXTe(In) Narrow-Gap Semiconductors with Variable Composition and Microstructure in the Terahertz Range Ludmila Ryabova¹; A. Dobrovolsky¹; V. Chernichkin¹; D. Khokhlov¹; Z. Dashevsky²; V. Kasiyan²; A. Nicorici³; S. Ganichev⁴; S. Danilov⁴; V. Bel'kov⁴ ¹Moscow State University, Russian Federation; ²Ben-Gurion University, ¹Moscow State University, Russian Federation; ²Ben-Gurion University, ²Ben-Gurion University, ²Ben-Gurion University, ²Ben-Gurion University, ²Ben-Gurion University, ²Ben-Gurion University, ²Ben-G			
 Tu-P.38 6; 6 Tu-P.39 6; 8 Tu-P.39 7 Tu-P.39 7 Tu-P.39 7 Tu-P.39 7 Tu-P.39 8 Tu-P.30 8 Tu-P.30 8 Tu-P.30 8 Tu-P.30 8 Tu-P.30 8 Tu-P.30 9 Tu-P.30 10 Tu-P.30 10 Tu-P.30 10 Tu-P.30 10 Tu-P.30 Tu-P.30 Tu-P.30 10 Tu-P.30 Tu-P.41 Tu-P.41<td></td><td></td><td></td>			
 Tu-P.38 6; 6 absorption band around 100-1000 cm-1 of the metallic sample can correspond to the optical transition between small energy gap in gmetallic h nanotubes. High resolution measurements to determine the permittivity in artificial structures Christian Krebs; A. Hommes; D. Nüßler; R. Brauns Fraunhofer FHR, Germany The knowledge of material properties is a task for quality control applications. Therefore the determination of the permittivity år is essential to get insight in material volume information. The following paper describes a measurement method to determine år. Tu-P.39 6; 8 Intense Terahertz Field-Induced Electroabsorption in Carbon Nanotubes Ryo Shimano; T.O. Ogawa; S.W. Watanabe University of Tokyo, Japan The effect of intense terahertz (THz) pulses on single-walled carbon nanotubes is investigated by THz -pump and optical-probe experiments. An ultrafast electroabsorption possessing a THz bandwidth is observed at exciton resonances near the optical communication wavelength and at room temperature. Photoconductivity of Pb1-XSnXTe(In) Narrow-Gap Semiconductors with Variable Composition and Microstructure in the Terahertz Range Ludmila Ryabova¹; A. Dobrovolsky¹; V. Chernichkin¹; D. Khokhlov¹; Z. Dashevsky²; V. Kasiyan²; A. Nicorici³; S. Ganichev⁴; S. Danilov⁴; V. Bel'kov⁴ ¹Moscow State University, Russian Federation; ²Ben-Gurion University, 			
 Tu-P.38 6; 6 to the optical transition between small energy gap in gmetallic h nanotubes. High resolution measurements to determine the permittivity in artificial structures Christian Krebs; A. Hommes; D. Nüßler; R. Brauns Fraunhofer FHR, Germany The knowledge of material properties is a task for quality control applications. Therefore the determination of the permittivity år is essential to get insight in material volume information. The following paper describes a measurement method to determine år. Tu-P.39 6; 8 Intense Terahertz Field-Induced Electroabsorption in Carbon Nanotubes Ryo Shimano; T.O. Ogawa; S.W. Watanabe University of Tokyo, Japan The effect of intense terahertz (THz) pulses on single-walled carbon nanotubes is investigated by THz -pump and optical-probe experiments. An ultrafast electroabsorption possessing a THz bandwidth is observed at exciton resonances near the optical communication wavelength and at room temperature. Photoconductivity of Pb1-XSnXTe(In) Narrow-Gap Semiconductors with Variable Composition and Microstructure in the Terahertz Range Ludmila Ryabova¹; A. Dobrovolsky¹; V. Chernichkin¹; D. Khokhlov¹; Z. Dashevsky²; V. Kasiyan²; A. Nicorici³; S. Ganichev⁴; S. Danilov⁴; V. Bel'kov⁴ ¹Moscow State University, Russian Federation; ²Ben-Gurion University, 			•
 Tu-P.38 6; 6 High resolution measurements to determine the permittivity in artificial structures Christian Krebs; A. Hommes; D. Nüßler; R. Brauns Fraunhofer FHR, Germany The knowledge of material properties is a task for quality control applications. Therefore the determination of the permittivity år is essential to get insight in material volume information. The following paper describes a measurement method to determine år. Tu-P.39 6; 8 Intense Terahertz Field-Induced Electroabsorption in Carbon Nanotubes Ryo Shimano; T.O. Ogawa; S.W. Watanabe University of Tokyo, Japan The effect of intense terahertz (THz) pulses on single-walled carbon nanotubes is investigated by THz -pump and optical-probe experiments. An ultrafast electroabsorption possessing a THz bandwidth is observed at exciton resonances near the optical communication wavelength and at room temperature. Tu-P.41 6; : Photoconductivity of Pb1-XSnXTe(In) Narrow-Gap Semiconductors with Variable Composition and Microstructure in the Terahertz Range Ludmila Ryabova¹; A. Dobrovolsky¹; V. Chernichkin¹; D. Khokhlov¹; Z. Dashevsky²; V. Kasiyan²; A. Nicorici³; S. Ganichev⁴; S. Danilov⁴; V. Bel'kov⁴ ¹Moscow State University, Russian Federation; ²Ben-Gurion University, 			•
 Tu-P.38 6; 6 structures Christian Krebs; A. Hommes; D. Nüßler; R. Brauns Fraunhofer FHR, Germany The knowledge of material properties is a task for quality control applications. Therefore the determination of the permittivity år is essential to get insight in material volume information. The following paper describes a measurement method to determine år. Tu-P.39 6; 8 Intense Terahertz Field-Induced Electroabsorption in Carbon Nanotubes Ryo Shimano; T.O. Ogawa; S.W. Watanabe University of Tokyo, Japan The effect of intense terahertz (THz) pulses on single-walled carbon nanotubes is investigated by THz -pump and optical-probe experiments. An ultrafast electroabsorption possessing a THz bandwidth is observed at exciton resonances near the optical communication wavelength and at room temperature. Tu-P.41 6; : Photoconductivity of Pb1-XSnXTe(In) Narrow-Gap Semiconductors with Variable Composition and Microstructure in the Terahertz Range Ludmila Ryabova¹; A. Dobrovolsky¹; V. Chernichkin¹; D. Khokhlov¹; Z. Dashevsky²; V. Kasiyan²; A. Nicorici³; S. Ganichev⁴; S. Danilov⁴; V. Bel'kov⁴ ¹Moscow State University, Russian Federation; ²Ben-Gurion University, 			
 Tu-P.41 6;: Christian Krebs; A. Hommes; D. Nüßler; R. Brauns Fraunhofer FHR, Germany The knowledge of material properties is a task for quality control applications. Therefore the determination of the permittivity år is essential to get insight in material volume information. The following paper describes a measurement method to determine år. Tu-P.39 6; 8 Intense Terahertz Field-Induced Electroabsorption in Carbon Nanotubes Ryo Shimano; T.O. Ogawa; S.W. Watanabe University of Tokyo, Japan The effect of intense terahertz (THz) pulses on single-walled carbon nanotubes is investigated by THz -pump and optical-probe experiments. An ultrafast electroabsorption possessing a THz bandwidth is observed at exciton resonances near the optical communication wavelength and at room temperature. Tu-P.41 6; : Photoconductivity of Pb1-XSnXTe(In) Narrow-Gap Semiconductors with Variable Composition and Microstructure in the Terahertz Range Ludmila Ryabova¹; A. Dobrovolsky¹; V. Chernichkin¹; D. Khokhlov¹; Z. Dashevsky²; V. Kasiyan²; A. Nicorici³; S. Ganichev⁴; S. Danilov⁴; V. Bel'kov⁴ 	Tu-P.38	6; 6	· ·
 Tu-P.41 Fraunhofer FHR, Germany The knowledge of material properties is a task for quality control applications. Therefore the determination of the permittivity år is essential to get insight in			
 Tu-P.41 6; : The knowledge of material properties is a task for quality control applications. Therefore the determination of the permittivity år is essential to get insight in material volume information. The following paper describes a measurement method to determine år. Tu-P.39 6; 8 Intense Terahertz Field-Induced Electroabsorption in Carbon Nanotubes Ryo Shimano; T.O. Ogawa; S.W. Watanabe University of Tokyo, Japan The effect of intense terahertz (THz) pulses on single-walled carbon nanotubes is investigated by THz -pump and optical-probe experiments. An ultrafast electroabsorption possessing a THz bandwidth is observed at exciton resonances near the optical communication wavelength and at room temperature. Tu-P.41 6; : Photoconductivity of Pb1-XSnXTe(In) Narrow-Gap Semiconductors with Variable Composition and Microstructure in the Terahertz Range Ludmila Ryabova¹; A. Dobrovolsky¹; V. Chernichkin¹; D. Khokhlov¹; Z. Dashevsky²; V. Kasiyan²; A. Nicorici³; S. Ganichev⁴; S. Danilov⁴; V. Bel'kov⁴ ¹Moscow State University, Russian Federation; ²Ben-Gurion University, 			
 Tu-P.39 6; 8 Therefore the determination of the permittivity år is essential to get insight in material volume information. The following paper describes a measurement method to determine år. Tu-P.39 6; 8 Intense Terahertz Field-Induced Electroabsorption in Carbon Nanotubes Ryo Shimano; T.O. Ogawa; S.W. Watanabe University of Tokyo, Japan The effect of intense terahertz (THz) pulses on single-walled carbon nanotubes is investigated by THz -pump and optical-probe experiments. An ultrafast electroabsorption possessing a THz bandwidth is observed at exciton resonances near the optical communication wavelength and at room temperature. Tu-P.41 6; : Photoconductivity of Pb1-XSnXTe(In) Narrow-Gap Semiconductors with Variable Composition and Microstructure in the Terahertz Range Ludmila Ryabova¹; A. Dobrovolsky¹; V. Chernichkin¹; D. Khokhlov¹; Z. Dashevsky²; V. Kasiyan²; A. Nicorici³; S. Ganichev⁴; S. Danilov⁴; V. Bel'kov⁴ 			•
 Tu-P.39 6; 8 material volume information. The following paper describes a measurement method to determine år. Intense Terahertz Field-Induced Electroabsorption in Carbon Nanotubes <u>Ryo Shimano;</u> T.O. Ogawa; S.W. Watanabe University of Tokyo, Japan The effect of intense terahertz (THz) pulses on single-walled carbon nanotubes is investigated by THz -pump and optical-probe experiments. An ultrafast electroabsorption possessing a THz bandwidth is observed at exciton resonances near the optical communication wavelength and at room temperature. Tu-P.41 6; : Photoconductivity of Pb1-XSnXTe(In) Narrow-Gap Semiconductors with Variable Composition and Microstructure in the Terahertz Range <u>Ludmila Ryabova¹; A. Dobrovolsky¹; V. Chernichkin¹; D. Khokhlov¹; Z. Dashevsky²; V. Kasiyan²; A. Nicorici³; S. Ganichev⁴; S. Danilov⁴; V. Bel'kov⁴</u> 			
 Tu-P.39 6; 8 method to determine år. Tu-P.39 6; 8 Intense Terahertz Field-Induced Electroabsorption in Carbon Nanotubes <u>Ryo Shimano</u>; T.O. Ogawa; S.W. Watanabe University of Tokyo, Japan The effect of intense terahertz (THz) pulses on single-walled carbon nanotubes is investigated by THz -pump and optical-probe experiments. An ultrafast electroabsorption possessing a THz bandwidth is observed at exciton resonances near the optical communication wavelength and at room temperature. Photoconductivity of Pb1-XSnXTe(In) Narrow-Gap Semiconductors with Variable Composition and Microstructure in the Terahertz Range Ludmila Ryabova¹; A. Dobrovolsky¹; V. Chernichkin¹; D. Khokhlov¹; Z. Dashevsky²; V. Kasiyan²; A. Nicorici³; S. Ganichev⁴; S. Danilov⁴; V. Bel'kov⁴ ¹Moscow State University, Russian Federation; ²Ben-Gurion University, 			
 Tu-P.39 6; 8 Intense Terahertz Field-Induced Electroabsorption in Carbon Nanotubes <u>Ryo Shimano</u>; T.O. Ogawa; S.W. Watanabe University of Tokyo, Japan The effect of intense terahertz (THz) pulses on single-walled carbon nanotubes is investigated by THz -pump and optical-probe experiments. An ultrafast electroabsorption possessing a THz bandwidth is observed at exciton resonances near the optical communication wavelength and at room temperature. Tu-P.41 6; : Photoconductivity of Pb1-XSnXTe(In) Narrow-Gap Semiconductors with Variable Composition and Microstructure in the Terahertz Range <u>Ludmila Ryabova</u>¹; A. Dobrovolsky¹; V. Chernichkin¹; D. Khokhlov¹; Z. Dashevsky²; V. Kasiyan²; A. Nicorici³; S. Ganichev⁴; S. Danilov⁴; V. Bel'kov⁴ ¹Moscow State University, Russian Federation; ²Ben-Gurion University, 			
 Tu-P.41 6;: Ryo Shimano; T.O. Ogawa; S.W. Watanabe University of Tokyo, Japan The effect of intense terahertz (THz) pulses on single-walled carbon nanotubes is investigated by THz -pump and optical-probe experiments. An ultrafast electroabsorption possessing a THz bandwidth is observed at exciton resonances near the optical communication wavelength and at room temperature. Photoconductivity of Pb1-XSnXTe(In) Narrow-Gap Semiconductors with Variable Composition and Microstructure in the Terahertz Range Ludmila Ryabova¹; A. Dobrovolsky¹; V. Chernichkin¹; D. Khokhlov¹; Z. Dashevsky²; V. Kasiyan²; A. Nicorici³; S. Ganichev⁴; S. Danilov⁴; V. Bel'kov⁴ ¹Moscow State University, Russian Federation; ²Ben-Gurion University, 	T D 20	6.0	
 Tu-P.41 6;: University of Tokyo, Japan The effect of intense terahertz (THz) pulses on single-walled carbon nanotubes is investigated by THz -pump and optical-probe experiments. An ultrafast electroabsorption possessing a THz bandwidth is observed at exciton resonances near the optical communication wavelength and at room temperature. Photoconductivity of Pb1-XSnXTe(In) Narrow-Gap Semiconductors with Variable Composition and Microstructure in the Terahertz Range Ludmila Ryabova¹; A. Dobrovolsky¹; V. Chernichkin¹; D. Khokhlov¹; Z. Dashevsky²; V. Kasiyan²; A. Nicorici³; S. Ganichev⁴; S. Danilov⁴; V. Bel'kov⁴ ¹Moscow State University, Russian Federation; ²Ben-Gurion University, 	Tu-P.39	6; 8	-
 Tu-P.41 6;: The effect of intense terahertz (THz) pulses on single-walled carbon nanotubes is investigated by THz -pump and optical-probe experiments. An ultrafast electroabsorption possessing a THz bandwidth is observed at exciton resonances near the optical communication wavelength and at room temperature. Photoconductivity of Pb1-XSnXTe(In) Narrow-Gap Semiconductors with Variable Composition and Microstructure in the Terahertz Range Ludmila Ryabova¹; A. Dobrovolsky¹; V. Chernichkin¹; D. Khokhlov¹; Z. Dashevsky²; V. Kasiyan²; A. Nicorici³; S. Ganichev⁴; S. Danilov⁴; V. Bel'kov⁴ ¹Moscow State University, Russian Federation; ²Ben-Gurion University, 			
 ru-P.41 6;: bis investigated by THz -pump and optical-probe experiments. An ultrafast electroabsorption possessing a THz bandwidth is observed at exciton resonances near the optical communication wavelength and at room temperature. Photoconductivity of Pb1-XSnXTe(In) Narrow-Gap Semiconductors with Variable Composition and Microstructure in the Terahertz Range Ludmila Ryabova¹; A. Dobrovolsky¹; V. Chernichkin¹; D. Khokhlov¹; Z. Dashevsky²; V. Kasiyan²; A. Nicorici³; S. Ganichev⁴; S. Danilov⁴; V. Bel'kov⁴ 			
 Tu-P.41 6;: electroabsorption possessing a THz bandwidth is observed at exciton resonances near the optical communication wavelength and at room temperature. Photoconductivity of Pb1-XSnXTe(In) Narrow-Gap Semiconductors with Variable Composition and Microstructure in the Terahertz Range Ludmila Ryabova¹; A. Dobrovolsky¹; V. Chernichkin¹; D. Khokhlov¹; Z. Dashevsky²; V. Kasiyan²; A. Nicorici³; S. Ganichev⁴; S. Danilov⁴; V. Bel'kov⁴ ¹Moscow State University, Russian Federation; ²Ben-Gurion University, 			
 Tu-P.41 6;: resonances near the optical communication wavelength and at room temperature. Photoconductivity of Pb1-XSnXTe(In) Narrow-Gap Semiconductors with Variable Composition and Microstructure in the Terahertz Range Ludmila Ryabova¹; A. Dobrovolsky¹; V. Chernichkin¹; D. Khokhlov¹; Z. Dashevsky²; V. Kasiyan²; A. Nicorici³; S. Ganichev⁴; S. Danilov⁴; V. Bel'kov⁴ ¹Moscow State University, Russian Federation; ²Ben-Gurion University, 			
Tu-P.41 6; : Tu-P.41 6; : Photoconductivity of Pb1-XSnXTe(In) Narrow-Gap Semiconductors with Variable Composition and Microstructure in the Terahertz Range <u>Ludmila Ryabova¹</u> ; A. Dobrovolsky ¹ ; V. Chernichkin ¹ ; D. Khokhlov ¹ ; Z. Dashevsky ² ; V. Kasiyan ² ; A. Nicorici ³ ; S. Ganichev ⁴ ; S. Danilov ⁴ ; V. Bel'kov ⁴ ¹ Moscow State University, Russian Federation; ² Ben-Gurion University,			
Tu-P.41 6; : Photoconductivity of Pb1-XSnXTe(In) Narrow-Gap Semiconductors with Variable Composition and Microstructure in the Terahertz Range Ludmila Ryabova ¹ ; A. Dobrovolsky ¹ ; V. Chernichkin ¹ ; D. Khokhlov ¹ ; Z. Dashevsky ² ; V. Kasiyan ² ; A. Nicorici ³ ; S. Ganichev ⁴ ; S. Danilov ⁴ ; V. Bel'kov ⁴ ¹ Moscow State University, Russian Federation; ² Ben-Gurion University,			resonances near the optical communication wavelength and at room
Variable Composition and Microstructure in the Terahertz Range <u>Ludmila Ryabova¹; A. Dobrovolsky¹; V. Chernichkin¹; D. Khokhlov¹; Z. Dashevsky²; V. Kasiyan²; A. Nicorici³; S. Ganichev⁴; S. Danilov⁴; V. Bel'kov⁴ ¹Moscow State University, Russian Federation; ²Ben-Gurion University,</u>			•
Variable Composition and Microstructure in the Terahertz Range <u>Ludmila Ryabova</u> ¹ ; A. Dobrovolsky ¹ ; V. Chernichkin ¹ ; D. Khokhlov ¹ ; Z. Dashevsky ² ; V. Kasiyan ² ; A. Nicorici ³ ; S. Ganichev ⁴ ; S. Danilov ⁴ ; V. Bel'kov ⁴ ¹ Moscow State University, Russian Federation; ² Ben-Gurion University,	Tu D /1	6	Photoconductivity of Pb1-XSnXTe(In) Narrow-Gap Semiconductors with
Dashevsky ² ; V. Kasiyan ² ; A. Nicorici ³ ; S. Ganichev ⁴ ; S. Danilov ⁴ ; V. Bel'kov ⁴ ¹ Moscow State University, Russian Federation; ² Ben-Gurion University,	1u-r.41	0, .	
¹ Moscow State University, Russian Federation; ² Ben-Gurion University,			Ludmila Ryabova ¹ ; A. Dobrovolsky ¹ ; V. Chernichkin ¹ ; D. Khokhlov ¹ ; Z.
¹ Moscow State University, Russian Federation; ² Ben-Gurion University,			Dashevsky ² ; V. Kasiyan ² ; A. Nicorici ³ ; S. Ganichev ⁴ ; S. Danilov ⁴ ; V. Bel'kov ⁴
			Israel; ³ Institute of Applied Physics, Moldova, Republic of; ⁴ University of
Regensburg, Germany			
Photoconductive response at wavelengths up to 500 μ m has been detected in			
			Pb1-XSnXTe(In) solid solutions. The effect is observed both in the semi-
			Pb1-XSnX le(ln) solid solutions. The effect is observed both in the semi-

722

Tu-P.42

insulating state and at high levels of electron gas degeneracy. The film microstructure affects the photosensitivity strongly

Accurate optical constants of ZnTe measured by THz-TDS with their standard deviations

Saroj Tripathi¹; M. Aoki¹; T. Asahi²; I. Hosako³; N. Hiromoto¹ ¹Shizuoka University, Japan; ²Nippon Mining and Metals Co. Ltd., Japan; ³National Institute of Information and Communication Technology, Japan We measured the accurate optical constants of ZnTe using THz-TDS. Random errors in these constants are investigated by modeling the standard deviation in intensity and phase spectra and using the law of error propagation. Uncertainty in sample thickness is also included to compute resultant errors.

Tu-P.44	724	Layer-by-layer photoluminescence and photoreflectance analysis of impurity distribution in HgCdTe J. Shao ¹ ; <u>X. Lu</u> ¹ ; Y. Wei ² ; J. Yang ² ¹ National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy o, China; ² Research Center for Advanced Materials and Devices, Shanghai Institute of Technical Physics, Chinese, China Layer-by-layer infrared photoluminescence and photoreflectance measurements are performed on an HgCdTe epliayer. The Cd composition and
		impurity states along the growth direction are examined, and the vertical distribution is discussed.
Tu-P.45	725	Temperature Studies of Dielectric Loss in Silicon Carbide <u>Charles Jones;</u> Y. Gao North Carolina Central University, United States Results for the variation of loss tangent with temperature will be reported for crystalline Silicon Carbide and compared with theoretical expectations based
Tu-P.46	726	on a two-phonon difference process. Terahertz induced nonlinear effects in doped Silicon observed by open- aperture Z-scan <u>Gurpreet Kaur;</u> P.Y. Han; X.C. Zhang Rensselaer Polytechnic Institute, United States We demonstrate the field dependent enhancement of transmission of intense Terahertz(THz) pulses in doped Silicon. The strong field-carriers interaction lead to intervalley scattering. The change in mobilities in different valleys leads to 18% enhancement in transmission at peak THz field of 135 kV/cm

Tu-P.47	728	Enhanced Transmission of Terahertz Waves through Subwavelength
1u-P.4/	128	Apertures in Carbon Nanotube Network Films
		Yeong-Hwan Ahn ¹ ; J.T. Hong ¹ ; D.J. Park ¹ ; F. Rotermund ¹ ; S. Lee ¹ ; D.S.
		Kim ² ; Y.H.A. Ahn ¹
		¹ Ajou University, Korea, Republic of; ² Seoul National University, Korea,
		Republic of
		We demonstrate enhanced terahertz wave transmission through carbon
		nanotube films with subwavelength apertures. The peak frequency of the
		transmitted waves matches well with the shape resonance, mainly determined
		by the length of the apertures and the refractive index of surrounding media.
Tu-P.48	729	Polarization dependent terahertz band pass filters with asymmetric cross
1u-P.40	129	shaped hole arrays
		G.S. Park ¹ ; <u>D.H. Choi¹</u> ; H.R. Park ² ; Y.M. Park ²
		¹ Center for THz-Bio Application Systems, Department of Physics and
		Astronomy, Korea, Republic of; ² Department of Physics and Astronomy,
		Seoul National University, Korea, Republic of
		Polarization dependent transmission of terahertz wave through the asymmetric
		cross shaped hole array was measured. Experimental results show good
		agreement with the simulated results. This filter can be used to such
		applications as THz spectroscopy and biological sensing.
Tu-P.49	72;	Dielectric Measurement of Low Loss-Tangent Dielectric near 100 GHz by
	,	a Simplified Hemispherical Open Resonator Technique
		A. Srivastava; O.J. Kwon; A. Bera; I.K. Baik; G.S. Park
		Center for THz-Bio Application Systems, Korea, Republic of
		A high Q-hemispherical open resonator with W-band vector network analyzer
		enables a precise and fast determination of the permittivity and loss tangent of
		low-loss dielectrics near 100GHz. The implemented frequency variation
		method showed standard deviation in dielectric measurements less than 0.06.
T D 50	722	Precise measurements of optical constants of SiC in 40 to 120 m
Tu-P.50	732	wavelength region
		kazuya nakayama ¹ ; A.M. Matsubara ¹ ; S.O. Okajima ¹ ; K.K. Kawahata ² ; K.T.
		Tanaka ² ; T.A. Akiyama ² ; H.K. Kinoshita ³ ; M.Y. Yoshimoto ³ ; T.T. Takahashi ⁴
		¹ chubu university, Japan; ² NIFS, Japan; ³ Kyoto Institute of Technology, Japan;
		⁴ Mutsumi Corporation, Japan
		Optical constants of SiC have been measured by using FIR lasers of 48, 57,
		71, and 119 μ m. The refractive index and absorption coefficient have been
		determined from the transmittance of a rotating SiC etalon. For the application
		of SiC to optical elements, it was compared with other materials.
Tu-P.51	734	Measurement of the complex refractive index of liquids in the terahertz
		range using ellipsometry
		<u>Adrian Dobroiu;</u> C. Otani
		RIKEN, Japan
		We used ellipsometry to determine the complex index of refraction of liquids
		in the terahertz range. The method works by allowing a polarized terahertz
		wave to reflect on the interface between high-resistivity silicon and the liquid
		sample, and analyzing the polarization state of the reflected wave.

Tu-P.52	735	Submillimeter wave sintering of pure alumina ceramics
		<u>S. Mitsudo¹</u> ; K. Watanabe ¹ ; K. Sako ¹ ; S. Tani ¹ ; N. Nakagawa ¹ ; T. Idehara ¹ ; T.
		Saito ¹ ; S. Sano ²
		¹ Research Center for Far-Infrared Region, University of Fukui, Japan; ²
		National Institute of Advanced Industrial Science and Technology, Japan
		The sub-millimeter (300 GHz) wave sintering of the alumina ceramics had
		been performed. The sub-millimeter wave sintering curve shows the sintering
		slower at the same temperature, for sub-millimeter wave processing as
		compared to millimeter wave processing.
		THz generation in lithium niobate crystal with tapered end placed within
Tu-P.53	737	a hollow waveguide
		<u>Anahit Nikoghosyan</u> ¹ ; H.P. Roeser ²
		¹ Yerevan State University, Armenia; ² Institute of Space Systems, University
		Stuttgart, Germany;
		The results of the THz pulse generation by ps and fs laser pulses in LiNbO3
		crystal are presented. Detection of THz pulse are performed at room
		temperature both by Schottky diode and ZnTe crystal. The quantum efficiency
		of energy conversion up to 28% of maximum value is obtained with Schottk
		Laser Driven Terahertz Dielectric Wedge Antenna Placed in Free Space
Tu-P.54	739	or in Hollow Metallic Waveguide
		A.S. Nikoghosyan
		Yerevan State University, Armenia
		Results on effective generation of THz radiation in band 0.1-2.5 THz via
		optical rectification of femtosecond laser pulses in LiNbO3 plate tapered at the
		end are presented.
T D 55	72.	Sub-Terahertz Transceiver Module Integrating Uni-Traveling-Carrier
Tu-P.55	73;	Photodiode, Schottky Barrier Diode, and Planar Circulator Circuit
		<u>Hiroshi Ito¹</u> ; K. Yoshino ² ; Y. Muramoto ² ; H. Yamamoto ¹ ; T. Ishibashi ³
		¹ Kitasato University, Japan; ² NTT Photonics Laboratories, Japan; ³ NTT
		Electronics, Japan
		A sub-terahertz transceiver module integrating a uni-traveling-carrier
		photodiode, a Schottky barrier diode, and a planar circulator circuit is
		developed. A resonant behavior with an isolation of about 14 dB is realized by
		the circulator circuit, demonstrating a transceiver function at 270 GHz.
T., D 56	742	Terahertz radiation from air plasma, generated by linearly polarized
Tu-P.56	743	femtosecond pulses with short focal length lens
		Daniil Fadeev; V.A. Mironov
		Institute of Applied Physics Russian Academy of Sciences, Russian Federation
		New theoretical approach for terahertz radiation from air plasma generated by
		linearly polarized laser pulses focused by short focal length lens is presented.
		The theory describes new experimental effect of non-symmetric radiation
		pattern determined by laser pulse polarization.

Tu-P.57	745	Specific features of terahertz radiation from air plasma generated by both
1u-1.37	745	the first and the second optical harmonics
		Mironov Vyacheslav ¹ ; D.A. Fadeev ²
		¹ Institute of Applied Physics Russian Academy of Sciences, Russian
		Federation; ² Instute of Applied Physics Russian Academy of Sciences,
		Russian Federation
		The theory describing specific features of the source of terahertz waves
		generated due to the breakdown of air by both the first and the second
		harmonics of laser pulse is introduced. The approach considers inside physics
		of low frequency current formation during the ionization.
		Fine Tuning Terahertz Generation in Fanned-out Periodically Poled
Tu-P.58	747	Stoichiometric Lithium Tantalate Crystal
		<u>Nan Ei Yu¹</u> ; K.S. Lee ¹ ; DK. Ko ¹ ; S. Takekawa ² ; K. Kitamura ²
		¹ Gwangju Institute of Science and Technology, Korea, Republic of; ² National
		Institute for Materials Science, Japan
		Continuous tunable terahertz pulses were generated with a continuous grating-
		period change from 65 to 90 ¥im in periodically poled stoichiometric lithium
		tantalate crystal. Center frequency was tuned from 0.9 to 1.3 THz with as
		narrow as band-width of 21 GHz at crystal temperature of 130 K.
Tu-P.59	748	Thickness dependence of intense terahertz emission from InAs thin films
101107	,	<u>Y. Ishibashi¹</u> ; S. Sasa ¹ ; T. Maemoto ¹ ; M. Inoue ¹ ; K. Takeya ² ; M. Tonouchi ²
		¹ Osaka Institute of Technology, Japan; ² Osaka University, Japan
		Intense terahertz emission was observed from InAs thin films grown on a
		GaAs substrate. The emission intensity increased as the film thickness
		increased up to 1 μ m and became stronger than that from a p-type InAs
		substrate. The possible mechanism including the thickness dependence is
		presented.
		Emission of terahertz radiation from dipole photoconductive antennas
Tu-P.60	74:	with several geometrical parameters
		<u>Fumiaki Miyamaru¹</u> ; K.Y. Yamamoto ² ; T.F. Furuya ² ; S.N. Nishizawa ³ ; M.T.
		Tani ²
		¹ Shinshu University, Japan; ² Fukui University, Japan; ³ Advanced Infrared
		Spectroscopy Co., Ltd., Japan
		The dependence of the emission spectrum of terahertz (THz) radiation on the
		geometrical parameters of the dipole antenna, and the relationship between
		these parameters and the temporal characteristics of the transient input field is
		reported.
		Frequency Stabilization of Photo-Mixing Generated Signal Using a Single
Tu-P.61	752	Michelson Interferometer
		T. Laurent; S. Ginestar; S. Blin; L. Chusseau; C. Palermo; J. Torres; P.
		Nouvel; L. Varani
		Institut d'Electronique du Sud, Université de Montpellier 2, France
		We investigate the possibility to use a single interferometer, instead of two, to
		stabilize the frequency of a THz radiation generated by optical beating
		between two continuous- wave lasers.

Tu-P.62	754	Tunable Terahertz Radiation Generated by using a Spatially Dispersed
1 u-r .02	734	Femtosecond Optical Pulse
		<u>K. Maki</u> ; C. Otani
		Advanced Science Institute, RIKEN, Japan
		The generation of terahertz (THz) radiation is demonstrated by using the
		spatial dispersion of an femtosecond optical pulse. The overlap of two
		dispersed beams with a spatial shift allows us to generate a monochromatic
		radiation on the basis of photo mixing, and additionally to tune its frequency.
т D (2		Stabilization of Terahertz Wave Generation by Using Chaotic oscillation
Tu-P.63	756	in a Laser
		<u>Fumiyoshi Kuwashima¹; S. Taniguchi²; K. Nonaka²; M. Hangyou³; H.</u>
		Iwasawa ⁴
		¹ Fukui University of Technology, Japan; ² Kagoshima National College of
		Technology, Japan; ³ Osaka University, Japan; ⁴ Professor Emeritsu, Fukui
		University, Japan
		Stabilization of a THz Wave using a chaotic oscillation in a multimode
		semiconductor laser with an optical delayed feedback by the external mirror is
		investigated. Stabilization and the wide spectrum of THz waves are so
		obtained by using a chaotic laser compared with that of using a CW laser.
Tu-P.64	758	Dual wavelength cw microlaser for the generation of THz radiation.
		<u>J.F. Roux</u> ¹ ; F. Pallas ² ; E. Herault ¹ ; G. Grosa ² ; J.L. Coutaz ¹ ; A. Kevorkian ³ ; F.
		Thibault ³ ; G. Vitrant ²
		¹ IMEP-LAHC, Universite de Savoie, France; ² IMEP-LAHC, INP Grenoble,
		France; ³ TEEM PHOTONICS, France
		Dual wavelength compact microlaser operation is demonstrated in the cw
		regime using a c-cut Nd doped GdVO4 crystal. More than 200mW is obtained
		at these two wavelengths which are separated by 2.2nm leading to potential
		generation of 0.6THz radiation with this compact low-cost optical source.

Tu-P.66	759	Efficient Optical Excitation of THz Plasmons on a Structured Metal
1u-r.00	139	Surface
		M.I. Bakunov ¹ ; M.V. Tsarev ¹ ; S.B. Bodrov ²
		¹ University of Nizhny Novgorod, Russian Federation; ² Institute of Applied
		Physics RAS, Russian Federation
		We propose to launch terahertz surface plasmons on corrugated metal surfaces
		by ultrashort laser pulses. The plasmons are emitted by nonlinear polarization
		created by the pulse in a strip of electro-optic medium deposited on the
		surface. The technique can be used for terahertz surface spectroscopy.

Tu-P.67	75;	CW THz generation by In0.53Ga0.47As photomixer with TEM-Horn
1u-r.07	75,	antenna driven at 1.55 m wavelengths
		E. Peytavit ¹ ; F. Meng ² ; D. Gacemi ² ; J.F. Lampin ¹ ; T. Akalin ¹ ; <u>J. Mangeney²</u>
		¹ IEMN, France; ² UMR 8622/ Univ Paris Sud, France
		We report cw generation delivered by ion-irradiated In0.53Ga0.47As
		photomixers coupled to TEM-horn antenna driven at ~1.55 μ m wavelength.
		Output powers up to $0.1 \mu\text{W}$ at 700 GHz have been achieved. The output
		power in a regime of Ohmic transport or recombination-limited transport is
		analyzed.
		Transmission Lines Power Measurements for the 110 GHz Electron
Tu-P.68	763	Cyclotron Heating System on DIII-D and Gyrotron Operational
10-1.00	105	Performance
		M.C. Cengher; J. Lohr; D. Ponce; Y. Gorelov; C.P. Moeller
		General Atomics, United States
		Operational trends for the DIII-D 6 gyrotron ECH system are presented.
		Transmission line losses were measured & values near theoretical ones were
		attained for one line. Improved alignment and reduction of the number of miter
Tu-P.69	765	bends will increase the power transmitted through the waveguide to DIII-D.
Tu-P.09	703	Designs of New Components for ITER ECH & CD Transmission Lines
		Robert Olstad; J.L. Doane; C.P. Moeller; C.J. Murphy
		General Atomics, United States
		The 2 MW cw ITER ECH&CD transmission line components will require
		enhanced cooling and some new or modified designs. Transmission line
		components between the closure plate and the tritium barrier window have
		special design considerations to assure tritium retention. Design aspects will be
T D 7 0		presented.
Tu-P.70	767	Status of the ITER Electron Cyclotron H&CD System
		<u>Caroline Darbos</u> ¹ ; F. Albajar ² ; S. Alberti ³ ; T. Bonicelli ² ; A. Bruschi ⁴ ; R.
		Chavan ³ ; S. Cirant ⁴ ; M. deBaar ⁵ ; D. Farina ⁴ ; T.P. Goodman ³ ; J.P. Hogge ³ ; W.
		Kasparek ⁶ ; J.D. Landis ³ ; A. Moro ⁴ ; I. Paganakis ³ ; P. Platania ⁴ ; B.P. Blaum ⁶ ; E.
		Poli ⁶ ; G. Ramponi ⁴ ; D. Ronden ⁵ ; G. Saibene ² ; F. Sanchez ³ ; C. Sozzi ⁴ ; D.
		Strauss ⁷ ; O. Sauter ³ ; H. Zohm ⁶ ; U. Baruah ⁸ ; S.L. Rao ⁸ ; M. Kushwah ⁸ ; T.
		Scherer ⁷ ; S. Kern ⁷ ; N.P. Singh ⁸ ; K. Kajiwara ⁹ ; N. Kobayashi ⁹ ; Y. Oda ⁹ ; K.
		Sakamoto ⁹ ; K. Takahashi ⁹ ; G.D. Denisov ¹⁰ ; T. Bigelow ¹¹ ; J. Caughman ¹¹ ; D.
		Rasmussen ¹¹ ; M. Shapiro ¹² ; R. Temkin ¹² ; B. Becket ¹³ ; D. Cox ¹³ ; F. Gandini ¹³ ;
		T. Gassmann ¹³ ; M.A. Henderson ¹³ ; O. Jean ¹³ ; C. Nazare ¹³ ; T. Omori ¹³ ; D.
		Purohit ¹³
		¹ ITER Organization, France; ² F4E, Spain; ³ CRPP, Switzerland; ⁴ IFP, Italy;
		⁵ FOM, Netherlands; ⁶ IPP, Germany; ⁷ KIT, Germany; ⁸ IPR, India; ⁹ JAEA,
		Japan; ¹⁰ IAP, Russian Federation; ¹¹ ORNL, United States; ¹² MIT, United
		States; ¹³ IO, France
		The paper presents the status of the 20 MW ECH&CD system developed for
		ITER. Progress includes agreement on the first procurement arrangement,
		advancing the design of all components to conceptual or preliminary design
		stage, optimization of gyrotrons performances and finalization of launcher
		design.

Tu-P.72	769	Quasi-Optical HE11-mode exciter for coupling into oversized Circular Corrugated Waveguide
		<u>M. Sakaguchi¹; H. Idei²; T. Saito³; T. Shigematsu³</u>
		¹ Interdisciplinary Graduate School of Engineering Sciences, Kyushu
		University, Japan; ² Research Institute for Applied Mechanics, Kyushu University, Japan; ³ FURUKAWA C&B CO., LTD, Japan
		• •
		QO HE11-mode exciter has been designed for a mode coupling into the CC waveguides. It contains a feed antenna system and QO mirror system. The
		main mode and the unwanted modes generated from the feed antenna are led
		to two quasi-optical mirrors. The mirror system can remove the unwanted
		HE12 mode.
Tu-P.73	76;	Time Resolved THz-Spectroscopy of As-Implanted GaAs
		Shriganesh Prabhu
		Tata Institute of Fundamental Research, India
		We study the carrier lifetime in As implanted semi-insulating GaAs (SI-GaAs)
		using various dosages of the As-ion. Using infra-red (IR) pump and THz as a
		probe, we study the time resolved transmission curves at room temperature
		and calculate the lifetimes of the carriers in the SI-GaAs:As.
Tu-P.74	772	Femto-chemometrics: The signal processing of fast pulse transients.
		J. Bowen
		University of Reading, United Kingdom
		Traditional chemometrics techniques are augmented with algorithms tailored
		specifically for the de-noising and analysis of femtosecond duration pulse
		datasets. The new algorithms provide additional insights on sample responses
		to broadband excitation and multi-moded propagation phenomena.
Tu-P.75	774	First Observation of a THz Photon Echo
		S.A. Lynch ¹ ; P.T. Greenland ¹ ; G. Aeppli ¹ ; N.Q. Vinh ² ; B. Redlich ³ ; A.F.G.
		van der Meer ³ ; C.R. Pidgeon ⁴ ; B.N. Murdin ⁵
		¹ London Centre for Nanotechnology, University College London, United
		Kingdom; ² University of California, Santa Barbara, United States; ³ FOM
		Institute for Plasma Physics, Netherlands; ⁴ Heriot-Watt University, United
		Kingdom; ⁵ Advanced Technology Institute, University of Surrey, United
		Kingdom
		We demonstrate THz photon echoes from silicon doped with phosphorus
		donors. We provide experimental evidence showing that the echo emerges at
		the predicted angle and that it arrives at our detector at the predicted time. We
		use this to demonstrate coherent control of the silicon donor states.

Tu-P.76	776	Analysis of optical THz-signals from mode-locked semiconductor laser by
1u-1.70	110	using a semiconductor optical amplifier-based detection
		Pascal Landais; R. Maldonado-Basilio; S. Latkowski
		school of Electronic Engineering, Ireland
		An all-optical approach based on nonlinear inter-actions inside a
		semiconductor optical amplifier for measuring the THz beat-tone of a
		passively mode-locked laser is proposed. This novel approach can be applied
		to beat-tone in the range from GHz to few THz.
Tu-P.77	778	Nonlinear generation and detection of THz pulses in ZnTe with chirped
1u-P.//	110	femtosecond laser pulses
		D.N. Erschens ¹ ; D. Turchinovich ¹ ; <u>P.U. Jepsen²</u>
		¹ Technical University of Denmark, Denmark; ² Technical UNiversity of
		Denmark, Denmark
		We show measurements and simulations of difference-frequency generation of
		THz pulses and subsequent free-space electro-optic sampling with prechirped
		femtosecond pulses in ZnTe. Negative prechirping enhances the efficiency due
		to compression of the laser pulse in the dispersive nonlinear crystal.
Tu-P.79	779	Electronically Controlled Optical Sampling Terahertz Time-Domain
1u-1./9	117	Spectroscopy
		<u>Y. Kim;</u> D.S. Yee
		Korea Research Institute of Standards and Science, Korea, Republic of
		We present the first demonstration of high-speed terahertz time-domain
		spectroscopy using the electronically controlled optical sampling method.
		Employing two synchronized femtosecond Ti:sapphire lasers with a 100 MHz
		repetition frequency, the time delay is repetitively scanned via phase
		modulation.

Tu-P.81	77;	Design and Performance of ALMA Band 5 Receiver Cartridge
		V. Belitsky; I. Lapkin; B. Billade; A. Pavolotsky; E. Sundin; O. Nyström; D.
		Meledin; V. Desmaris; M. Strandberg; H. Rashid; G. Johnsen; D. Dochev; M.
		Fredrixon
		Chalmers University of Technology, Sweden
		Atacama Large Millimetre Array, Band 5 receiver cartridge covers 163 – 211
		GHz. We present the design and performance of the ALMA Band 5 receiver.
		The interest to Band 5 is driven by the 183 GHz water line and the C+ 158μ
		line from objects at redshifts between 8.0 - 10.6 to appear in the band.
Tu-P.82	783	Detection of Biochar Components for Soil Fertility using THz-TDS
		Elise Pogson ¹ ; J. Horvat ¹ ; R.A. Lewis ¹ ; S.D. Joseph ²
		¹ University of Wollongong, Australia; ² University of NSW, Australia
		Different forms of biochar can have greatly different properties as fertilizers,
		yet there is no effective screening method to distinguish them. Terahertz Time-

		Domain Spectroscopy has been used to distinguish various biochars, including Sawdust char, BMC5 with lime char and Saligna char.
Tu-P.83	785	Terahertz spectroscopy of polyaromatic hydrocarbons
		George Swift; N. Kaliteevskaya; K.L. Johnson; J.M. Chamberlain; A.J.
		Gallant
		University of Durham, United Kingdom
		In this work we are beginning to determine the terahertz dielectric properties of various polyaromatic hydrocarbons. Terahertz spectroscopy of such organic compounds has seen rather less work undertaken in recent years than that carried out in some other areas.

Tu-P.85	787	Application of THz spectroscopy to pesticide detection	
		T.S. Suzuki; Y.O. Ogawa; N.K. Kondo	
		Kyoto university, Japan	
		Application possibility of THz spectroscopy to pesticide inspection in	
		agricultural products was studied. Several pesticides showed specific	
		absorption in THz region, and a high correlation was obtained between the concentration and the second derivative value of spectra.	
		*	

Tu-P.87	789	 Measurement Accuracy of S-parameters in W band at Cryogenic Temperature Mario Zannoni; A. Baù; M. Gervasi; A. Passerini; S. Spinelli; A. Tartari; G. Sironi Univerity of Milano Bicocca, Italy Room temperature VNA calibration to measure cryogenic devices can be inadequate when the loss of the unavoidable thermal decoupling line is order of magnitude higher than the DUT one. We present a cryogenic calibration set-
		of magnitude higher than the DUT one. We present a cryogenic calibration set- up with an accuracy at the level of some tens of milli-dB for S21 parameter.

Tu-P.88	78;	Realization of refractive polarizing Fourier Transform Spectrometer for
1 u-r .00	78,	Cosmic Microwave Background polarization observation
		Yuan Luo ¹ ; M. Hattori ¹ ; N. Ebizuka ² ; T. Matsumura ³ ; I.S. Ohta ⁴
		¹ Tohoku University, Japan; ² Nagoya University, Japan; ³ California Institute of
		Technology, United States; ⁴ Kinki University, Japan
		We proposed an application of the refractive polarizing Fourier Transform
		Spectrometer (r-FTS) to millimeter submillimeter wave multiband
		polarimetry. In this paper, the results of optical experiments in millimeter
		wavebands, aiming to verify the performance, will be reported.
Tu-P.89	793	In-orbit performace and calibration of SMILES
		Satoshi Ochiai ¹ ; K. Kikuchi ² ; T. Nishibori ² ; T. Manabe ³ ; H. Ozeki ⁴ ; R. Sato ² ;
		T. Sano ² ; Y. Irimajiri ¹ ; M. Shiotani ⁵
		¹ National Institute of Information and Communications Technology (NICT),
		Japan; ² Japan Aerospace Exploration Agency (JAXA), Japan; ³ Osaka
		Prefecture University, Japan; ⁴ Toho University, Japan; ⁵ Kyoto University,
		Japan
		Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) is a
		sensor for atmospheric bservation at 640 GHz from the International Space
		Station. Since the launch in Sep. 2009, SMILES has been showing the excellent observation performance. The results of SMILES development are summarized.
		Summunzou.

Tu-P.91	795	 Development of Germanium BIB detector with surface activated bonding and Molecular-Beam Epitaxial crystal growth <u>Takehiko Wada</u>¹; H. Kaneda²; R. Kano²; K. Wada¹; T. Suzuki¹; K. Watanabe³; Y. Kiriyama² ¹Japan Aerospace Exploration Agency, Japan; ²Nagoya University, Japan; ³The university of Tokyo, Japan We are developing Germanium BIB detector for future mid- and far-infrared
Tu-P.92	797	 astronomical missions. In order to obtain clear interface between blocking and IR active layers, we have tested two new method, Surface Activated Bonding (SAB) and Molecular Beam Epitaxial (MBE) crystal growth. Bunch-to-bunch Coherence of Coherent Synchrotron Radiation from the Electron Storage Ring BESSY II
		<u>Ulrich Schade</u> ¹ ; J.S. Lee ² ; M. Ortolani ³ ; B. Marchetti ⁴ ; T. Neitzke ⁵ ¹ Germany; ² University of Tokyo, Japan; ³ CNR, Istituto di Fotonica e Nanotecnologie, Italy; ⁴ INFN - Roma "Tor Vergata", Italy; ⁵ Helmholtz Zentrum Berlin, Germany CSR is powerful spectroscopic source in the THz range at storage rings. Instabilities in the electron distribution causes fluctuations in the emitted THz

radiation which can be studied by measuring the the bunch-to-bunch coherence.

Wednesday, September 08, 2010

	09:00 -	10:30Wednesday Plenary Chair: T. Parker\P. Siegel	Aula Magna
PL.07	798	Whiskers, Hyperhemispheres, and a Honey	ymoon
		<u>David Rutledge</u> California Institute of Technology, United Stat	A 5
PL.08	799	Terahertz Quantum Optics with Solid-st	
1 L.00		Alfred Leitenstorfer	are Systems
		University of Konstanz, Germany	
		Recent studies on ultrafast dynamics of solids a	and nanostructures using few-
		cycle electromagnetic transients in the far and	e
		presented. We are able to excite with phase-loc	
		amplitudes beyond 1 V/Å which are comparable	
	11:00 -	12:30 Metamaterials 1	Aula Magna
		Chair: F. Keilmann	C
We-A1.1	79:	Wedge-type negative index metamaterial a <u>E. Lheurette¹</u> ; F. Garet ² ; S. Wang ¹ ; K. Blary ¹ ; J	
		¹ IEMN - Université de Lille 1, France; ² IMEP-	
		Negative refraction through a metamaterial is of	
		characterization is based on refraction angle de	
		like structure. The measurements are performed	U 1
		TDS system while a numerical assessment is ca	
		Multilayer Terahertz Metamaterials: Intera	-
We-A1.2	7:3	the Deep-Subwavelength Limit	
		M.T. Reiten; <u>A.K. Azad</u> ; A.J. Taylor; J.F. O'Hara; D. Roy Chowdhury	
		Los Alamos National Laboratory, United State	• •
		Layers of split-ring-resonators (SRR) are typic	ally spaced > $\lambda res/30$ in
		metamaterials. The fundamental resonance disa	appears for closely spaced
		layers ($\sim\lambda$ res/1000) behaving as a closed ring r	esonator for oppositely oriented
		SRRs and has minimum effect on SRRs oriente	
We-A1.3	7:5	Terahertz Resonant Artificial Interface L	
		Daniel Dietze; J. Darmo; M. Martl; K. Unterra	iner
		Vienna University of Technology, Austria	
		Planar metamaterials, so-called metasurfaces, c	
		modified transfer matrix formalism, that takes	-
		conductive interfaces. This method is applied f	
W. A.1.4	7.6	transmission of THz pulses through different m	-
We-A1.4	7:6	Negatively refracting plasmonic devices at George Swift: N. Keliteevekeve: D. Dei: M.A.	-
		<u>George Swift;</u> N. Kaliteevskaya; D. Dai; M.A.	Kanteevski, A.J. Daragwanath,
		A.J. Gallant; J.M. Chamberlain University of Durham, United Kingdom	
		In this paper, we present experimental results s	howing how appropriately
			nowing now appropriately
		designed and constructed artificial materials ca	n he used to refract negatively

We-A1.5	7:8	negative permeability and a negative permittivity. Composite Left- Right Handed Metamaterials at Terahertz Frequencies S. Wang ¹ ; F. Garet ² ; K. Blary ¹ ; <u>E. Lheurette¹</u> ; J.L. Coutaz ² ; D. Lippens ¹ ¹ IEMN, France; ² IMEP-LAHC, France High-transmissivity left/right-handed metamaterials were fabricated and experimentally assessed at sub-millimeter wave lengths. From the frequency dependence of the scattering parameters, we show the possibility to close the gap between the left- and right-handed dispersion branches.
	11:00 -	• 12:30 Near Field Devices 2 Aula Minor Chair: G. Ghione
We-B1.1	7::	Precise analysis of Wood-Rayleigh anomalies in the terahertz transmission spectrum of a metallic hole array J.L. Coutaz IMEP-LAHC, France We derive a general expression for calculating the parameters of excitation of Wood and Rayleigh anomalies observed in the transmission spectrum of a hole array with square cells. An experimental validation of the model, using THz time domain spectroscopy, is performed.
We-B1.2	7;3	 Electromagnetic diffraction radiation of sub-wavelength holes array excited by a point charge Min Hu; Y.X. Zhang; S.G. Liu University of Electronic Science and Technology of China University, China The mechanism of this novel 3D diffraction radiation phenomenon is revealed. A rigorous theoretical solution is obtained for the problem of electromagnetic diffraction radiation of sub-wavelength holes array (SHA) excited by a point charge moving parallel to the one surface of SHA.
We-B1.3	7;5	Highly Efficient Aperture Array Terahertz Band-Pass FiltersD.S. Bulgarevich; M. Watanabe; M. ShiwaNational Institute for Materials Science, JapanMicrofabricated narrow band-pass filters were developed for terahertz spectralregion. Their unique features were over 100% extraordinary opticaltransmittance, preservation of the incident light polarization, and independenceof the transmittance strength on filterfs rotation angle.
We-B1.4	7;7	 Fabrication of Resonant THz Mesh Filters Employing the Ultrashort- Pulse UV Laser Radiation <u>I. Kašalynas;</u> G. Valušis; B. Voisiat; G. Račiukaitis; L. Minkevičius; V. Tamošiūnas; A. Bičiūnas; A. Krotkus Centre for Physical Sciences and Technology, Lithuania Resonant mesh filters for THz region were fabricated using ultrashort UV laser radiation. The arrays of cross-shape holes were processed in the stainless steel foil and molybdenum film on polyimide. The spectral performance of the filters was investigated experimentally and numerically.

We-B1.5	7;9	Terahertz wire-grid polarizer by nanoimprinting lithog resistivity silicon substrate L. Zhang ¹ ; J.H. Teng ² ; H. Tanoto ² ; S.Y. Yew ² ; L.Y. Deng ³ ¹ Singapore-MIT Alliance, National University of Singapor ² Institute of Materials Research and Engineering, A*STAR ³ National University of Singapore, Singapore Terahertz wire-grid polarizer with 500nm grating period of silicon (100) is fabricated using nanoimprinting lithograph Preliminary results show a good polarization characteristic 5 THz. The method is high throughput and low cost.	; S.J. Chua ¹ re, Singapore; R, Singapore; n high resistivity y (NIL).
	11:00 -	12:30 Remote Sensing Chair: M. Ortolani	Room 2
We-C1.1	7;;	THz Air Photonics for Standoff Detection J. Liu; B. Clough; J. Dai; <u>X.C. Zhang</u> Rensselaer Polytechnic Institute, United States By "seeing" the fluorescence or "hearing" the sound emitte coherent detection of broadband THz waves by laser-induc standoff distance is feasible. We will report these recent de wave sensing with air-plasma photonics.	ced plasma at
We-C1.2	824	 Validation of the AVTIS volcano imager radiometry – a infrared and millimetre wave thermal imagery <u>David Macfarlane¹</u>; D.A. Robertson¹; M.R. James² ¹University of St Andrews, United Kingdom; ²Lancaster U Kingdom The AVTIS remote sensing instrument is a custom built m sensor that has been developed as a practical field tool for volcanic terrain at active lava domes. We present validatio radiometry of a volcanic scene by comparison with coincid imagery. 	niversity, United illimetre wave remote sensing of n of the MMW
We-C1.3	827	Active Video-Rate Camera with up to 32 Detector-Pix <u>Wolff von Spiegel</u> ¹ ; R. Henneberger ² ; A.K. Huhn ³ ; P. Hari Roskos ¹ ¹ PI, Universität Frankfurt, Germany; ² RP GmbH, 53340 M Germany; ³ Universität Siegen, 57076 Siegen, Germany We present an fully electronic 812GHz camera with an acc 10fps (one per revolution of the scanning mirror). It's based subharmonic-mixing detector-arrays. The rotational-scannid designed to cover a focusing range from 2-6 m. The typica mm.	ng Bolivar ³ ; H.G. leckenheim, quisition-rate of d on 8-pixel ing telescope is
We-C1.4	828	 Video-rate THz Imaging Using a Microbolometer-base <u>M. Bolduc</u>; L. Marchese; B. Tremblay; M. Doucet; H. Oul C. Alain; H. Jerominek; A. Bergeron; M. Terroux INO, Canada A THz 160 x 120 pixel array camera has been developed a transmission and reflectance imaging at video rates of 30 ft performed with a low-power 3 THz QCL. Various hidden of the second secon	achgar; L. Le Noc; t INO. Real-time rame/s were

imaged, proving feasibility of real-time THz imaging in security screening applications.

	11:00 -	12:30 Millimetre Wave Systems Chair: Y. Oda	Room 3
We-D1.1	82:	Development of Alternative Concepts of Fast Switches (FADIS-BC) for High-Power Millimeter-Wave Beams <u>Alessandro Bruschi</u> ¹ ; E. Alessi ¹ ; W. Bin ¹ ; O. D'Arcangelo Kasparek ³ ; A. Moro ¹ ; V. Muzzini ¹ ; M.I. Petelin ⁴ ¹ Istituto di Fisica del Plasma, CNR, Italy; ² Max-Planck-In Plasmaphysik (IPP), EURATOM-Association,, Germany Plasmaforschung, Universität Stuttgart, Germany; ⁴ Institu Physics, Russian Academy of Science, Nizhny Novgorod New devices and concepts for fast switching and combina wave beams at high power are being developed. From the measurements up to high-power running tests, their proper known. The new concepts, their use and the status of rese	b ¹ ; V. Erckmann ² ; W. nstitut für ; ³ Institut für ute of Applied I, Russian Federation ation of millimeter- e first prototype erties are increasingly
We-D1.2	833	Dual Wideband Monolithically Integrated Millimeter Front-End Sub-Systems <u>J.R. Mruk¹</u> ; H. Levitt ² ; D.S. Filipovic ¹ ; H.Z. Zhou ¹ ¹ University of Colorado, United States; ² Navy Research I	-Wave Passive
We-D1.3	835	States Recent advances in micromachining have enabled develo millimeter-wave antennas with integrated beamformers p A combination of two radiators with respective filters, bo radiation patterns, is used to cover Ku- through W-band f Demonstration of the self-mixing effect with a planar millimeter-wave frequency <u>L.B. Lok¹</u> ; C. Li ¹ ; A. Khalid ¹ ; N.J. Pilgrim ² ; G.M. Dunn ² ¹ University of Glasgow, United Kingdom; ² University of	resented in this paper. th having consistent requencies. Gunn diode at ; D.R.S. Cumming ¹
We-D1.4	837	Kingdom We demonstrate the operation of a truly planar Gunn dioc oscillating mixer at millimeter-wave frequency. The Gun fabricated in a GaAs/Al0.23Ga0.77As layer structure. An yielded a measured conversion loss of around 20±2.5 dB 40 GHz. Sub-Terahertz Spectroscopy Using CW Broad-Area O. Morikawa ¹ ; <u>K. Takano²</u> ; M. Fujita ¹ ; M. Hangyo ² ¹ Japan Coast Guard Academy, Japan; ² Osaka University, A CW broad-area laser diode (BLD) is used as a light sou instead of femtosecond pulse lasers to reduce the cost of the system. The rapid fluctuation in the light intensity is used detection of the sub-THz radiation.	n diode was a initial prototype between 30 GHz and a Laser Diode Japan urce in the THz-TDS the spectroscopic

We-D1.5	838	 Physical Optics Characterization of a THz Time Domain System: U Leaky Lens Antenna vs. Austin Switch <u>Nuria Llombart</u>¹; A. Neto²; P.H. Siegel³ ¹Universidad Complutense de Madrid, Spain; ²Technical University of E Netherlands; ³Caltech, United States In this work we showed that a THz time domain system based on photoconductive antennas can be improved by more than one order of magnitude by using the leaky lens antenna. The system has been analyzed implementing a physical optics method to characterize the silicon lens. 	Delft,
	11:00	- 12:30 Gyrotrons 4 Room 7 Chair: A. Litvak	
We-E1.1	83:	Generation of 5 kW/1 THz coherent radiation from pulsed magnetic gyrotron <u>M.Y. Glyavin</u> ; A.G. Luchinin; Y.V. Rodin	field
		Institute of Applied Physics RAS, Russian Federation High power gyrotron with an improved pulsed solenoid has been develo The output power 5 kW at the frequency 1 THz and 0.5 kW at the freque 1.3 THz obtained. After 3500 pulses with magnetic field intensity higher 35T no any changes at the coil operation observed.	ency
We-E1.2	843	 Millimeter waves for NMR enhancement Alessandro MACOR; E. De Rijk; S. Alberti; J.P. Ansermet; G. Boero EPFL, Switzerland By shining MMWs upon a sample, Dynamic Nuclear Polarization provide way to enhance Nuclear Magnetic Resonance signals. We report on the the branches of our project: the EPFL effort to realize a tunable gyrotron and design consideration for coupling a MMW Gaussian beam to DNP/NMF resonators. 	two d
We-E1.3	845	 Theoretical investigation of a high efficiency and broadband subterahertz gyrotron <u>N.C. Chen¹</u>; T.H. Chang¹; C.P. Yuan¹; T. Idehara²; I. Ogawa² ¹Physics Department, National Tsing Hua University, Taiwan; ²Research Center for Development of Far-Infrared Region, Fukui University (FIR I Japan This study investigates the electron dynamics of gyrotron interaction in a tapered waveguide and proposes an interaction structure for a 0.2-THz T reflective gyro-BWO to achieve high power, broad bandwidth, and suppression of mode competition. 	FU), a TE02
We-E1.4	847	 Elaboration of 260 GHz second harmonic CW gyrotron with high st of output parameters for DNP spectroscopy <u>Vladimir Zapevalov</u>; A.S. Fix; E. Kopelovich; S. Kornishin; A. Kotov; A Kuftin; A. Sedov Institute of Applied Physics of Russian Academy of Sciences, Russian Federation Paper includes results of calculation, design, experiments and technical requirements for main subsystems of 258.6 GHz gyrotron with output po about 100 W with high stability of output parameters. The gyrotron setup 	A.

We-E1.5	849	main part of a complex experimental system for NDP Fundamental and Harmonic Mode Competition in Oscillator <u>Kwo Chu</u> ; S.H. Kao; C.C. Chiu; K.F. Pao National Tsing Hua University, Taiwan We present a theoretical study of the competition betw harmonic interactions in the gyrotoron oscillator. It is fundamental harmonic interaction possesses a signific harmonic interaction. A physical interpretation is give	the Gyrotron veen fundamental and shown that the ant advantage over the
	11:00	- 12:30 Miniaturized Electronic Devices Chair: C. Paoloni	Room 11
We-F1.1	84:	European Research on THz Vacuum Amplifiers A. Di Carlo ¹ ; <u>F. Brunetti</u> ¹ ; C.S. Cojocarua ² ; D. Dolfi ³ ; Rossi ³ ; P. Guiset ³ ; P. Lagagneux ³ ; J.P. Schnell ³ ; C. Pa Ulisse ¹ ; E. Tamburri ¹ ; M.L. Terranova ¹ ; A. Gohier ² ; A Durand ⁵ ; R. Marchesin ⁵ ; K. Pham ⁵ ; M. Korantia ⁶ ; V. I A. Secchi ⁴ ; S. Megtert ⁸ ; F. Bouamrane ⁸ ¹ University of Roma Tor Vergata, Rome, Italy; ² LPIC (UMR 7647) CNRS, Palaiseau, France; ³ Thales Resea Palaiseau, France; ⁴ Selex-SI, Rome, Italy; ⁵ Thales Ele France; ⁶ Technical Institute of Denmark, Copenaghen ⁷ Physikalisches Institut, Universität Frankfurt, Frankfu ⁸ UMR137 CNRS/Thales, Palaiseau, France OPTHER (OPtically Driven TeraHertz AmplifiERs) p relevant leap in the field of THz amplification. The de THz amplifier is the sum of the efforts of a consortiun subjects of the European academy and industry in vacu	M. Dispenza ⁴ ; A. de oloni ¹ ; M. Mineo ¹ ; G. A.M. Fiorello ⁴ ; A. Krozer ⁷ ; V. Zhurbenko ⁷ ; M - Ecole Polytechnique arch and Technology, ctron Devices, Velizy, , Denmark; art am Main, Germany; project proposes a sign and realization of 1 in including the main
We-F1.2	852	Microfabricated Millimeter Wave Vacuum Electr A. Bera ¹ ; G.S. Park ¹ ; <u>O. Kwon</u> ¹ ; M. Sattorov ¹ ; A. Sriv Yang ² ; J.H. Choi ² ; J.H. Kim ³ ; S.S. Chang ³ ; R.K. Barik Park ¹ ; I.K. Baik ¹ ¹ Center for THz-Bio Application Systems, Departmen Astronomy, Korea, Republic of; ² Agency for Defense Korea, Republic of; ³ Pohang Accelerator Laboratory (of The beam-wave interaction circuit of 0.1 THz of Coup wave Oscillator (CCBWO) is being under developmen ray Lithography. The characteristics of the microfabric	conic Devices castava ¹ ; J.Y. Kim ² ; J.W. c ¹ ; A.K. Tanwar ¹ ; S.H. t of Physics and Development (ADD), PAL), Korea, Republic bled Cavity Backward- nt based on two-step X- cation method compared
We-F1.3	854	 to conventional machining will be investigated throug Linear analysis and oscillation study on folded way tube for subterahertz radiation <u>W.Y. Yang;</u> Z.W. Dong; Y. Dong; H.J. Zhou Institute of applied physics and computational mathem The Perturbed dispersion relation in folded waveguide solved using MATLAB. Calculation results show that linear growth rate significantly. And the width of the comparison of the perturbed of the computational provided the solved using the significantly. 	eguide traveling wave natics, China TWT is derived and beam voltage affects the

		parameter, affects the start oscillation conditions obviously.	
N 7 D 1 4	056	Backward Wave Oscillator for THz Frequency Range Base	d on Double
We-F1.4	856	Corrugation Slow-Wave Structure	
		<u>Mauro Mineo¹</u> ; D. Bariou ² ; J.F. David ² ; A.J. Durand ² ; C. Paolo	ni ¹
		¹ University of Rome "Tor Vergata", Italy; ² Thales Electron De	
		France	vices 571,
			n of the double
		A BWO at 1 THz was designed and simulated. The introductio	
		corrugation rectangular waveguide SWS permits an effective in	
		cylindrical electron beams. The advantages of the BW operation	*
		remarkable performance up to 33 mW output power, in compa-	ct and realizable
		way.	
We-F1.5	858	Cherenkov Oscillators with Two-Dimensional Distributed	
		N.S. Ginzburg; E.V. Ilyakov; I.S. Kulagin; N.Y. Peskov; A.S.	Sergeev; V.Y.
		Zaslavsky	
		Institute of Applied Physics RAS, Russian Federation	
		Possibility to use 2D distributed feedback for generation of spa	•
		radiation by rectilinear electron beams in Cherenkov type devis	
		Theoretical and experimental studies of Ka-band coaxial BWO	with external
		2D Bragg structure which operates as a synchronizer is present	ed.
	14.00 - 1	5:30 Tomography	Aula Minor
	14.00 - 1	Chair: T. Yasui	
		Chan: 1. Tasu	
We-A2.1	85:	Classic holography, tomography and speckle-metrology usi	ng a high-
WC-A2.1	05.	power terahertz FEL and real-time image detectors	
		Boris Knyazev ¹ ; A.L. Balandin ² ; V.S. Cherkassky ³ ; Y.Y. Chop	orova ⁴ ; V.V.
		Gerasimov ¹ ; A.A. Nikitin ³ ; V.V. Pickalov ⁵ ; M.G. Vlasenko ¹ ; D	O.G. Rodionov ⁴ ;
		D.G. Esaev ⁶ ; M.A. Dem'yanenko ⁶ ; O.A. Shevchenko ¹	
		¹ Budker Institute of Nuclear Physics, Russian Federation; ² Inst	itute of Systems
		Dynamics and Control Theory, Russian Federation; ³ Novosibin	sk State
		University, Russian Federation; ⁴ Novosibirsk State Technical U	Jniversity,
		Russian Federation; ⁵ Khristianovich Institute of Theoretical an	
		Mechanics, Russian Federation; ⁶ Rzhanov Institute of Semicor	1 I
		Russian Federation	J,
		Experiments on in-line and two-beam holography, as well as sp	peckle
		photography and speckle interferometry, using high-power mo	
		radiation of a free electron laser have been carried out. Experim	
		theoretical approach to tomography with monochromatic terah	
		presented.	
We-A2.2	863	Terahertz tomography system using fiber lasers and ap	nlications
	005	<u>Toshihiko Ouchi¹</u> ; K. Kajiki ¹ ; M. Shioda ¹ ; S. Kasai ¹ ; K. Kawas	e^{2} T Itsuii ¹
		¹ Canon Inc., Japan; ² Nagoya University, Japan	, i. itsuji
		High depth-resolution terahertz three-dimensional tomography	was developed
		by monocycle-like terahertz pulses using ultra-short pulse fiber	L .
		designed novel photoconductive devices such as a thin-film LT	
		č 1	
		on Si substrates and an LT-InGaAs emitter for the monocycle v	NAVEIOLIUS

We-A2.3 We-A2.4	866 868	 H.K. Kitahara¹; M.T. Tani²; M.H. Hangyo¹ ¹Osaka university, Japan; ²University of Fukui, Japan We have developed a terahertz frequency-domain optical coherence tomography system based on the frequency- domain spectroscopy using a photoconductive antenna and an external cavity diode laser. The observation of the axial reflectivity profile is demonstrated for a high-resistivity silicone plate. 868 Investigation of foam and glass fiber composite structures used in aerospace applications by all-electronic 3D Terahertz imaging Holger Quast; A. Keil; T. Loeffler SynView GmbH, Germany 	
		We investigate how all-electronic Terahertz / Millimeter way the evaluation of special material structures used in aerospace Structures are foam material intended for the isolation of cryo glass fiber composite samples intended for several applicatio	e applications. ogenic tanks, and
	14:00 -	• 15:30 Guiding Devices 2 Chair: C.W. Baik	Aula Minor
We-B2.1	86:	 Terahertz Electromagnetic Crystal (EMXT) Based Wave Antenna <u>Hao Xin;</u> Z.R. Wu; W.R. Ng; M.E. Gehm University of Arizona, United States All-dielectric Terahertz waveguide and horn antenna based o EMXT fiber are fabricated via THz rapid prototyping using p technique. Characterization of the waveguide propagation lost good agreement with the simulation. 	n hollow-core
We-B2.2	872	A Tunable Universal THz Filter using Artificial Dielect Mendis; A. Nag; F. Chen; <u>D.M. Mittleman</u> Rice University, United States Using parallel-plate waveguides that mimic artificial dielectr demonstrate a universal filter that provides tunable, low-pass pass, and band-stop filtering functionalities in the THz region	ics, we , high-pass, band-
We-B2.3	874	Broadband transmission of terahertz radiations in thi <u>E. Nguema Agnandji</u> ; D.r. Georges Humbert; P.h.d. Denis Fe XLIM : institut de recherche, France Hollow-core thin silica tubes based on antiresonant guiding r studied with femtosecond terahertz (THz) setup. By controlli of the waveguide, broad transmission windows, up to 600 GH demonstrated at terahertz frequencies	in silica tube erachou mechanism are ng the parameters Hz, are
We-B2.4	876	 Hollow-core terahertz waveguide based on out-of-plane two photonic band gad crystal cladding <u>Denis Ferachou</u>; E. Nguema; G. Humbert; J.L. Auguste; J.M. Xlim Institut de recherche, France We demonstrate the propagation of teraherz (THz) radiations hollow-core waveguide based on a two dimensional photonic cladding. The measurements are done with THz Time Domain 	. Blondy s through a s band gap crystal

 (TDS). Propagation loss measurements of porous THz A. Dupuis; A. Mazharova; F. Desevedavy; <u>M. Skor</u> Ecole Polytechnique of Montreal, Canada We report on the THz spectral loss characteristics o polyethylene fibers. Propagation losses (α<0.04cm- comparable to non-porous fibers of similar diameter transmission peaks of porous fibers were broader an frequencies. Improved photonic crystal based 90 bends for <u>E. Degirmenci</u>; F. Surre; P. Landais RINCE, Dublin City University, Ireland An improved design is proposed for 90° PhC bend vision simulations are carried out for single-line defect in 100 in square lattice structure. A significant improvement transmission (over 98 %) and bandwidth over 1 THE 	obogatiy f porous subwavelength 1) were found to be r. However, the nd shifted to higher r THz transmission waveguide. 2D numerical metallic band-gap crystals nt is achieved in terms of
 comparable to non-porous fibers of similar diameter transmission peaks of porous fibers were broader an frequencies. 7: Improved photonic crystal based 90 bends for <u>E. Degirmenci;</u> F. Surre; P. Landais RINCE, Dublin City University, Ireland An improved design is proposed for 90° PhC bend v simulations are carried out for single-line defect in t in square lattice structure. A significant improvement 	r. However, the nd shifted to higher r THz transmission waveguide. 2D numerical metallic band-gap crystals nt is achieved in terms of
<u>E. Degirmenci</u> ; F. Surre; P. Landais RINCE, Dublin City University, Ireland An improved design is proposed for 90° PhC bendy simulations are carried out for single-line defect in r in square lattice structure. A significant improvement	waveguide. 2D numerical metallic band-gap crystals nt is achieved in terms of
An improved design is proposed for 90° PhC bend v simulations are carried out for single-line defect in r in square lattice structure. A significant improvement	metallic band-gap crystals nt is achieved in terms of
	z with the design.
4:00 - 15:30 Devices Chair: P.H. Siegel	Room 2
82 Microwave Crosstalk in Lumped Element Far- <u>O. Noroozian</u> ¹ ; P.K. Day ² ; B.H. Eom ¹ ; H.G. LeDuc ¹ California Institute of Technology, United States; ² United States We have made close-packed far-infrared MKID arra TiN on silicon. Measurements show a large scatter if from crosstalk. This is confirmed by pump-probe ex simulations. Our new shielded resonator designs sho levels.	² ; J. Zmuidzinas ¹ Jet Propulsion Laboratory, ays with ~ 250 pixels using in quality factor arising speriments and EM
83 VNA-Calibration and S-Parameter Characteriza Wave Integrated Membrane Circuits <u>Huan Zhao</u> Chalmers University of Technology, Sweden A TRL-calibration kit enabling S-parameter charact circuits has been developed for the WR-03 band. Th im thick GaAs membrane circuits packaged in E-pla Membrane circuits have been characterized after the	terization of membrane ne TRL-design features 3 ane split waveguide blocks. e calibration.
 Simulation of electrical and optical characteristic i-n photodiodes x.d. wang; w.d. hu; x.s. chen; w. lu; h.j. tang; t. li; h Shanghai Institute of Technical Physics, Chinese Ac 2D simulation of dark current and photoresponse fo photodiode is carried out by Sentaurus DEVICE. Th good agreement with experiments confirming that g 	.m. gong cademy of Sciences, China r InP/InGaAs/InP ne simulation results are in
	 4:00 - 15:30 Devices Chair: P.H. Siegel 82 Microwave Crosstalk in Lumped Element Far- O. Noroozian¹; P.K. Day²; B.H. Eom¹; H.G. LeDuc ¹California Institute of Technology, United States; ² United States We have made close-packed far-infrared MKID arr: TiN on silicon. Measurements show a large scatter if from crosstalk. This is confirmed by pump-probe ex- simulations. Our new shielded resonator designs she levels. 83 VNA-Calibration and S-Parameter Characteriza Wave Integrated Membrane Circuits <u>Huan Zhao</u> Chalmers University of Technology, Sweden A TRL-calibration kit enabling S-parameter characterized in thick GaAs membrane circuits packaged in E-pli Membrane circuits have been characterized after the Simulation of electrical and optical characteristic i-n photodiodes x.d. wang; <u>w.d. hu</u>; x.s. chen; w. lu; h.j. tang; t. li; h Shanghai Institute of Technical Physics, Chinese Av 2D simulation of dark current and photoresponse for photodiode is carried out by Sentaurus DEVICE. The Simulation of and sentement and photoresponse for photodiode is carried out by Sentaurus DEVICE. The sentement and photonic and sentement and photoresponse for photodiode is carried out by Sentaurus DEVICE. The sentement and photonic photoni

We-C2.4 887 S		Sub-Terahertz resistive mixing in a AlGaN/GaN	Sub-Terahertz resistive mixing in a AlGaN/GaN HEMT		
		K. Madjour; <u>G. Ducournau;</u> S. Lepilliet; T. Akalin; J.F.	Lampin; M.A.		
		Poisson; S. Delage; C. Gaquière			
		IEMN, France			
		An AlGaN/GaN based field effect transistor (FET) has h	peen designed		
		fabricated, and used as a resistive mixer for heterodyne			
		220 GHz frequency range. Optimum biasing conditions,			
		linearity are investigated.	conversion losses and		
We-C2.5	889	• •	hotooondustive switch		
we-C2.5	009	Optimization of THz pulses emitted by a InGaAs J	Shotoconductive switch		
		A.S. Grimault-Jacquin; B.T. Tissafi; F.A. Aniel			
		Institut d'Electronique Fondamentale, France			
		We present some results concerning the optimization of	-		
		band pass of the THz pulse generated by an InGaAs pho			
		in a coplanar waveguide by using 3D modeling. The opt			
		pulse dimension, compared to PC active gap is discuss	sed		
	1/.00	- 15:30 Transmission Lines	Room 3		
	14.00	Chair: G. Nusinovich	Kooiii 3		
		Chan. O. Nushiovich			
Wa D2 1	00.	Study of High-Power Millimeter-Wave Beam Transr	nission for		
We-D2.1	88;	Microwave Beaming Propulsion			
		<u>Yasuhisa Oda</u> ¹ ; T. Yamaguchi ² ; Y. Shimada ² ; K. Komu	rasaki ² ; K. Kajiwara ³ ;		
		K. Takahashi ³ ; K. Sakamoto ³	5		
		¹ 801-1, Japan; ² the university of Tokyo, Japan; ³ Japan A	tomic Energy Agency.		
		Japan	6, 8, 9,		
		A high-power millimeter-wave beam transmission syste	m for microwave		
		beaming propulsion were designed and tested. A thruste			
		system consisted from a launcher and focusing mirrors			
		gyrotron. The thruster traveled for 3 m distance generati			
We-D2.2	893	2 MW CW RF Load for Gyrotrons	ng undst loice.		
WC D2.2	075	<u>R. Lawrence Ives</u> ¹ ; Y.N. Mizuhara ² ; J.M. Neilson ¹ ; P. B	orchard ³		
		¹ Calabazas Creek Research, Inc., United States; ² Consul			
		³ Dymenso, LLC, United States	tant, Onited States,		
		Gyrotrons are in development to produce 2 MW CW of	DE nower in the mm		
		wave frequency range. Developers require RF loads to t			
		power, and similar loads will also be required for ITER.			
	005	describes development of 2 MW CW RF load to meet th	-		
We-D2.3	895	Transmission Line for 258 GHz Gyrotron DNP Spe			
		<u>Grigory Denisov</u> ¹ ; A.A. Bogdashov ¹ ; A.V. Chirkov ² ; V.	I. Belousov ² ; S.Y.		
		Kornishin ² ; E.M. Tai ³			
		¹ Institute of Applied Physics/GYCOM, Russian Federat			
		Applied Physics, Russian Federation; ³ GYCOM, Russia			
		We report the design and test of the transmission line fo	r DNP spectrometer		
		with 258GHz gyrotron. The 16 meter line includes mode	e converter, HE11		
		waveguides, 5 mitre bends, variable attenuator, direction			
		calorimeter and switch. Transmission is 70 15% with 15	-		
		mode.	L		

We-D2.4 We-D2.5	897	 Design of Low Loss Single-Mode Terahertz Bragg Fibers Based on a Confinement Loss Diagram Yunhua Zhang; I.D. Robertson Institute of Microwaves and Photonics, University of Leeds, UK, United Kingdom In this paper, the confinement loss diagram is combined with the modal filtering approach to design low loss single-mode terahertz Bragg fibers. The designed Bragg fiber can achieve propagation loss around 0.2 dB/m to 0.5 dB/m in the range of 0.7 THz to 1.4 THz, with only 10 layers of Bragg cladding Wet Silicon Bulk Micromachined THz Waveguides for Low-Loss Integrated Sensor Applications Vladimir Matvejev; C. De Tandt; W. Ranson; J. Stiens Vrije Universiteit Brussel (VUB), Belgium Wet Si bulk micromachining enables producing hexagonally shaped waveguides (WH) with superior performance and are applicable to low THz frequency range. We discuss the fabrication process, hexagonal cross-section analysis, and balance between loss mitigation and operational frequency ban of WH. 	n
	14:00 ·	15:30 Detectors 4 Room 7 Chair: A. Luukanen	
We-E2.1	89;	Superconducting hot-electron bolometer as THz mixer, direct detectorand IR single-photon counterGregory GoltsmanMoscow State Pedagogical University, Russian FederationWe present a new generation of superconducting single-photon detectors(SSPDs) and hot-electron superconducting sensors with record characteristicfor many terahertz and optical applications.	
We-E2.2	8:2	Optical characterization of a superconducting hotspot air-bridge bolometer <u>Sara Cibella</u> ¹ ; M. Ortolani ¹ ; R. Leoni ¹ ; G. Torrioli ¹ ; L. Mahler ² ; J. Xu ² ; A. Tredicucci ² ; H.E. Beere ³ ; D.A. Ritchie ³ ; F. Chiarello ¹ ¹ CNR/IFN, Italy; ² NEST, CNR-INFM and Scuola Normale Superiore, Italy; ³ Cavendish Laboratory, University of Cambridge, United Kingdom A superconducting hotspot air-bridge bolometer (SHAB) with an on-chip lithographic terahertz antenna has been fabricated and characterized both for	
We-E2.3	8:4	 passive and active signal detection. Uncooled suspended bolometers based on La0.7Sr0.3Mn03 thin films Bruno Guillet¹; S. Liu¹; C. Fur¹; S. Wu¹; J.M. Routoure¹; C. Adamo²; F. Lemarie³; D. Schlom²; L. Méchin¹ ¹GREYC (CNRS-ENSICAEN-Université de Caen Basse Normandie), Franc ²Department of Materials Science and Engineering, Cornell University, Unit States; ³CIMAP (CNRS-CEA-ENSICAEN-Université de Caen Basse Normandie), France We report our results on uncooled La0.7Sr0.3Mn03 (LSMO) suspended bolometers fabricated using silicon micromachining techniques. Suspended 	

		LSMO bridges showed very low effective thermal conductance	e (~10-7 W K-1)
W. 50.4	0 7	and very low NEP value (~ 1 pW Hz-1/2) at 300K.	• • • •
We-E2.4	8:5	Cryogen-free operation of a voltage-biased superconduct	
		<u>David Naylor</u> ¹ ; D.J. Hayton ¹ ; Y. Zhang ¹ ; P. Mauskopf ² ; P.A.R.	Ade ⁻ ; C.
		Dunscombe ² ; K. Wood ³ ; J. Cox ³	TZ! 1
		¹ University of Lethbridge, Canada; ² Cardiff University, United	Kingdom;
		³ QMC Instruments, United Kingdom	
		We report on the performance of a Nb voltage-biased supercom	•
		bolometer cooled by a closed cycle pulse tube cooler. The VSE	
		K and an operating impedance of R ~ 600 Ω . A preliminary value of R ~ 10, 12 W	
		system optical noise equivalent power (NEP) = 1.8×10 -12 W	HZ-1/2 and $\tau =$
		0.6 ms.	ton TUz
We-E2.5	8:7	High sensitive superconductor-semiconductor-superconduc detector.	
		<u>D. Morozov</u> ¹ ; P. Mauskopf ¹ ; P. Barry ¹ ; T. Brien ¹ ; M. Prest ² ; T.	Whall ²
		¹ Cardiff University, United Kingdom; ² University of Warwick,	
		Kingdom	United
		We describe a high sensitivity THz detector based on the hot el	ectron effect in
		a highly doped thin silicon semiconducting layer with tunnellin	
		superconducting islands (S-Sm-S).	ig contacts to
		superconducting islands (5 om 5).	
	14.00 1	5.20 Nevel Microdovices	Doom 11
	14:00 - 1	5:30 Novel Microdevices Chair: A. Di Carlo	Room 11
		Chair. A. Di Carlo	
We-F2.1	8:8	THz Microfabricated Vacuum Electronic Devices using Pho	otonic
		Concepts	
		Gun-Sik Park; J.K. So	
		Center for THz-Bio Application Systems, Department of Physi	cs and
		Astronomy, Korea, Republic of	1
		The advances in THz VEDs adopting novel photonic concepts	
		photonic crystals or plasmonics for efficient beam-wave interaction electrons and THz waves are explored.	cuon between
We-F2.2	8::	Experimental studies of Volume FELs with a photonic of	mustal
WC-12.2	0	<u>Alexandra Gurinovich;</u> V.G. Baryshevsky; N.A. Belous; E.A.	
		Evdokimov; P.V. Molchanov	Junicvicii, V.A.
		Research Institute for Nuclear Problems, Belarus	
		A Volume Free Electron Laser with a photonic crystal formed	hy metallic
		threads (or foils) periodically strained inside a cylindrical wave	•
		studied. Operation of Volume Free Electron Laser is discussed	
		configurations of the photonic crystal	
W. F2 2	0.0	A High-Frequency Monotron Employing Two-Dimensional	, Dielectric
We-F2.3	8;2	Photonic-Crystal, Diode Resonator	,
		Seong-Tae Han	
		Korea Electrotechnology Research Institute, Korea, Republic o	f
		We propose a monotron consisting of the parallel plates (catho	
		spaced by periodic dielectric-rods around the emitter (photonic	
		resonator), that is the diode and resonator all in one. The transit	times offost in
		resonator), that is the diode and resonator an in one. The transf	t-time effect in
		resonator) that is the diade and resonator all in one. The transit	times affast in
		the resonant diode is explored to develop a high frequency dev	

We-F2.4	8;4	Recent Advances in Beam Optics Analyzer <u>Thuc Bui</u> ¹ ; R.I. Ives ¹ ; M. Read ¹ ; M. Posth ² ¹ Calabazas Creek Research, Inc., United States; ² GUI Co States Recent advances in Beam Optics Analyzer are reported t features and capabilities. Detailed results of several elect and optimization will be presented.	to demonstrate its tron gun simulations
We-F2.5	F2.5 8;5 MEMS Fabrications of Broadband Epsilon Negative (ENG) Metam Electronic Circuit for 0.22 THz Sheet Beam TWT Application <u>Young-Min Shin;</u> A. Baig; A. Spear; J. Zhao; D. Gamzina; C.W. Domi University of California - Davis, United States In the course of the DARPA HiFIVE (High Frequency Integrated Vacu Electronics) program, we have investigated various MEMS techniques micro-fabrication of electronic circuits, a ultra wideband epsilon negati (ENG) metamaterial, built in a 0.22 THz traveling wave tube (TWT) ar		oplication na; C.W. Domier ntegrated Vacuum MS techniques for l epsilon negative
	16:00	- 17:45 Spectroscopy 2 Chair: M. Dressel	Aula Magna
We-A3.1	8;7	 Estimation of Hydration Numbers in Aqueous Solution Domain Spectroscopy <u>E. Jung</u>; K. Moon; M. Lim; H. Han POSTECH, Korea, Republic of Hydration dynamics in aqueous solution has been characterime domain spectroscopy. Hydration water differs from directly influences the protein dynamics. By precise mean constants of aqueous solutions we estimated hydration n 	cterized using terahertz bulk water and asurement of dielectric
We-A3.2	8;9	Terahertz Spectroscopy of Chemicals in the Liquid <u>Erik Bruendermann</u> ; M. Krueger; S. Funkner; H. Weinga Ruhr-University Bochum, Germany The multi-modal approach of GHz dielectric, terahertz a spectroscopy revealed absorption and dispersion of an io in a data set spanning 7 to 8 orders of magnitude in frequ absorption. Ionic liquids show comparable high absorpti water.	aertner; M. Havenith and infrared pnic liquid and resulted uency and in ton such as liquid
We-A3.3	8;;	Sub-Terahertz spectroscopy in superconductors and materials <u>Paolo Calvani</u> ¹ ; S. Lupi ¹ ; A. Nucara ¹ ; P. Maselli ¹ ; F.M. V Baldassarre ² ; M. Ortolani ³ ¹ Università La Sapienza, Italy; ² Sincrotrone Trieste, Italy Italy We review the results obtained on several innovating ma Terahertz spectroscopy which uses Coherent synchrotron source, and we present new data on the multiferroic LuF	Vitucci ¹ ; C. Mirri ¹ ; L. y; ³ IFN-CNR, Roma, aterials by the sub- n Radiation as a

We-A3.4	923	Infrared magneto-spectroscopy using quantum cascad <u>Oleksiy Drachenko¹</u> ; S. Winnerl ¹ ; H. Schneider ¹ ; M. Helm ¹ ; ¹ Forschungszentrum Dresden-Rossendorf e. V., Germany; ² Nationale des Champs Magnetiques Intenses, France We present a magneto-transmission experimental set up cov region from 5 to 120 μ m. Interchangable quantum cascade I an excitation sources. Performance of the setup is illustrated resonance studies of InGaAs/GaAs QWs under magnetic field	J. Leotin ² Laboratoire vering spectral asers are used as l via cyclotron elds up to 60T
We-A3.5	925	Comparative study of extraction of material parameters domain spectroscopy performed in reflection and in tran <u>J.L. Coutaz</u> ¹ ; B. Blampey ² ; F. Garet ² ¹ IMEP-LAHC University of Savoie, France; ² University of We study the uncertainties of the refractive index and coeffi of materials in the far-infrared determined from THz time-d spectroscopy performed in reflection and in transmission. We select the most appropriate experimental technique regardin Application of THz Spectroscopy to Time-Dependent Ch	from THz time- nsmission Savoie, France cient of absorption omain Ve give rules to g studied samples.
We-A3.6	927	Application of THZ Spectroscopy to Time-Dependent Cr Phenomena <u>Augusto Marcelli</u> ¹ ; P. Innocenzi ² ; L. Malfatti ² ; M. Piccinini ¹ INFN - LNF, Italy; ² Sassari University, Italy; ³ Porto Conte ⁴ Helmholtz-Zentrum Berlin für Materialien und Energie Gn We may investigate time-dependent phenomena in a non pu configuration combining a SR THz source and a IR thermal of concepts'' experiment of the evaporation of a deuterated v on a diamond substrate was performed simultaneously in the THz ranges.	³ ; U. Schade ⁴ Ricerche, Italy; hbH, Germany imp-probe source. A "proof water droplet cast
	16:00 - 1	17:45 Instruments 2 Chair: R. Beccherelli	Aula Minor
We-B3.1	928	3D Imaging and Analysis System Using Terahertz Wav <u>Motoki Imamura;</u> S. Nishina; A. Irisawa; T. Yamashita; E. I Advantest corporation, Japan We have developed the 3D Imaging and Analysis System th waves, the world's first such system for practical application an unprecedented capability for nondestructive three-dimen- spectroscopic analysis of the spatial distribution of constitue	Kato hat uses terahertz hs. This system has sional
We-B3.2	92;	Monochromatic, Wide Tunable Terahertz-wave Spectro Room Temperature <u>G. GUO¹</u> ; L. Lim ² ; P. Paulose ¹ ; G. Gong ¹ ; M. Minamide ³ ; I. ¹ Institute for Infocomm Research, Singapore; ² Nanyang Tec University, Singapore; ³ RIKEN Advanced Science Institute Using a surface-emitted THz parametric oscillator, a MgO: frequency up-conversion detector and a special optical desig frequency tuning and achromatic THz-wave detection, we re temperature-operated THz frequency-domain spectrometer of	. Ito ³ chnological , Japan LiNbO3-based gn for fast ealized a room-

We-B3.3	933	Hybrid Continuous Wave Terahertz System <u>Matthias Stecher</u> ; M. Scheller; M. Koch Philipps-Universität Marburg, Germany We present a hybrid continuous wave terahertz system, combining a photomixing system with a quasi time domain spectrometer, driven b multimode laser diode. Overcoming the ambiguity of standard contir wave thickness measurements is shown on different samples.	by a
We-B3.4	935	 Stabilization of the frequency difference of optically synchronize waves for reducing spectrometer sensitivity fluctuation <u>N. Shimizu</u>¹; N. Kukutsu¹; Y. Kado¹; A. Wakatsuki²; S. Kohjiro³ ¹NTT Microsystem Integration Labs., Japan; ²NTT Photonics Labs., ³AIST, Japan We developed a frequency difference stabilizer for an optically synch dual-channel THz signal generator. The stabilizer reduces the amplit fluctuation in spectrometer signal, enabling us to instantaneously obs spectra, whose absorption characteristics change rapidly with time. 	Japan; nronized ude
We-B3.5	937	THz time domain spectroscopy system using 1.55 m laser pulses a phase modulation detection in DAST crystal P. Crozat ¹ ; J. Mangeney ¹ ; <u>M. Martin¹</u> ; P. Mounaix ² ¹ Institut d'Electronique Fondamentale, France; ² Centre de Physique Moleculaire Optique et Hertzienne, France We report terahertz time-domain spectroscopy system based on Er:fi at 1.55 μ m wavelength. Ion-irradiated In0.53Ga0.47As photoconduc antenna is used as emitter. The detection is based on a phase modular detection scheme in DAST electro-optic sensor.	ber laser tive
We-B3.6	939	Progress Towards an Ultracompact cw Terahertz Spectromete <u>Anselm Deninger</u> ¹ ; D. Stanze ² ; S. Schindler ¹ ; M. Schlak ² ; B. Sartoriu Kaenders ¹ ¹ TOPTICA Photonics, Germany; ² Fraunhofer Heinrich-Hertz Institut Germany A cw terahertz spectrometer operating without optical amplifiers and mechanical delay line is presented. Fiber-coupled 1.5 μ m DFB lasers butterfly housing drive a photodiode emitter, which provides 5 μ W of 0.5 THz. A coherent photoconductive receiver yields an SNR up to 7	us ² ; W. te, l without s in a output at
	16:00 -	17:45 Photomixing Generation Room Chair: R. Beigang	m 2
We-C3.1	93;	 Widely Tunable Dual-Mode Multisection Laser Diode for Contine Wave THz Generation <u>Namje Kim</u>¹; Y.A. Leem¹; J.H. Shin¹; C.W. Lee¹; S.P. Han¹; M.Y. Jee¹; D.S. Yee²; S.K. Noh²; K.H. Park¹ ¹Electronics and Telecommunications Research Institute (ETRI), Ko Republic of; ²Korea Research Institute of Standards and Science (KFK Korea, Republic of We demonstrate novel dual-mode laser for tunable continuous-wave THz generation with InGaAs-based photomixers. The beat frequency dual-mode multisection laser is continuously tuned from 0.30 to over 	con ¹ ; D.H. rea, RISS), (CW) y from this

		THz.
We-C3.2	943	Subterahertz primary radiation source with ultra narrow spectrum: new
WE-CJ.2	745	application of femtosecond laser comb
		M.Y. Tretyakov; S.B. Bodrov; A.P. Shkaev; A.M. Kiselev; A.V. Andrianov;
		D.S. Makarov
		Institute of Applied Physics of Russian Academy of Sciences, Russian
		Federation
		The frequency of a primary subterahertz oscillator has been stabilized by phase lock with one of the component of the terahertz frequency comb produced by femtosecond laser pulses. Stabilization allows to reach radiation spectrum with very low phase noise and less than 10 Hz bandwidth.
		Tunable Narrow Linewidth THz-Wave Generation using Dual-
We-C3.3	945	Wavelength Fiber Ring Laser and Organic DAST Crystal
		<u>Ming Tang;</u> T. Notake; H. Minamide; Y. Wang; H. Ito
		RIKEN, Advanced Science Institute, Japan
		We demonstrated a novel single longitudinal mode dual-wavelength fiber ring
		laser with continuously tunable wavelength spacing. Continuous-wave
		Terahertz radiation from sub-THz to 2 THz was generated through difference-
		frequency generation of two laser wavelengths in a nonlinear DAST crystal.
		Continuous Wave Terahertz Photomixer from Low Temperature Grown
We-C3.4	947	GaAs with High Carrier Mobility
		J.H. Teng ¹ ; <u>H. Tanoto¹</u> ; Q.Y. Wu ¹ ; M. Sun ² ; Z.N. Chen ² ; T. Htoo ³ ; S.J. Chua ⁴ ;
		A. Gokarna ⁵ ; J.F. Lampin ⁵ ; E. Dogheche ⁵
		¹ Institute of Materials Research and Engineering, Singapore; ² Institute for
		Infocomm Research, Singapore; ³ National University of Singapore, Singapore;
		⁴ Institute of Materials Research and Engineering and National University of
		Singapore, Singapore; ⁵ Institut d'Electronique de Microélectronique et de
		Nanotechnologie, CNRS, France
		Low temperature GaAs grown by MBE system exhibiting Hall carrier mobility
		of 5000 cm2/v.s. was fabricated into continuous-wave (CW) Terahertz (THz)
		photomixers utilizing dual dipole antenna with interdigitated structures. The
		CW THz photomixer characteristics are presented.
		Continuous Terahertz Wave Emission Using Tunable Dual-Wavelength
We-C3.5	949	Erbium-doped Fiber Laser
		Min Yong Jeon ¹ ; N.J. Kim ² ; J.H. Shin ² ; C.W. Lee ² ; S.P. Han ² ; Y.A. Leem ² ;
		$\frac{1}{10000000000000000000000000000000000$
		¹ Chungnam National University/ETRI, Korea, Republic of; ² ETRI, Korea,
		Republic of; ³ KRISS, Korea, Republic of
		We demonstrate a continuous THz emission using a low-temperature-grown
		InGaAs photomixer and a widely tunable dual-wavelength erbium-doped fiber laser as an optical best source. The wavelength spacing can be tuned from 2.3
		laser as an optical beat source. The wavelength spacing can be tuned from 2.3 nm to 8.8 nm which corresponds to the CW THz frequency from 0.3 to 1.1
		nm to 8.8 nm which corresponds to the CW THz frequency from 0.3 to 1.1
		THz.

We-C3.6	94;	Narrow linewidth Terahertz Signal Generation using a Dual-Mode Semiconductor Fabry-Pérot Laser and a Uni-travelling Carrier Photodiode <u>G. Ducournau¹</u> ; A. Beck ¹ ; E. Peytavit ¹ ; T. Akalin ¹ ; J.F. Lampin ¹ ; S. Latkowski ² ; J. Parra-Cetina ² ; R. Maldonado-Basilio ² ; P. Landais ² ¹ IEMN, France; ² RINCE, Ireland A narrowband terahertz signal (372 GHz) generated by a uni-travelling carri photodiode (UTC-PD) interfaced with a dual-mode Fabry-Pérot laser diode i demonstrated. The linewidth and tunability of the emitted terahertz wave are analyzed, as a function of the laser bias.	is
	16:00 -	17:45 Antennas Room 3 Chair: D. Rutledge	
We-D3.1	953	 Design of a Submillimeter Microstrip Array for Beam-Scanning Applications <u>R. Camblor</u>; S. Ver Hoeye; G. Hotopan; C. Vázquez; M. Fernández; F. Las Heras University of Oviedo, Spain A microstrip array antenna with beam-steering capabilities is presented for imaging applications, working in the frequency range of 240-279 GHz a 33 degrees beam-scanning range is achieved. Beam-Scanning is obtained by making use of variation of the beam-pointing angle due to frequency scanning Tanabarta Dinale Antenna in Fabru Paret Cavity with two sidewalls to 	ng.
We-D3.2	956	Terahertz Dipole Antenna in Fabry-Perot Cavity with two sidewalls to Enhance the Directivity G. Singh ¹ ; G. Singh ¹ ; <u>K.R. Jha</u> ² ; G. Singh ¹ ¹ Jaypee University of Information Technology, India; ² Shri Mata Vaishno Devi University, India In this paper, the directivity enhancement mechanism of a dipole antenna placed in a Fabry-Perot type cavity is presented. The directivity of the antenna has been increased upto 19 dBi at 610 GHz.	
We-D3.3	958	Reconfigurable Vivaldi Antenna Array with Integrated Antipodal Finlin Phase Shifter with Liquid Crystal for W-Band Applications <u>Matthias Hoefle</u> ; M. Koeberle; M. Chen; A. Penirschke; R. Jakoby TU Darmstadt, Microwave Engineering, Germany This paper presents a new finline phase shifter with an antipodal Vivaldi antenna. The structure offers the potential to be used in a wideband array configuration for electronic beam steering. The individual phase shift is realized by applying a DC voltage to liquid crystal inside the finline.	ne
We-D3.4	95:	 Design of a Remote Steering ECRH launcher for the Stellerator Wendelstein 7-X <u>B. Plaum</u>¹; W. Kasparek¹; V. Erckmann²; H. Laqua²; C. Lechte¹; M. Weißgerber² ¹University of Stuttgart, Germany; ²Max-Planck-Institut für Plasmaphysik, Germany The overall design of the remote steering antenna, which is foreseen for the Stellerator Wendelstein 7-X, is presented. Issues, which arise from the integration of mitrebends and vacuum-valves, are discussed along with result 	lts

We-D3.	5 962	 from calculations and low-power measurements. Development of CW Phased-array Antenna Syste Bernstein Heating and Current Drive Experiment <u>Hiroshi Idei</u> Kyushu University, Japan The phased-array antenna for EBWH/CD has been of The fields evaluated by a Kirchhoff code were in agones. The thermal load/stress in the CW were analyze code. The phased array has been fast scanned to con 	tts in QUEST developed in the QUEST. reement with measured zed with a finite element
We-D3.	6 964	Terahertz Plasmonic Antennas: from Metals to Audrey Berrier ¹ ; R. Ulbricht ¹ ; D. Polke ² ; P. Haring I Gomez Rivas ¹ ¹ FOM institute AMOLF, Netherlands; ² Siegen unive Plasmonic antennas at THz frequencies are promisir the sensitivity of THz detectors. The resonances of r antennas are compared. Experiments show the powe semiconductors as a means for active control over th plasmons.	Semiconductors Bolivar ² ; M. Bonn ¹ ; J. ersity, Germany ng candidates to enhance metallic and semiconductor erful advantage of
	16:00	- 17:45 Detectors 5 Chair: E. Lheurette	Room 7
We-E3.1	965	On-chip terahertz photon manipulation <u>Kenji Ikushima</u> ¹ ; K. Kunitani ¹ ; D. Asaoka ² ; S. Komi Hirakawa ² ¹ Tokyo University of Agriculture and Technology, J Tokyo, Japan An on-chip terahertz photon manipulation is implem single heterostructure crystal. In this device, terahert microscopic area are propagated on a coplanar wave quantum-dot single photon detector fabricated on the	Japan; ² University of mented on a GaAs/AlGaAs tz photons emitted from a eguide and counted by a

We-E3.4	968	Optical MEMS Technologies for Multi-Spectral Infrar <u>Lorenzo Faraone</u> ¹ ; J.S. Milne ² ; J. Antoszewski ² ; J.M. Dell ² ¹ The University of Western Australia, Australia; ² UWA, Aus The technology for Multi-Spectral Infrared Sensors is presen the concept, modeling, experimental results as well as demon infrared sensor capable of low-voltage tuning across the SWI wavelength bands.	tralia ted. It includes astration of the IR and MWIR
We-E3.5	96:	Photodetection Mechanisms in Floating Gate Photocondu Infrared Quantum Well Intersubband Transitions	ctors with Far-
		E. Ledwosinska; T. Szkopek	
		McGill University, Canada	(110 1
		We demonstrate two mechanisms of far-IR detection in GaA quantum wells operating as floating gate photoconductors: el an adiacent quantum well or a DX centre lavar laading to rec	ectron trapping in
		an adjacent quantum well or a DX centre layer, leading to res 100A/W and 500A/J at operating temperatures of up to 30K a respectively.	-
We-E3.6	972	Development of MEMS Microbolometer Detector for T <u>E.H. Oulachgar</u> ; L. Marchese; C. Alain; P. Topart; B. Trembi Bolduc; F. Williamson; G. Baldenberger; F. Genereux; J. Ose Pope; H. Jerominek; A. Bergeron Institut National d'Optique (INO), Canada INO has been actively working on extending its microbolome THz applications. Several techniques have been developed re the performance of microbolometer. This article will present and discuss some potential applications of INO THz microbolome	lay; S. Ilias; M. ouf; L. Le Noc; T. eter technology to ecently to improve these techniques
	16:00 -	17:45 Astronomy and Environmental Studies 2 Chair: K. Wood	Room 11
We-F3.1	974	Characterising and calibrating the SCUBA-2 supercondu	cting bolometer
		arrays for science observing D. Bintley ¹ ; M.J. MacIntosh ² ; W.S. Holland ² ; D. Berry ¹ ; J.T. <u>Friberg</u> ¹ ; T. Jenness ¹ ; D. Kelly ² ; X. Gao ² ; P.A.R. Ade ³ ; W. G Moncelsi ³ ; K.D. Irwin ⁴ ; G.C. Hilton ⁴ ; M. Niemack ⁴ ; C.D. Re Hollister ⁵ ; A. Woodcraft ⁵ ; M. Amiri ⁶ ; B. Burger ⁶ ; E. Chapin ⁶ Halpern ⁶ ; D. Scott ⁶ ; M. Hasselfield ⁶ ; H.S. Thomas ¹ ¹ Joint Astronomy Centre, United States; ² UK Astronomy Tec United Kingdom; ³ Cardiff University, United Kingdom; ⁴ NIS ⁵ University of Edinburgh, United Kingdom; ⁶ University of B Canada SCUBA-2 is a 10,000 pixel wide field sub-millimeter camera science observing on James Clerk Maxwell Telescope (JCM ² 2010. We present the results of characterising individual 128 science grade sub-arrays, as well as experience from operatin	 brainger³; L. bitsema⁴; M.I. bitsema⁴; M.I. chnology Centre, box Contre, b

We-F3.2	977	Superconducting Lumped Element Kinetic Inductance Resonators for
WE-F3.2	911	millimeter, sub-millimeter and far infrared detection.
		<u>Simon Doyle¹</u> ; P. Mauskopf ¹ ; A. Monfardini ² ; L. Swenson ² ; S. Withington ³ ;
		$\overline{\text{D. Goldie}^3}$
		¹ Cardiff University, United Kingdom; ² nstitut NEEL, CNRS & Université
		Joseph Fourier, France; ³ Cambridge University, United Kingdom
		The Lumped Element Kinetic Inductance Detector (LEKID) is a
		superconducting detector suitable for use from the mm to FIR wavebands. Due
		to its simple design the LEKID can easily be fabricated into large multiplexed
		arrays. This presentation will provide an overview of the LEKID and its
	070	applications.
We-F3.3	979	THz synthesizer for high resolution spectroscopy
		Francis Hindle; G. Mouret; C. Yang; A. Cuisset; R. Bocquet
		Laboratoire de Physico-Chimie de l'Atmosphère, UMR CNRS 8101, France
		A THz synthesizer has been realized by phase locking the photomixer pump
		lasers to a frequency comb effectively locking the THz emission frequency of
		the source. This allowed the centre frequency of a molecular transition at 813
		GHz to be measured with an accuracy of 20 kHz, (10-8)
W- E2 4	07.	Estimators for the performances of the optical combiner of an adding
We-F3.4	97;	interferometer
		<u>Sebastiano Spinelli</u> ¹ ; M. Gervasi ¹ ; A. Tartari ¹ ; M. Zannoni ¹ ; C. O'Sullivan ² ; D.
		Bennet ² ; G. Curran ²
		¹ Università di Milano Bicocca, Italy; ² National University of Ireland, Ireland
		The definition of an optical system used as a signal combiner (Fizeau-like
		combiner) for a millimeter wave adding interferometer is described. A couple
		of reliable estimators of its performances is introduced and applied to a test
		system.
		Development of single-material multi-layer interference filter with sub-
We-F3.5	983	wavelength structure for cryogenic infrared astronomical missions
		<u>T. Wada¹</u> ; H. Makitsubo ² ; M. Mita ¹
		¹ Japan Aerospace Exploration Agency, Japan; ² The University of Tokyo,
		Japan We are developing single material (all silioon) interference filter for emergenia
		We are developing single-material (all-silicon) interference filter for cryogenic
		infrared instrumentation. Layers with different refractive indices and multi-
		layer structure are realized by sub-wavelength structure fabricated by photo
		lithography and wafer bonding technique, respectively.
We-F3.6	985	Development of a far-infrared Ge:Ga monolithic array detector for
	100	SPICA (Space Infrared Telescope for Cosmology and Astrophysics)
		<u>S.K. Kamiya¹</u> ; M.S. Shirahata ² ; S.M. Matsuura ² ; Y.S. Sawayama ¹ ; Y.D. Doi ¹ ;
		M.K. Kawada ² ; T.N. Nakagawa ² ; Y.C. Creten ³ ; B.O. Okcan ³ ; W.R. Raab ⁴
		¹ The University of Tokyo, Japan; ² JAXA/ISAS, Japan; ³ IMEC, Belgium;
		⁴ MPE-Garching, Germany
		We are developing a monolithic Ge:Ga array far-infrared detector for the
		future space telescope SPICA. We demonstrate the performance of our
		detector by showing the test results of a 5x5 prototype array. It had worked
		properly and showed the expected performance.

17:45 - 19:15 Wednesday Poster

Chiostro

We-P.03	987	Plasma magneto-compressional cyclotron maser
		Sergey Golubel; D.A. Mansfeld; A.G. Shalashov; A.V. Vodopyanov
		IAP RAS, Russian Federation
		A possibility for development of sources of pulsed electromagnetic radiation
		based on adiabatic magnetic compression of non-equilibrium plasma confined
		in a mirror magnetic configuration is discussed.
We-P.04	989	Study of W-band Sheet Beam Klystron
		Yong Wang; C.J. Ruan; S.Z. Wang; W. Ruan
		Institute of Electronics, Chinese Academy of Sciences, China
		Simulations of W-band Sheet Beam Klystron (SBK) were done and a beam
		stick was fabricated. Under the beam voltage of 60kV and current of 2.6A, the
		beam transmission has achieved 99%. In this paper the results of both
		simulation and experiment are described.
We-P.05	98:	The Preliminary Experiment of Ka-band Pulsed Folded Waveguide
WE-F.03	90.	Extended Interaction Oscillator
		zhen hua Wu; K.C. zhang; S.G. Liu
		University of Electronic Science and Technology of China, China
		The experiment of a Ka-band folded waveguide extended interaction oscillator
		(FWEIO) tube, consisting of 21-gap resonator, is reported in this paper. In the
		FWEIO experiment, the tube generates about 330W output power at 35.5GHz
		with the bandwidth 180MHz, the interaction efficiency of 23%.
We-P.06	992	UV-LIGA and DRIE Grating Microfabrication and Testing for Sheet
WE-F.00	992	Beam Amplifiers at 220 GHz
		<u>C.D. Joye¹</u> ; J.P. Calame ¹ ; M. Garven ² ; D. Park ¹ ; R. Bass ¹ ; B. Levush ¹
		¹ Naval Research Laboratory, United States; ² SAIC, United States
		Slow-wave sheet beam amplifiers are under development to demonstrate 50
		watts CW at 220 GHz. We report on the microfabrication of amplifier gratings
		based on Ultraviolet Lithography techniques using the SU-8 Photoresist for
		thick films. Deep Reactive Ion etching has also been investigated.

IRMMW-THz 2010

We-P.08	994	Low capacitance vacuum microtriode for high frequency operation
		Giacomo Ulisse; F. Brunetti; A. Di Carlo
		University of Rome Tor Vergata, Italy
		In this work a new triode geometry has been designed to reduce the this
		cathode-gate capacitance with respect to the classic Spindt Type microtriodes.
		With this configuration, the cut off frequency has been increased up to 160
		GHz, about 3 times bigger when compared to the standard configuration.
We-P.09	996	A Vector Finite Element Helmholtz Solver
		<u>Thuc Bui¹</u> ; M. Read ¹ ; R.L. Ives ¹ ; H. Freund ²
		¹ Calabazas Creek Research, Inc., United States; ² Science Applications
		International Corp., United States
		The vector finite element method is used to solve the inhomogeneous
		Helmholtz equation to obtain the 3D circuit fields in resonant cavities.
		Numerical results will be shown for cylindrical and rectangular geometries to
		confirm the theoretical error estimates.
We-P.10	998	Square Helix TWT for THz Frequencies
		Mikko Kotiranta ¹ ; V. Krozer ¹ ; V. Zhurbenko ²
		¹ Goethe-Universität Frankfurt am Main, Germany; ² Technical University of
		Denmark, Denmark
		A traveling-wave tube (TWT) for THz frequencies has been designed and
		simulated. The slow-wave structure (SWS) of the TWT is a helix with a square
		form and therefore compatible with the technology. 3-D particle-in-cell
		simulations indicate a gain of 20 dB at a frequency of 900 GHz.
We-P.11	99:	Parametric Study on the Effect of the Dielectric and Geometric Properties
WC-F.11	99.	on the Parasitic Oscillations in Gyrotron Beam Tunnels
		<u>G.P. Latsas¹</u> ; I.G. Tigelis ¹ ; M.D. Moraitou ¹ ; S. Kern ² ; J.L. Vomvoridis ³ ; Z.C.
		Ioannidis ¹
		¹ University of Athens, Faculty of Physics, Greece; ² Karlsruhe Institute of
		Technology (KIT), Institute of Pulsed Power and Microwave Technology
		(IHM), Germany; ³ National Technical University of Athens, School of
		Electrical and Computer Engineering, Greece
		Using the numerical code Fishbone, developed to study the parasitic
		oscillations in gyrotron (conventional and coaxial) beam tunnels, a parametric
		study is performed on the effect of the dielectric material as well as of the slot
		geometry on the growth rate of the developed parasitic modes.

We-P.12	9:2	Effect of Electric Field Distribution in the Magnetron-Injection Gun
WC-1.12	9.2	Region on Electron Beam Characteristics in Gyrotrons
		O. Louksha; D. Samsonov; G. Sominski; A. Tsapov
		St. Petersburg State Polytechnical University, Russian Federation
		A method for control of electric field distribution in the near-cathode region of
		a magnetron-injection gun has been developed. The possibility to improve
		quality of the helical electron beam by regulated non-uniformities of electric
		field is studied experimentally and using computer modeling.
We-P.13	9:4	Gyrotrons FU FU CW VII for 600 MHz and 300 MHz DNP-NMR
WC-1.15	9.4	spectroscopy
		Toshitaka Idehara ¹ ; K. Kosuga ¹ ; L. Agusu ¹ ; I. Ogawa ¹ ; R. Dupree ² ; H.
		Takahashi ² ; M.E. Mark ²
		¹ University of Fukui, Japan; ² University of Warwick, United Kingdom
		For DNP-NMR spectroscopy, we need high power sub-THz radiation sources
		with the output power of several tens watts. We have developed Gyrotrons FU
		CW VII operating in 200 GHz band and 400 GHz band as radiation source for
		600 MHz and 300 MHz DNP-NMR spectroscopy.
We-P.14	9: 6	Simulation and Experimental Investigations on Dynamic After Cavity
		Interaction (ACI)
		Stefan Kern ¹ ; K.A. Avramidis ² ; O. Dumbrajs ³ ; G. Gantenbein ¹ ; S. Illy ¹ ; A.
		Samartsev ¹ ; A. Schlaich ¹ ; M. Thumm ¹ ; A.R. Choudhury ¹
		¹ Karlsruhe Institute of Technology, Germany; ² SECE, National Technical
		University of Athens, Greece; ³ ISSP, University of Latvia, Latvia
		Stationary after cavity interaction (ACI) in high power gyrotrons is known as
		influence factor on efficiency. But it can also result in oscillations, which
		modulate the generated millimeter-wave or inhibit their generation.
		Investigations on such dynamic processes are presented.

We-P.16	9: 8	Mode Identification of a gyrotron oscillation by utilizing an IR camera
		Yoshinori Tatematsu; T. Saito; T. Ozeki; S. Hashimoto
		Research Center for Development of Far-Infrared Region, University of Fukui,
		Japan
		Oscillation modes in the gyrotron FU CW I were successfully identified with
		an infrared camera. The position of temperature increase on the target depends
		on the oscillation mode. A clear relation holds between the position and
		m/χ 'mn of the oscillation mode.
We-P.17	9: :	Gyrotron Interaction Simulations with Tapered Magnetostatic Field
		<u>K.A. Avramides¹</u> ; O. Dumbrajs ² ; J.L. Vomvoridis ¹ ; S. Kern ³
		¹ National Technical University of Athens, Greece; ² ISSP, University of Latvia,
		Latvia; ³ Karlsruhe Institute of Technology, Campus North, IHM, Germany
		We investigate the interaction of the electron beam with the RF wave in a

		gyrotron, in the presence of an axially tapered magnetic field. The simulation results of three interaction codes are compared and the different modelings are discussed.
We-P.19	9; 2	Generating Pure Circular TEmn Modes
		<u>Tsun-Hsu Chang</u>
		National Tsing Hua University, Taiwan
		This work presents a methodology of exciting a pure circular TEmn modes
		using cascaded Y-type power dividers at low terahertz region. The measured
		transmissions are high and the bandwidths are broad. These Y-type converters
		are structurally simple but the machining errors are critical.
We-P.20	9;4	Electron gun design for large orbit axis encircling beams
		C.G. Whyte; A.R. Young; C.W. Robertson; A.D.R. Phelps; W. He; A.W.
		Cross; K. Ronald
		University of Strathclyde, United Kingdom
		Large orbit axis encircling electron beams provide improved coupling and
		mode selectivity in certain gyro-devices. Three alternate gun designs for
		producing large orbit axis encircling electron beams are described and
		compared. Experimental results for one of these designs are presented.
We-P.21	9;6	Investigate the interaction between a sheet electron beam and a Gaussian
),0	gyrotron beam, with the aim of significantly amplifying the RF beam.
		Giorgos Anastassiou; J.L. Vomvoridis
		National Technical University of Athens, Greece
		The Gaussian RF beam of a gyrotron can be applied as an input for the
		interaction with a high-current sheet electron-beam drifting along an external
		magnetic field, with the aim of generating an even higher RF power and
		without the need for feedback from the walls of any cavity or resonator.

We-P.23	9; 8	Fiber-coupled terahertz endoscope system for human body
		<u>T.I. Jeon¹</u> ; Y.B. Ji ¹ ; S.H. Kim ¹ ; E.S. Lee ¹ ; J.H. Son ²
		¹ Korea Maritime Univ., Korea, Republic of; ² University of Seoul, Korea,
		Republic of
		we have made a miniaturized optical fiber coupled THz endoscope system for
		human body. The cross section of the endoscope head is $(2_{16}, 4 \text{ mm})_{16}, 6 \text{ mm}$,
		which is small enough to be inserted into a human body. For a feasibility test,
		we measure reflective THz signals from several samples.
We-P.24	9; :	Electro-optic field and power detector of a new generation
		Juraj Darmo; K. Unterrainer
		Vienna University of Technology, Austria
		An electro-optic detector of electromagnetic waves with boosted performance
		is presented. Detector utilizes a quasi phase-matching and a heterodyne
		detection technique to achieve an order of magnitude better responsivity.

We-P.27 : 22 Investigations of room temperature bolometers for THz applications <u>Sofiane Ben Mbarek</u>¹; T. Baron¹; S. Euphrasie¹; D. Briand²; B. Cretin¹; P. Vairac¹; R. Adam³; L. Chusseau³; J.P. Guillet³; A. Penarier³ ¹FEMTO-ST, dép MN2S, France; ²Ecole Polytechnique Fédérale de Lausanne, Switzerland; ³IES Montpellier, France We investigate in this work the performance of two configurations of room temperature bolometers dedicated to THz applications. Fabrication processes, noise level, sensitivity and resolution characterizations are presented. Results emphasize the efficiency of the proposed approach.

We-P.29	: 24	Realization of Wide-Bandwidth and Dual-Frequency Artificial Magnetic Conductor by Metamaterials <u>Tong Zhang</u> ; J.Y. Qin Department of Radio Engineering, Southeast University, China The design, simulation and analysis of artificial magnetic conductors (AMCs) are presented. The full-wave simulation results verify that the magnetic conductor is successfully accomplished at central frequencies 7 GHz and 16.5GHz with the bandwidth of 2.4GHz and 4.3GHz.
We-P.30	: 26	Electrical Properties of VOx Bolometer Thin Films Prepared by Metal- Organic Decomposition L.N. Son; T. Tachiki; T. Uchida National Defense Academy, Japan Well axis-oriented V2O5 thin films were fabricated by MOD. V2O5 films were reduced to VOx films under a temperature of 530°C and pressures of 1.2- 3.0 Pa in O2. VOx films indicated an abrupt transition around 55°C with a resistivity change of 3 orders and TCR of 2.1-2.2 %/K at 300 K.
We-P.31	: 28	THz metamaterials using aligned metallic or semiconductor nanowires <u>A. Mazhorova</u> ¹ ; J.F. Gu ¹ ; S. Gorgutsa ¹ ; M. Peccianti ² ; R. Morandotti ² ; T. Ozaki ³ ; M. Tang ³ ; H. Minamide ³ ; H. Ito ³ ; M. Skorobogatiy ¹ ¹ Ecole Polytechnique de Montreal, Génie Physique, Canada; ² INRS, Varennes, Canada; ³ RIKEN, Japan We study the transmission of THz radiation through metamaterial films containing metallic or semiconductor nanowires. The nanowire arrays are made by the stack-and-draw fiber fabrication technique. Metal embedded films exhibit polarizing properties, in contrast with those containing semiconductor.
We-P.32	: 2:	Terahertz Plasmonic Structures Based on Metal-insulator PhaseTransition MaterialsC.L. Wang; Z. Tian; Q.R. Xing; F. Liu; Y.F. Li; L. Chai; C.Y. WangTianjin University, ChinaWe demonstrate thermally tunable plasmonic structures base on a metal-insulator transition material with active control over their resonanttransmission induced by surface plasmon polaritons (SPPs). The THztransmission property is found to be strongly dependent on the externalexcitations.
We-P.33	:2;	Dielectric behavior of water in THz influenced by alkali and alkaline- earth halides Satoshi Yamauchi ¹ ; K. Takayama ¹ ; Y. Imai ¹ ; K. Takeya ² ; M. Tonouchi ² ¹ Ibaraki University, Japan; ² Osaka University, Japan A transmission type THz-TDS was applied to study dielectric behavior of water including NaCl and MgCl2. Imaginary part of the complex permittivity and the dielectric slow relaxation time below 1THz were evaluated and disclosed that they are dependent on the type of impurity and the concentration.

We-P.34 : 33 Dynamical Franz-Keldysh Effect in GaAs Induced by Monocycle Terahertz Pulse

<u>Keisuke Shinokita</u>¹; H.H. Hirori²; M.N. Nagai²; N.S. Sato³; Y.K. Kadoya³; K.T. Tanaka²

¹Department of Physics, Graduate School of Science, Kyoto University, Japan; ²Kyoto University, Japan; ³Hiroshima University, Japan We studied electron-hole behaviors interacted with intense THz pulse in GaAs MQW. THz pulse causes strong modulations of exciton in absorption spectrum. For high THz electric fields, hh exciton energy shows blueshift proportional to THz electric field squared, due to dynamical Franz-Keldysh effect.

We-P.36 : 34 High Q-factor Planar Terahertz Metamaterials Al-Naib; <u>C. Jansen</u>; N. Born; M. Koch Philipps-Universität Marburg, Germany We propose asymmetric D-split resonators, which feature a very high Q-factor, as unit cells for terahertz filters and sensors. Compared to asymmetric double split resonators, the asymmetric D-split resonators exhibit twice as high Q-factors.

We-P.38	: 36	Multiple THz Surface Plasmon Resonances of Periodic Split Ring Arrays
WC-1.30	. 50	in Silicon
		S. Saha ¹ ; J. Alton ² ; Y. Ma ¹ ; D.R.S. Cumming ¹ ; <u>J. Grant¹</u>
		¹ UNIVERSITY OF GLASGOW, United Kingdom; ² TERAVIEW LTD.,
		United Kingdom
		FDTD simulations of periodic split ring resonators in highly doped silicon
		show multiple THz surface plasmon resonances (SPR). The SPR frequency
		position may be tuned by modifying the split ring wall width and/or the split
		angle. These frequency tunable resonators are efficient THz detectors.
We-P.39	: 38	Millimeter-wave diffraction of a micro-fabricated crystal structure
		Ching-Pin Yuan
		Department of Physics, National Tsing Hua University, Taiwan
		A two-dimensional, table-top diffraction system is developed in 20x20 cm size

		with a 94GHz (~3.2 mm) terahertz source. The crystalline structure was micro- fabricated using UV-lithograph with height of 1.0 mm, radius of 0.2 mm, and lattice separation of 2.25 mm.
We-P.41	: 3:	Sub Wavelength Structured Filters for Terahertz Region <u>S. HAYASHI</u> ¹ ; T. ISEKI ² ; H. HIRAI ² ; K. SAKAI ² ; Y. OGAWA ³ ; K. KAWASE ⁴ ¹ RIKEN, Japan; ² RICOH, Japan; ³ Kyoto University, Japan; ⁴ Nagoya University and RIKEN, Japan
We-P.42	. 42	The transmission and refection characteristics of a terahertz wave through sub wavelength structured (SWS) filters are investigated. The SWS filters are grating made by plastic. We designed the SWS filters as a wavelength selective optics and measured transmission and refection spectra. Trilayer Electron-beam Lithography and Surface Preparation for Sub-
we-P.42	: 42	micron Schottky Contacts on GaAs Heterostructures <u>Donatella Dominijanni</u> ¹ ; R. Casini ¹ ; V. Foglietti ¹ ; M. Ortolani ¹ ; C. Lanzieri ² ; M. Peroni ² ; P. Romanini ² ; A. Notargiacomo ³ ; E. Giovine ³ ¹ CNR-Istituto di Fotonica e Nanotecnologie, Italy; ² SELEX Sistemi Integrati, Rome, Italy; ³ CNR - Istituto di Fotonica e Nanotecnologie, Rome, Italy Foreseen operation at sub-THz frequencies of Schottky contacts for diodes and transistor gates on GaAs based heterostructures requires area reduction down to 0.1x1 microns, and wet chemical processes. We report on the compatibility
We-P.43	: 44	of Trilayer Electron-beam Lithography with such wet processes. Spectral analysis of subterahertz resonant system by Josephson admittance spectroscopy <u>Irina Gundareva¹</u> ; O.Y. Volkov ² ; Y.Y. Divin ³ ; V.N. Gubankov ⁴ ; V.V. Pavlovskiy ⁴ ¹ Kotel'nikov Institute of Radioengineering and Electronics, Russian Federation; ² Kotel'nkov Institute of Radioengineering and Electronics RAS, Russian Federation; ³ Forschungszentrum Jülich, Germany; ⁴ Kotel'nikov Institute of Radioengineering and Electronics RAS, Russian Federation Josephson admittance spectroscopy was used for spectral analysis of electromagnetic structure, based on broadband antenna with modified log- periodic geometry, which provides pronounced resonance at 114 GHz. Measured spectral characteristics of this structure were compared with simulated ones.
We-P.44	: 46	Terahertz Form Birefringent Devices <u>Maik Scheller</u> ¹ ; C. Jördens ² ; M. Koch ¹ ¹ Philipps-Universität Marburg, Germany; ² TU Braunschweig, Germany We present photonic crystals exhibiting a pronounced form birefringence at terahertz frequencies. These crystals can be employed as volumetric birefringent elements for a broad frequency range. Along with a theoretical

		discussion we demonstrate measurement results of a polymeric crystal.
We-P.45	: 48	Development of mechanically detected ESR in terahertz region
		<u>S.H. Hirano¹</u> ; N.M. Mizuno ¹ ; E.O. Ohmichi ¹ ; H.O. Ohta ²
		¹ Graduationg school of Kobe University, Japan; ² Molecular Photoscience
		Research Center, Kobe University, Japan
		We have developed a high-frequency ESR technique using a cantilever. In this
		method, magnetization change caused by ESR is detected as cantilever
		deflection. In this study, spin sensitivity as high as 109 spins/Gauss was
		achieved. Signal detection at 315 GHz was also succeeded.
We-P.46	: 4:	THz surface plasmon reflection on a corrugated metal surface
		<u>Maxim Nazarov¹</u> ; A.A. Angeluts ¹ ; A.P. Shkurinov ¹ ; J.L. Coutaz ²
		¹ Physics Department of M.V.Lomonosov Moscow State University, Russian
		Federation; ² IMEP-LAHC, UMR CNRS 5130, Université de Savoie, France
		Bragg reflection of surface THz plasmon (SP) on a grating is studied using SP
		broadband excitation by a prism. The SP spectra transmitted through the
		grating exhibit minima thanks to Bragg phenomena. Reflection efficiency and
		bandwidth of those minima are studied for different grating groove shapes
We-P.47	: 52	Field localization of a broadband THz surface plasmon
wer://	. 52	<u>Maxim Nazarov¹</u> ; A.P. Shkurinov ¹ ; A.Y. Ryabov ¹ ; E.A. Bezus ²
		¹ Physics Department of M.V.Lomonosov Moscow State University, Russian
		Federation; ² Image Processing Systems Institute of the Russian Academy of
		Science, Russian Federation
		We perform a broadband excitation of surface THz plasmon in Otto prism
		configuration. Spectral dependencies of penetration depth and propagation
		length are studied. Propagation through a dielectric slab of various thickness is
		discussed.
We-P.48	: 54	Anti-reflection coated lenses for THz applications
		<u>Giorgio Savini¹</u> ; P. Hargrave ²
		¹ University College London, United Kingdom; ² Cardiff University, United
		Kingdom
		We have developed a repeatable and reliable technique for anti-reflection
		coating large lenses for use at THz frequencies. Small lenses are already in use
		on two satellites. Comparison of experimental and modelled performance of
		larger (up to 350 mm diam.) highly-curved lenses is discussed.
We-P.49	: 56	Open single-mode cavities for millimeter and submillimeter wavelengths
WC-1.+7	. 50	M. Fittipaldi ¹ ; M. Martinelli ² ; <u>G. Annino²</u>
		¹ INSTM - Dipartimento di Chimica, Università di Firenze, Italy; ² Istituto per i
		Processi Chimico-Fisici, CNR, Italy
		The development of single-mode cavities with high conversion factor based on
		the concept of non-radiative structure is presented, together with the first
		experimental results at the border between the millimeter and the
		submillimeter wavelengths and beyond.
We-P.50	: 58	Substrateless micrometric metal mesh for mid-infrared plasmonic sensors
WC-1.50	. 50	<u>Odeta Limaj</u> ¹ ; F.M. Mattioli ² ; M.O. Ortolani ² ; R.L. Leoni ² ; S.L. Lupi ¹
		¹ CNR-IOM Laboratorio Tasc, Dipartimento di Fisica, Università di Roma "La
		Sapienza", Italy; ² CNR-Istituto di Fotonica e Nanotecnologie, via Cineto
		Romano 42, 00156 Rome, Italy
		Large area substrateless films periodically patterned were fabricated. The
		Large area substrateless times periodically patterned were radificated. The

		measured mid-infrared (IR) spectra display resonant features with high Q- factor due to the interaction of the radiation with Surface Plasmon (SP) modes on both faces of the film. The devices can be used for SP-based sensors.
We-P.52	: 5:	Enhancement of THz field in a gap of dipole antenna Y. Kadoya ¹ ; <u>H. Tanaka¹</u> ; Y. Sugitani ¹ ; J. Kitagawa ¹ ; F. Blanchard ² ; H. Hirori ² ; A. Doi ³ ; M. Nagai ² ; K. Tanaka ² ¹ Hiroshima University, Japan; ² Kyoto University, Japan; ³ Olympus Corporation, Japan We investigated the THz field enhancement in dipole antennas. Numerical simulation showed an enhancement factor of 70 in a 150 µm-long antenna at 1 THz. The simplicity of the structure may fit to the intense THz field-material interaction research, attracting a lot of recent interests.
We-P.53	: 5;	Two-Dimensional Photonic Crystals Fabricated by Wet Etching of Silicon <u>J.I. Kim</u> ¹ ; S.G. Jeon ¹ ; G.J. Kim ¹ ; J.H. Kim ¹ ; H.H. Lee ² ; S.H. Park ³ ¹ Korea Electrotechnology Research Institute, Korea, Republic of; ² Chosun University, Korea, Republic of; ³ Yeungnam University, Korea, Republic of Two-dimensional photonic crystals (PCs) are fabricated by using the wet chemical etching of high-resistivity silicon. The formation of the photonic- band-gap at a frequency of about 100 GHz is demonstrated by the measured and the 3D FDTD simulated transmittance of the transverse-magnetic (TM) mode.

We-P.55	: 63	Frequency Propagation Characteristics for Two-Dimensional Photonic
		Crystals Using Terahertz-Time Domain Spectroscopy (THz-TDS)
		G.J. Kim; J.I. Kim; S.G. Jeon; J.H. Kim
		Korea Electrotechnology Research Institute, Korea, Republic of
		We report frequency propagation characteristics for two-dimensional photonic
		crystal using terahertz time-domain spectroscopy. The transmission frequency
		spectrum obtained by the 3D FDTD simulation and the experiment, and the
		frequency range of stop bands is in good agreement with the results

IRMMW-THz 2010

We-P.56	: 65	Investigation of reflection-type cone condenser used for THz detectors
		<u>M. Aoki¹</u> ; S. Tripathi ² ; N. Hiromoto ²
		¹ Shizuoka University, Japan; ² Shizuoka University, Japan
		We have made a THz triangle cone condenser which is lower in cost and
		easier to fabricate and has higher efficiency than Winston cone. The sharpness
		of field of view (FOV) can be improved by attaching a baffle to the condenser.
We-P.57	: 67	Wire-grid polarizer in the terahertz region fabricated by nanoinprint
		technology
		<u>K. Takano¹</u> ; I. Morimoto ² ; H. Yokoyama ³ ; M. Hangyo ¹
		¹ Osaka University, Japan; ² ASAHI KASEI Corp., Japan; ³ ASAHI KASEI E-
		MATERIALS Corp., Japan
		Wire-grid polarizers in the terahertz region have been fabricated by
		nanoinprint technology on flexible substrates. They show ideal polarization
		property whereas the cost is very low.
We-P.58	: 69	Pinch harmonic analogue of terahertz nanoresonator control using metal nano-rods
		<u>H.R. Park¹</u> ; S.M. Koo ¹ ; Y.M. Park ¹ ; M.A. Seo ¹ ; O.K. Suwal ² ; Q. Park ³ ; S.S.
		$\frac{\text{H.K. Fark}}{\text{Choi}^2}$, N.K. Park ¹ ; K.J. Ahn ¹ ; D.S. Kim ¹
		¹ Seoul National University, Korea, Republic of; ² Sun Moon University, Korea,
		Republic of; ³ Korea University, Korea, Republic of
		We demonstrate that platinum nano-rods across the gap of a nanoresonator
		shift or overdamp the resonance depending on the rod-size. Moreover, what is
		striking is that the smallest nano-rods almost completely turn off both the
		fundamental and higher mode resonances, analogous to the pinch harmonics.
		Broadband polymer microstructured THz fiber coupler with down-doped
We-P.59	:6;	cores
		<u>K. Nielsen¹</u> ; H.K. Rasmussen ² ; O. Bang ² ; P.U. Jepsen ¹
		¹ Technical University of Denmark, Denmark; ² Technical University of
		Denmark, Denmark
		We demonstrate a broadband THz directional coupler based on a dual core
		photonic crystal fiber (PCF) design with mechanically down-doped core
		regions. For a center frequency of 1.3 THz we demonstrate a bandwidth of
		0.65 THz.
We-P.60	:72	Frequency Modulation for Continuous Wave Terahertz Spectroscopy
		<u>Maik Scheller</u> ¹ ; T. Kinder ² ; O. Peters ¹ ; T. Müller-Wirts ² ; M. Koch ¹
		¹ Philipps-Universität Marburg, Germany; ² TEM Messtechnik GmbH,
		Germany
		We propose a frequency modulation for continuous wave terahertz
		spectroscopy to replace conventional delay lines. We show that this technique
		in combination with a lock-in amplifier allows for a single sampling point
		detection of the amplitude and phase of the terahertz signal.

		a resolution and reproducibility of the order of 1 degree up to 300 GHz.
We-P.62	: 74	Broadband THz Vacuum Window using Impedance Matching Approach
		A. Srivastava; O.J. Kwon; M. Sattorov; A. Sharma; A. Tanwar; G.S. Park
		Center for THz-Bio Application Systems, Korea, Republic of
		A practical pillbox window design was performed using impedance matching
		approach for use in THz vacuum electron devices. The fabricated W-band
		miniature window assembly showed broad frequency band ~ 8 GHz for
		VWSR less than 1.22
We-P.63	: 75	Comparative simulation study of ZnTe heating effects in focused THz
		radiation generation
		H. Lin^1 ; <u>B.M. Fischer</u> ² ; D. Abbott ¹
		¹ The University of Adelaide, Australia; ² Institut Franco-Allemand de
		Recherches de Saint Louis, France
		With prolonged intense exposure of an optical beam on the ZnTe crystal, the
		problem of crystal photodamage becomes increasingly relevant. In reducing
		the risk of damage, practically this has meant a decrease in optical power
		density. The heating effects with a reduced power density are investigated.
We-P.64	:77	Terahertz Emission from InAs and InSb under a 1.55 m Laser Excitation
		Christopher Que; H. Nakajima; M. Tani
		Research Center for Development of Far-Infrared Region, University of Fukui,
		Japan
		Terahertz (THz) emission from a 1.55 µm laser excitation on InAs and InSb
		was investigated. InAs still showed a much higher emission as compared to
		InSb that differs from earlier reports. Semiconductor quality or different
		surface conditions could be the cause of this unexpected result.
		Wavelength Tunable Characteristics of Mid-Infrared Intracavity 3-
We-P.65	: 79	-
WE-F.03	. 19	micron Waveband Light Source with 805-nm-band Laser Diode
		Excitation N. X and $\frac{1}{2}$ K. Alashan, $\frac{1}{2}$ T. Kamanishi ¹ , N. Xamana $(x^2, D. N)$
		<u>N. Yamamoto¹</u> ; K. Akahane ¹ ; T. Kawanishi ¹ ; N. Yamamoto ² ; R. Naitou ² ; H.
		Sotobayashi ²
		¹ National Institute of Information and Communications Technology, Japan;
		² Aoyama Gakuin University, Japan
		A wavelength tunable mid-infrared 3-micron waveband light source with an
		effective intracavity system is successfully demonstrated using a high-
		performance 805-nm-band laser diode excitation. Advantages include wide-
		tunability (approx. 90-nm), simple wavelength controllability, and small
		footprint.
We-P.66	:7;	Terahertz Emission from Lithium Ternary Chalcopyrite Crystals
		Kei Takeya ¹ ; Y. Takemoto ¹ ; T. Matsukawa ² ; M. Yoshimura ² ; I. Kawayama ¹ ;
		H. Murakami ¹ ; Y. Mori ² ; M. Tonouchi ¹
		¹ Institute of Laser Engineering, Osaka University, Japan; ² Graduate School of
		Engineering, Osaka University, Japan
		We have investigated the terahertz (THz) emission from lithium ternary
		chalcopyrite crystals illuminated by 1560-nm femtosecond pump laser pulses.
		Monocyclic THz emission and narrowband THz emission from the coherent
		phonons in LiInSe2 and LiGaSe2 were observed at 2.87 and 3.45 THz,
		respectively.
		respectively.

: 83	Propagation of THz Field through a Tapered Parallel-plate Waveguide
	<u>T.I. Jeon;</u> E.S. Lee; Y.B. Ji
	Korea Maritime University, Korea, Republic of
	We present terahertz field propagation through input- and output-side tapered
	parallel-plate waveguide (TPPWG). Coupling of the TPPWG having a $3_i \mathcal{E}$
	slop angle improved the measured THz amplitude by over 100%, unlike the
	cylindrical silicon lens used in the PPWG.
: 85	Enhanced Terahertz Transmission of GaN Quantum Wells
	J. Torres ¹ ; T. Laurent ¹ ; R. Sharma ¹ ; P. Nouvel ¹ ; <u>S. Blin¹</u> ; L. Chusseau ¹ ; C.
	Palermo ¹ ; L. Varani ¹ ; Y. Cordier ² ; M. Chmielowska ² ; J.P. Faurie ³ ; B.
	Beaumont ³ ; E. Starikov ⁴ ; E. Shiktorov ⁴ ; V. Gruzinski ⁴
	¹ Institut d'Electronique du Sud UMR 5214 - Universite Montpellier 2, France;
	² Centre de Recherche sur l'Hétéro-Epitaxie et ses Applications, UPR 10 -
	CNRS, rue Bernard Grégory, 0, France; ³ Lumilog, 2720, Chemin Saint
	Bernard, Les Moulins I, 06220 Vallauris, France, France; ⁴ Semiconductor
	Physics Institute, A. Gostauto 11, 2600 Vilnius, Lithuania, Lithuania
	Terahetz transmission spectra at 15 K of GaN HEMTs are investigated.
	Enhanced signals in the transmission spectra interpreted as preliminary
	indications of the activation of the OPTTR mechanism can be considered as a
	relevant step in the development of devices capable to produce THz radiations.

We-P.70	: 87	 Terahertz Emission from InP Photoconductive Antenna Excited by a 1.56 m Femtosecond Fiber Laser <u>K. Serita;</u> G. Chen; S. Mizuno; H. Murakami; I. Kawayama; M. Tonouchi Institute of Laser Engineering, Osaka University, Japan Terahertz (THz) emission property of Fe-implanted InP photoconductive antenna (PCA) has been studied by 1.56 μm wavelength excitation. The obtained experimental data by THz time-domain spectroscopy measurements shows that the possibility of two-photon excitation in the THz emission process.
We-P.72	: 89	THz radiation from InAs surfaces with photonic crystal structures under optical excitation <u>C.S. Kee;</u> C. Kang; H.K. Yoo; I.B. Sohn Advanced Photonics Research Institute/ GIST, Korea, Republic of We investigated the characteristics of THz radiation from a n-type InAs wafer with a triangular array of air holes under optical excitation. We observed the power enhancement of THz radiation from the InAs surface surrounded by the air holes in a frequency range

We-P.74 : 8:

THz radiation from GaAs surfaces with metallic nano-dot arrays under optical excitation

<u>C. Kang¹</u>; H.K. Yoo¹; J.W. Lee¹; C.S. Kee¹; H.S. Jung²; G.Y. Jung² ¹Advanced Photonics Research Institute/ GIST, Korea, Republic of; ²Department of Materials Science and Engineering/ GIST, Korea, Republic of We present characteristics of THz radiation from GaAs wafers with metallic nano-dot arrays under optical excitation. Metallic nano-dots were introduced by a nano-imprinting technique. We found that the metallic nano-dot arrays can make the bandwidth of THz radiation from GaAs surfaces narrow.

76	: 8;	Transverse dynamics of the surface wave excited by wide electron beam
		A.E. Fedotov; P.B. Makhalov
		Institute of Applied Physics of RAS, Russian Federation
		According to simulations, a stationary single-mode operation of the surface-
		wave microwave generator excited by a wide beam is possible up to the beam
		width of at lest 10 wavelengths.
77	. 02	A Terahertz Light Emitter of a Semiconductor-Multilayer Coupled
//	: 95	Cavity by Frequency Mixing Signal Generation
		T. Isu; F. Tanaka; T. Takimoto; K. Morita; T. Kitada
		The University of Tokushima, Japan
		A coupled-cavity structure for terahertz light emitting devices is proposed.
		Strong sum frequency signal of the two cavity modes was observed. We found
		that an asymmetric structure was essential to emit a difference frequency light
		by a simulation of the optical field in the cavity.
70	. 05	390-480 GHz Photon-assisted tunneling steps generated by parallel
/0	. 95	Josephson tunnel junction arrays
		Faouzi Boussaha ¹ ; A. Feret ² ; C. Chaumont ² ; L. Pelay ² ; M. Batrung ² ; B.
		Lecomte ² ; M. Salez ³ ; F. Dauplay ² ; J.M. Krieg ² ; G. Beaudin ² ; L. Lapierre ⁴ ; D.
		Bouville ⁵
		¹ JPL, United States; ² Observatoire de Paris, France; ³ Obervatoire de Paris,
		France; ⁴ CNES, France; ⁵ IEF - Orsay, France
		We report on the first direct detection of submillimeter waves emitted by small
		parallel tunnel junction arrays. They are specially suited for applications such
		as clock for RSFQ electronics or as local oscillator for THz superconducting
	77	77 : 93

We-P.79	: 97	integrated receivers. Terahertz Generation with Tilted-Front Laser Pulses: Dynamical Theory Predicts the Ways to Higher Terahertz Yield M.I. Bakunov ¹ ; <u>S.B. Bodrov²</u> ; M.V. Tsarev ¹ ; E.A. Mashkovich ¹ ¹ University of Nizhny Novgorod, Russian Federation; ² Institute of Applied Physics, Russian Federation
We-P.80	: 99	A dynamical theory of terahertz emission from a femtosecond laser pulse with tilted intensity front in an electro-optic crystal is developed. Applying the theory to GaAs pumped by a fiber laser and cryogenically cooled LiNbO3 pumped by a Ti:sapphire laser predicts the ways to higher terahertz yield.
we-P.80	:99	A monolithic 280 GHz HBV frequency tripler <u>Tomas Bryllert¹</u> ; A.Ö. Olsen ² ; J. Vukusic ³ ; J. Stake ³
		¹ Chalmers University of Technology; ² Wasa Millimeter Wave AB, Sweden;
		³ Chalmers University of Technology, Sweden
		We present the design and measurements of a Heterostructure Barrier Varactor
		based frequency tripler for 280 GHz. The tripler is fabricated as a monolithic
		circuit on an InP substrate. Several circuit versions for input power levels
We-P.82	. 0.	between 100 mW and 1 W have been designed.
we-P.82	: 9:	THz Surface Plasmons on 1D Plasmonic Metamaterials with Disorder G.S. Park; J.K. So
		Center for THz-Bio Application Systems, Department of Physics and
		Astronomy, Korea, Republic of
		The excitation of propagating THz surface plasmons on 1D plasmonic metamaterials with disorder is studied using convection electrons. The introduction of disorder is found to support non-Bloch surface plasmons and reduce the mode competition between the excited surface plasmons.

We-P.84	: 9;	Antenna Measurement System Operating at W and J Millimeter Wave
WC-1.04	. ,	Bands
	::3	<u>A. Muñoz-Acevedo¹</u> ; M. Sierra-Castañer ² ; J.L. Besada ²
		¹ ETSI Telecomunicación, Spain; ² Technical University of Madrid, Spain
		A millimeter wave antenna measurement system is presented. The frequencies
		of operation are around 100 GHz and 300 GHz (W/J Bands). The facility is a
		single reflector compact range system. Design tasks deal with the serrated
		reflector and the corresponding millimeter wave instrumentation design.
We-P.85		Design of Sierpinski Carpet Antenna using two different feeding
		mechanisms for WLAN applications
		A. Aggarwal ¹ ; <u>M.V.K. Kartikeyan²</u>
		¹ Indian Institute of Technology Roorkee, India; ² IIT Roorkee, India
		In this work, a printed antenna for WLAN application is designed, which is
		working at 2.4 GHz and 5.2 GHz. The printed antenna uses the fractal
		geometry i.e., sierpinski carpet to design the antenna. This paper discusses the

		design steps to achieve the desired resonance characteristics.
We.P-86	::6	On the Size Reduction of Microstrip Antennas with DGS
		Machavaram Kartikeyan; A.K.A. Arya
		IIT Roorkee, India
		The Electromagnetic bandgap (EBG) structures have been used to improve the
		performance of the antennas. In this work, an extensive design study of some
		specific antennas will be presented.
		Design Studies of Stacked U-Slot Microstrip Patch Antenna for Dual
We-P.87	::9	Band Operation
		H.T. Harshvardhan Tiwari; <u>M.V.K. Kartikeyan Machavaram</u>
		IIT Roorkee, India
		In this work, an extensive design study of a stacked U-slot microstrip patch
		antenna for dual band operation will be presented. This antenna consists of two
		stacked microstrip patches, both having U-slots embedded in them.
		Four-Leaf Clover-Shaped Antenna on an Extended Hemispherical Lens
We-P.88	::;	for a High-Output-Power THz Photomixer
		T.K. Nguyen ¹ ; <u>I. Park¹</u> ; I. Woo ¹ ; H. Lim ¹ ; H. Han ²
		¹ Ajou University, Korea, Republic of; ² POSTECH, Korea, Republic of
		A four-leaf-clover-shaped antenna composed of a highly resonant radiation
		element and a stable DC feed element and mounted on an extended
		hemispherical lens is described. The proposed antenna was optimized to have
		maximum total efficiency and maximum directivity on an extended
		hemispherical lens.
We-P.89	:;3	Study for high transmission efficiency in long distance transmission line
WC-1.07	.,5	Yasuhisa Oda; K. Kajiwara; K. Takahashi; K. Sakamoto
		Japan Atomic Energy Agency, Japan
		The transmission mode purity in ITER relevant long distance transmission line
		was measured. Although the transmission power included 95% HE11 at the
		input of the transmission line, HE11 power was reduced as 91% after long
		distance transmission because of mode conversion loss.
We-P.90	:;5	Designing of High-Q Slow-Wave Coplanar Strips for CMOS MMICs
We 1.90	.,5	Ali Karami Horestani; S. Al-Sarawi; D. Abbott
		The University of Adelaide, Australia
		The effect of geometric dimensions of slow-wave coplanar strips on Q-factor,
		Zc, and on-chip wavelength are studied. Based on extracted guidelines, slow-
		wave coplanar strips are designed for a 50Ω characteristic impedance and Q of
		31 for operation in the mm-wave regime at 60GHz.
		Easily - Manufacturable Waveguide to Microstrip Submm-Wave
We-P.91	:;7	Transition
		<u>R. Camblor</u> ; S. Ver Hoeye; G. Hotopan; C. Vázquez; M. Fernández; F. Las
		Heras
		University of Oviedo, Spain
		An easily manufacturable waveguide to microstrip transition is presented for
		the 300 GHz frequency band. The transition can be tuned by varying the
		position of the short-circuit of the waveguide. The transition has been
		manufactured using PCB laser prototyping machinery.

We-P.92 :;9 Radiation pattern measurements of an integrated TEM horn antenna Jean-Francois Lampin; G. Ducournau; A. Beck; D. Ducatteau; E. Peytavit; T.

Jean-Francois Lampin; G. Ducournau; A. Beck; D. Ducatteau; E. Peytavit; T. Akalin

IEMN, France

•

...

...

A TEM horn antenna is integrated with a uni-travelling-carrier photodiode. Its radiation pattern is measured from 280 to 540 GHz thanks to a 1.55 μ m photomixing set-up and a sub-harmonic mixer. The direction of the main lobe shifts to a lower incidence when the frequency is increased.

We-P.95 We-P.96	:;;	Design Optimization of Meta-Material Transmission Lines for Linear and
	;23	Non-Linear Microwave Signal Processing
		<u>R. Marcelli¹</u> ; S. Simion ² ; G. Bartolucci ³ ; E. Proietti ⁴ ; G. De Angelis ⁴ ; A.
		Lucibello ⁴
		¹ CNR-IMM Roma, Italy; ² National Institute for Research and Development in
		Microtechnologies, Romania; ³ University of Rome "Tor Vergata", Department
		of Electronics Engineering, Italy; ⁴ CNR – IMM Roma, Italy
		The possibility to use CRLH (Composite Right-/Left-Handed) cells to realize
		both distributed wide-band filters for linear signal processing and non-linear
		devices like frequency doublers is investigated analytically and numerically.
		The transmission properties of terahertz waves through metal-dielectric-
	, 23	metal structure
		Xiao-Yong He
		Henan University of Technology, China
		The two-dimensional transmission properties of terahertz waves through
		MDM structure have been investigated by using a two-step transfer matrix
		method. As the dielectric strip length increases, the propagation loss shows a
		peak, which are very useful to find the optimal sample size.

CN.

• 1 7

We-P.99 ; 24

THz Surface Plasmon Polaritons Propagation along Metal Nanowire <u>L. Zhao</u>

Chinese Academic of Engineering Physics, China

Terahertz (THz) surface plasmon polaritons (SPPs) propagation along metal wire of nanometer scale is studied. An analytical theory is deduced to describe the propagation properties of THz SPPs. Propagation properties are discussed based on this model.

Thursday, September 09, 2010

	09:00 -	10:30Thursday Plenary Chair: K. Fukunaga	Aula Magna
PL.09 PL.10	; 26	The Future of Medical Imaging <u>Vincent Wallace</u> ¹ ; E. Pickwell-MacPherson ² ; C. Reid ² ¹ University of Western Australia, Australia; ² Hong Kong Un Science and Technology, Hong Kong Medical physics is advancing rapidly, making use of many imaging/spectroscopic techniques across the electromagnetic are many cases where the demand for a medical imaging tec and non-invasive has not been met. Can terahertz meet that in Exploitation of the entire electromagnetic spectrum in an studies <u>Mauro Bacci</u> IFAC-CNR, Italy The use of electromagnetic waves to investigate works of ar considering the whole interval from X-rays up to radiofreque particular attention to non-invasive and transportable instrum	c spectrum. There hnique that is safe need? rt conservation t is reviewed encies paying
	11:00 -	12:30 Materials 4 Chair: P. Calvani	Aula Magna
Th-A1.1	; 32	Developing InP-based solar cells: time-resolved teraherts of photoconductivity and carrier multiplication efficienc <u>Ben Spencer</u> ¹ ; D.M. Graham ¹ ; C. Lange ² ; S. Chattopadhyay ¹ Photon Science Institute, University of Manchester, United ² University of Toronto, Canada; ³ Cockcroft Institute, United Time-resolved terahertz spectroscopic studies were carried of measure photoconductivity on the picosecond timescale. Th multiplication quantum yields clearly demonstrate the poten colloidal InP-based next-generation solar cells.	ies ³ ; W.R. Flavell ¹ Kingdom; I Kingdom put on bulk InP to e carrier
Th-A1.2	; 35	Pump/probe THz Spectroscopy of the Conductivity of T H.G. Roskos ¹ ; J. Nishitani ² ; <u>V. Blank</u> ¹ ; F.Z. Meng ¹ ; M.D. T Nagashima ² ; M. Hangyo ² ; V. Solovyeva ¹ ; M. Huth ¹ ¹ Physikalisches Institut, Goethe-Universität Frankfurt, Gern Laser Engineering, Osaka University, Japan We perform optical-pump/THz-probe measurements on TTI the metallic state to study the picosecond conductivity dynar suggest charge-density-wave formation on a time scale of 10 ultrafast thermali-zation process.	homson ¹ ; T. hany; ² Institute of F-TCNQ films in mics. The data

Th-A1.3	; 36	THz studies of multigap superconductors
		<u>Andrea Perucchi¹</u> ; S. Lupi ² ; M. Ortolani ³ ; D. Nicoletti ⁴ ; D. Di Castro ⁵ ; M.
		Putti ⁶ ; C. Ferdeghini ⁷ ; P. Dore ⁴ ; L. Baldassarre ¹
		¹ Sincrotrone Trieste S.C.p.A., Italy; ² CNR-IOM and Laboratorio TASC and
		Universita di Roma "Sapienza", Italy; ³ CNR-Istituto di Fotonica e
		Nanotecnologie, Italy; ⁴ CNR-SPIN and Universita di Roma "Sapienza", Italy;
		⁵ CNR-SPIN and Universita di Roma Tor Vergata, Italy; ⁶ CNR-SPIN and
		Universita di Genova, Italy; ⁷ CNR-SPIN and Universita di Genova, Israel
		We report on THz reflectivity results on multigap superconductors: The
		prototype multiband superconductor MgB2, the A-15 compound V3Si, and
		Co-doped BaFe2As2. Our results highlight the applicability of a parallel
		resistor model to describe the THz properties of multigap superconductors
	•	High Pressure Infrared Studies of Correlated Electron Materials using
Th-A1.4	; 38	Synchrotron Radiation
		Hidekazu Okamura ¹ ; M. Matsunami ² ; K. Shoji ¹ ; T. Nanba ¹
		¹ Kobe University, Japan; ² University of Tokyo, Japan
		We have studied the IR reflectance of correlated electron materials under high
		pressure to 20 GPa, using synchrotron radiation as a highly bright IR source.
		We will describe the instrumentation for this challenging experiment, and
		recent results on heavy electron and superconducting materials.
		THz spectroscopy of Ceramics and Polycrystalline Materials for
Th-A1.5	; 3:	Characterization of Microwave Dielectric Properties
		<u>K.M. Siegrist¹</u> ; D.F. Plusquellic ² ; M.E. Thomas ¹
		¹ Johns Hopkins University, United States; ² National Institute of Standards and
		Technology, United States
		Microwave dielectric properties of ceramic and polycrystalline materials are
		governed by temperature dependent multi-phonon difference frequency bands
		in the THz. Measurements of the lower absorption band edge are combined
		with a classical oscillator model to successfully characterize MW dielectric.
		Study on Random Errors in THz Signal and Optical Constants Observed
Th-A1.6	;42	with THz Time-Domain Spectroscopy
		Norihisa Hiromoto; S.R. Tripathi; M. Takeda; M. Aoki
		Shizuoka University, Japan
		We have observed random errors in THz intensity and phase spectra measured
		with THz-TDS, which are almost proportional to THz intensity and phase
		respectively and common for reference and sample. We discuss the
		characteristics of random errors and application to improving accuracy of
		THz-TDS.

	11:00 -	12:30 Biology 3	Aula Minor
		Chair: S. Joo-Hiuk	
Th-B1.1	; 44	Can Neurons Sense Millimeter-Waves?	
	,	<u>Peter Siegel¹</u> ; V. Pikov ²	
		¹ California Institute of Technology, United States; ² H	untington Medical
		Research Institutes, United States	-
		We present the first direct evidence of real time, milli	meter-wave (60 GHz)
		induced changes in cortical slice individual neuronal	activity at RF exposure
		levels (<300nW/cm2) more than 1000X below the M	
		implications for non-contact stimulation of neurons ir	
Th-B1.2	;46	Investigating the Role of Water Content on the Te	rahertz Properties of
111 0 112	, 10	Rat Liver Cirrhosis	
		S.Y. Huang ¹ ; <u>S.M.Y. Sy¹</u> ; E. Pickwell-MacPherson ²	TT 1 1. 0TT
		¹ Department of Electronic Engineering, The Chinese	
		Kong, Hong Kong; ² Hong Kong University of Scienc	e and Technology, Hong
		Kong Wa maying by non-outed the dialoctric manartics of no	unal and discound not
		We previously reported the dielectric properties of no liver tissues by THz pulsed imaging. In this work furt	
		carried on to understand the observed differences in th	-
		looking into the water contents of the normal and cirr	
		THz Imaging of Skin Tissue - Exploiting the Stron	-
Th-B1.3	; 48	Water	g noncent ny or Erquin
		Elliott Brown ¹ ; Z.D. Taylor ² ; P. Tewari ² ; R.S. Singh ²	; M.O. Culjat ² ; D.B.
		Bennett ² ; W.S. Grundfest ²	3
		¹ Wright State University, United States; ² UCLA, Unit	ted States
		We present a novel system for imaging burns and other	er lesions of human skin
		tissue utilizing the acute sensitivity of THz radiation t	
		We have engineered and delivered (to UCLA Medica	
		radar that carries out reflective, 2D imaging by mecha	
Th-B1.4	; 4:	Terahertz Imaging of Paraffin-Embedded VX2 H	Iepatoma Model
		Jaeyeon Park ¹ ; H.J. Choi ² ; H. Lim ³ ; J.H. Son ¹	
		¹ University of Seoul, Korea, Republic of; ² University	of Ulsan, Korea,
		Republic of; ³ Ajou University, Korea, Republic of We evaluated the diagnostic feasibility of THz imagin	ng taabniqua for the VV2
		tumor with spectroscopic information.	ing technique for the VA2
		Investigation of spectral features of progesterone,	17.
Th-B1.5	;4;	hydroxyprogesterone and cortisone in THz range	17
		<u>Olga Cherkasova¹</u> ; M.M. Nazarov ² ; D.A. Sapozhniko	v^2 : A.P. Shkurinov ² :
		$\overline{\text{V.A. Volodin}^3; \text{V.A. Minaeva}^4; \text{V.F. Minaev}^4; \text{G.V. E}}$	Baryshnikov ⁴
		¹ Institute of Laser Physics SB RAS, Russian Federati	
		M.V.Lomonosov Moscow State University, Russian I	Federation; ³ cInstitute of
		Semiconductor Physics SB RAS, Novosibirsk State U	
		Federation; ⁴ Bogdan Khmelnitskij National Universit	
		The THz and Raman spectra of progesterone, 17α -hyd	
		cortisone in the region of low-frequency infrared vibr	
		measured. Several intensive bands have unusual temp	*
		Vibration frequencies are calculated by density functi	onal theory.

	11:00 -	12:30 Art conservation and diagnostics	Room 2
		Chair: K. Fukunaga	
Th-C1.1	; 53	Terahertz investigation of Egyptian artifacts <u>julien labaune</u> ¹ ; J.B. Jackson ² ; S. Pagès-Camagna ³ ; M. Me ¹ ILE-C2RMF, France; ² ILE, France; ³ C2RMF, France	
		THz TDS can be use to image optically opaque objects or materials. In this presentation we propose to use terahertz types of Egyptian artifact	to analyze different
Th-C1.2	;56	THz spectroscopy and chemometrics for quantitative d chemical properties and dating of historic paper	etermination of
		<u>T. Trafela¹</u> ; M. Mizuno ² ; K. Fukunaga ² ; M. Strlic ³ ¹ Faculty of Chemistry and Chemical Technology, Slovenia of Information and Communications Technology, Japan; ³ London, United Kingdom	
		THz spectroscopy and chemometrics have been used for de chemical properties of historic paper. For the first time, the THz technique for quantitative chemical characterisation of organic materials has been demonstrated.	e potential of the f complex natural
Th-C1.3	; 58	Feasibility of millimeter wave imaging as tool for nonde inspection of wood and wooden structures	estructive
		<u>Yoshihisa FUJII</u> ¹ ; Y. Fujiwara ² ; S. Tanaka ² ; S. Okumura ² ; Mochizuki ³ ; N. Kukutsu ³	
		¹ Graduate School og Agriculture, Kyoto University, Japan Japan; ³ NTT Microsystem Integration Laboratories, Japan Dielectric manarting of wood were estimated by millimete	
		Dielectric properties of wood were estimated by millimeter. The influence of cellular structure, moisture content and in imaging was clarified. The feasibility of the millimeter ima nondestructive evaluation of wood and wooden structure w	nner defect on the aging for vas confirmed
Th-C1.4	; 5:	Terahertz-pulse imaging for non-destructive analysis of paintings	f layered art
		<u>E. Abraham</u> ¹ ; A. Younus ² ; J.C. Delagnes ¹ ; P. Mounaix ¹ ¹ CPMOH - Université de Bordeaux, France; ² CPMOH - U Bordeaux, Pakistan	niversité de
		Terahertz-pulsed imaging is employed to reveal primary gr covered with multiple layers of paintings. Buried layer info handmade sketches drawn with pencil leads were identified	ormation, such as
	(2)	and transmission 2D imaging. A simple electromagnetic model for buried interface de	etection via THz
Th-C1.5	; 62	holographic data <u>F. Soldovieri</u> ¹ ; I. Catapano ² ; L. Crocco ¹ ; M.R. Scarfi ¹ ; A. I Gallerano ³ ; E. Giovenale ³ ; A. Petralia ³ ¹ IREA-CNR, Italy; ² irea-cnr, Italy; ³ ENEA, Italy This work presents a simple electromagnetic model to deal from a buried interface and to provide the basis of a recons	Doria ³ ; G.P. I with the reflection struction strategy
		whose data are given in terms of the intensity of the THz in	nterference signal.

	11:00 -	12:30 Lasers	Room 3
	_	Chair: R. Miles	
Th-D1.1	. 61	Emission of Terahertz Radiation from Two-Dimensi	ional Electron
111-D1.1	;64	Systems in Semiconductor Nano-Heterostructures	
		<u>Taiichi Otsuji</u>	
		Tohoku University, Japan	
		This paper reviews recent advances in THz emission from	om 2D electron systems
		in semiconductor nano-heterostructures. The topics cov	
		emission from 2D plasmons in III-V heterojunction tran	
		stimulated THz emission from fs-laser pumped graphen	
Th-D1.2	;67	Multi-frequency terahertz stimulated emission from	optically pumped co-
III-D1.2	,07	doped silicon crystals	2
		<u>Sergey Pavlov</u> ¹ ; R. Eichholz ¹ ; N.V. Abrosimov ² ; B. Rec	
		¹ German Aerospace Center, Germany; ² Leibniz Institut	
		Germany; ³ FOM Institute for Plasma Physics, Netherland	
		Aerospace Center and Technische Universität Berlin, G	•
		Stimulated terahertz emission at different frequencies be	
		6.4 THz has been realized from a single silicon crystal of	- ·
		by two hydrogen-like donor centers, which were optical	lly excited on
	50	intracenter transitions at low lattice temperature.	
Th-D1.3	;68	Stress dependent frequency shift in Si:Bi and Si:S	
		<u>Roman Zhukavin¹</u> ; K.A. Kovalevsky ¹ ; V.N. Shastin ¹ ; S	.G. Pavlov ² ; H.W.
		Hübers ² ; H. Riemann ³ ; N.V. Abrosimov ³	· 2 T · · · · C
		¹ Institute for Physics of Microstructures, Russian Feder	
		Planetary Research, Germany; ³ Institute for Crystal Gro	
		It has been shown that external stress applied to bulk sil Sb influences on output emission spectrum under CO2	· ·
		small stress spin-orbit coupling of working states can be	
		changing depend on donor and crystallographic axis.	c tuned. The details of
Th-D1.4	; 6:	Gain and efficiency of THz donor lasing in axially s	stressed silicon
	, 0.	<u>Valery Shastin¹</u> ; R. Zhukavin ¹ ; K. Kovalevsky ¹ ; V. Tsy	
		H.W. Hübers ²	promo ; , , , , , , , , , , , , , , , , , ,
		¹ Institute for Physics of Microstructures, Russian Feder	ation: ² Institute of
		Planetary Research, Germany	······, ········
		Results of experimental study of terahertz (4-6 THz) la	ser action of optically
		excited group-V donors (phosphor P, antimony Sb, arse	enic As, bismuth Bi) in
		axially compressed silicon crystal which is observed at	liquid helium
		temperatures are presented and discussed.	
Th-D1.5	;72	Performance of a compact, continuous-wave teraher	tz source based on a
111-D1.5	, 72	quantum-cascade laser	
		Heiko Richter	
		German Aerospace Center (DLR), Germany	
		We report on the development of a compact, easy-to-us	
		source, which combines a quantum-cascade laser (QCL	-
		input-power Stirling cooler. The applicability of the sys	tem is demonstrated by
		imaging and molecular-spectroscopy experiment	

	11:00 -	12:30 Gyrotrons 5	Room 7
		Chair: M.Q. Tran	
Th-E1.1	; 73	THz Gyrotron FU CW Series for high power THz <u>Toshitaka Idehara</u> ; T. Saito; I. Ogawa; S. Mitsudo; Y. T Mudiganti; K. Kosuga University of Fukui, Japan Development of high frequency cw gyrotrons (Gyrotron high power far-infrared radiation sources was advanced paper, we would introduce the development and applica	Tatematsu; R. Ikeda; J. n FU CW Series) as in FIR FU. In this ations of high frequency
Th-E1.2	;76	gyrotrons in FIR FU, including application to high power High-harmonic sectioned-cavity THz gyrotrons Andrey Savilov; I.V. Bandurkin; V.L. Bratman; Y.K. K Institute of Applied Physics, Russian Federation A third-harmonic large-orbit THz gyrotron with a section combines a long electron-wave interaction region and a diffraction Q-factor, is described. A similar scheme can self-exciting two-wave gyrotron with frequency multipl	alynov; N.A. Zavolsky oned cavity, which relatively low be used to realise a
Th-E1.3	. 70	Development of continuously frequency tunable gyro	
Th-E1.4	; 79	FU CW VI A for application to 600 MHz DNP-NMR <u>R. Ikeda¹</u> ; T. Idehara ¹ ; I. Ogawa ¹ ; K. Kosuga ¹ ; T. Saito ¹ Ueda ² ; T. Fujiwara ² ; T.H. Chang ³ ¹ Research Center for Development of Far-Infrared Regi Fukui, Japan; ² Institute for Protein Research, Osaka Uni ³ Department of Physics, National Tsing Hua University Gyrotron is needed to analyze the structures of complex NMR spectroscopy. We have been developing gyrotrom frequency tunability using a long cavity. Prototype gyro a tuning range of 1.6 GHz and exceeded output power o Electromagnetic Pulse Self-Compression under Cycl	; Y. Matsuki ² ; K. on, University of iversity, Japan; , Taiwan proteins by DNP- s having boardband otron was achieved with of 10 W.
111-E1.4	;7;	Absorption by Plasma or Electron Beam <u>Naum GInzburg</u> ; I. Zotova; A. Sergeev Institute of Applied Physics RAS, Russian Federation Based on analogy to well known process of self-induced optical pulse propagating through passive two-level med of electromagnetic pulse self-compression under condit resonance absorption by plasma or electron beams.	dia we describe effect ions of cyclotron
Th-E1.5	; 83	Development of high power sub terahertz gyrotrons CTS measurement <u>T. Saito¹</u> ; Y. Tatematsu ¹ ; S. Ogasawara ¹ ; N. Yamada ¹ ; A V.N. Manuilov ² ¹ University of Fukui, Japan; ² Nizhny Novgorod State U Federation High power sub terahertz gyrotron are under development application to CTS. Succeeding to more than 50 kW sectors oscillation at 350 GHz with a demountable tube, SH osci kW at 390 GHz was obtained with a newly fabricated sectors	A. Fujii ¹ ; T. Idehara ¹ ; niversity, Russian ent in FIR-FU for cond harmonic (SH) cillation exceeding 60

	11:00	- 12:30 Communications Chair: F. Palma	Room 11
Th-F1.1	; 85	Moving target indication with high resolution at long st using minimal sampling rates in linear FMCW radar. <u>Duncan Robertson</u> ; R.J.C. Middleton; D.G. Macfarlane University of St Andrews, United Kingdom Combinations of high range resolution, long stand-off rang requirement for moving target indication in LFMCW radar the required IF signal sampling rate. A technique using dow subsampling and aliasing to reduce the required IF samplin demonstrated.	es, and the rs tend to increase wn-conversion by
Th-F1.3	; 88	A Comparison of Indoor Channel Measurements and R Simulations at 300 GHz Sebastian Priebe Technische Universtität Braunschweig, Institut für Nachric	
Th-F1.4	; 8:	Germany This paper presents ultra broadband channel measurements room. The measured channel impulse response and transfer compared to the results obtained by a ray tracing simulation show reflection losses of the building materials in the room A 300 GHz 45° Hybrid Coupler for THz Wireless Communic Subharmonic Mixers	s in a typical office r function is n. Additionally, we 1.
	02	M.Y.W. Chia; C.K. Ang; E.C.A. Tan; J.J. Yao Institute for Infocomm Research, Singapore A 300 GHz hybrid coupler with 45° phase difference for su in THz transceiver is presented. It consists of a branch-line loaded phase shifter fabricated with 10 microns tolerances. phase imbalances are less than 0.5dB and 3° from 285 to 32	coupler with a stub The magnitude and 25 GHz.
Th-F1.5	;92	 SAFIRE: A real time close range millimetre wave exhibition <u>David Macfarlane</u>; D.A. Robertson University of St Andrews, United Kingdom The MMW Group at St Andrews has constructed a fast scaresolution 94GHz FMCW exhibition radar named SAFIRE operational performance and outline the trade offs between FMCW sweep times, range resolution, data sampling, procrequirements. 	nning, high 2. We present 1 scanning speeds,

	14:00	- 15:30 Thursday Poster	Chiostro
Th-P.01	; 94	A new artists Ematerials spectroscopic archive in <u>M. Picollo¹</u> ; C. Cucci ¹ ; K. Fukunaga ² ; M. Mitsuno ² ; K. Y Sotobayashi ⁴	⁷ amamoto ³ ; H.
		¹ IFAC-CNR, Italy; ² NICT, Japan; ³ Aoyama Gakuin Univ	versity, Japan;
		⁴ Aoyama Gakuin University, Kanagawa, Japan	
		In the present communication a new collection of THz sp	
		artists Ematerials along with the definition of procedure	
		preparing the samples and in acquiring the spectra will be particular, white and blue artists Epigments in the 0.1-2	
	06	shown.	
Th-P.02	;96	Terahertz imaging for deterioration detection of Ea $K = \frac{1}{2} $	
		Kaori Fukunaga ¹ ; Y. Kohdzuma ² ; M.J. Kim ³ ; Y. Fujii ³ ; Y	
		¹ NICT, Japan; ² Nara National Research Institute for Cult ³ Kyoto University, Japan	ural Properties, Japan;
		5 5 1	tworks. The reflection
		Terahertz imaging was applied to examine East Asian art image indicates a material map, and detached area is clea	
		distribution of air gaps. These results prove that terahertz	
		new diagnosis tool of deterioration of artworks.	a infaging can be a
Th-P.03	; 98	Studying biodegradation of mosaics using THz and	mm_wave radiation
111-1.05	, 90	<u>Alberto Petralia¹</u> ; V. Surrenti ¹ ; G.P. Gallerano ¹ ; A. Doria	
		Messina ¹ ; I. Spassovsky ¹ ; G. Miceli ² ; E. Guarneri ² ; L.M.	
		¹ ENEA, Italy; ² CRPR, Italy	v mer
		We propose a novel diagnostic technique to study the bio	ological degradation of
		the mosaics in Piazza Armerina (Italy). Starting from an	
		material affecting the mosaics we want to prove the poss	
		presence under the mosaics without removing the tessera	
Th-P.04	; 9:	Examination of pigments by using FT-THz	
	,	KY. Yamamoto ¹ ; K. Fukunaga ² ; M. Mizuno ² ; I. Hosak	o^2 ; M. Picollo ³ ; H.
		Sotobayashi ¹	, ,
		¹ Aoyama Gakuin University, Japan; ² National Institute o	f Information and
		Communications Technology, Japan; ³ Istituto di Fisica A	
		Carrara h (IFAC-CNR), Italy	
		Terahertz (THz) spectra of Malachite, Which is copper b	ased natural mineral,
		was measured by a FT-THz in the 3-20 THz region. We	observed finger print
		spectra of the pigment and discuss the influence of grain	size of the pigment.
		The issues of specimen for quantitative analyses are also	discussed.
Th-P.05	;:2	An innovative non invasive technique for treatment of	f works of art. MM
111-1.05	, . 2	and THz waves for diagnostics and conservation	
		Bruno Bisceglia ¹ ; A. Doria ² ; G.P. Gallerano ² ; E. Giovena	ale ² ; G. Messina ² ; A.
		Petralia ² ; I. Spassovsky ²	
		¹ Salerno University - Dept of Information and Electrical ² ENEA, Italy	Engineering, Italy;
		A novel non invasive technique and some suitable appara	
		artworks are introduced. Different phases of any interven	
		some results are described and discussed. Recent application	
		artifacts revealed interesting potential future developmen	ts for the analysis and

		complete disinfestations.
Th-P.06	;:4	Millimeter continuous wave imaging for non-destructive investigation of
TII-F.00	,.4	artistic materials
		<u>Emmanuel Abraham¹</u> ; A. Younus ² ; S. Salort ³ ; J.P. Caumes ³ ; P. Mounaix ¹
		¹ CPMOH - Université de Bordeaux, France; ² CPMOH - Université de
		Bordeaux, Pakistan; ³ Alphanov, France
		A monochromatic millimeter wave system coupled with an infrared
		temperature sensor has been used to investigate pictorial artworks. The
		flexibility of the system makes it possible to rapidly reveal buried layer
		information such as a graphite handmade sketch covered by paintings.
	6	A Study of TPI of Human Skin under Different Temperature and
Th-P.07	;:6	Humidity
		<u>M.Y. Sy¹</u> ; Y.T. Zhang ¹ ; E. Pickwell-MacPherson ²
		¹ The Chinese University of Hong Kong, Hong Kong; ² Hong Kong University
		of Science and Technology, Hong Kong
		The design of a portable probe in the TPI system by TeraView has improved
		the flexibility of the TPI system. In this paper we present recent work using the
		THz probe to measure the skin in different positions on the face and hand on
		three subjects in vivo under both warm and cold weather
Th-P.08	;:8	Investigation of Pig Ear Skin by IR-Imaging and Far-IR Spectroscopy
		<u>Ole Faurskov Nielsen¹</u> ; T.M. Greve ² ; A. Engdahl ³
		¹ Department of Chemistry, university of Copenhagen, Denmark; ² LEO-
		Pharma, Denmark; ³ MAX-lab, Sweden
		Synchrotron radiation is used in ATR-Far-IR investigations of pig ear skin.
		Characteristic protein and water bands are assigned. The results are compared
		to low-wavenumber Raman spectra. IR-imaging is performed to show the
		distribution of water, proteins and lipids for pig ear tissue slices.
Th-P.09	;::	Monitoring of Wound Healing by Millimetre Wave Imaging
		<u>Helmut Essen</u> ¹ ; D. Nuessler ¹ ; C. Krebs ¹ ; J.M. Essen ¹ ; A. Hommes ¹ ; N. Fatihi ¹ ;
		T. Buzug ²
		¹ Fraunhofer FHR, Germany; ² University Lübeck, Germany
		Mm-waves offer the capability to look trough dielectric material. Wound
		healing processes often have to take place under a cover like a plaster of Paris
		bandages, which have to be removed for inspection. Investigations were done
		to evaluate the possibility of wound monitoring through plasters.
Th-P.10	;;2	Multi-objective Experiment using Ultrashort-Pulse Radar System for
111-1.10	$,, \angle$	Breast Cancer Detection
		Zhang Dan
		Art, Science and Technology Center for Cooperative Research, Kyushu
		University, Japan
		Experiment of breast cancer detection has been performed using an ultrashort-
		pulse radar. Breast models for the experiment are made from cooking oil or
		use a commercial made phatom. We measure reflection data in order to
		reconstruct images of the breast models with different dielectrics object.

Th-P.11	;;4	Combination treatment of hyperthermia and photodynamic for
		experimental tumor model using gyrotron (107, 203 GHz)
		N. Miyoshi; <u>I. Hidehara</u>
		National University of Fukui, Japan
		We applied the combination therapy of the hyperthermia treatment using
		gyrotron and the photodynamic treatment (PDT) with a photosensitizer and
		laser irradiated the experimental tumor model. It was very good treatment
		effect although reducing the dose of the gyrotron.
Th D 10	5	A THz imaging Fourier Transform Spectrometer (FTS) as a potential
Th-P.12	;;5	diagnostic for tissue damage and healing.
		Carole Tucker ¹ ; P.A.R. Ade ¹ ; D. Naylor ² ; K. Curtis ¹
		¹ Cardiff University, United Kingdom; ² University of Lethbridge, Canada
		We present spectral data and derive optical constants for a range of tissues
		across the Thz range. We make use of the collagen absorption feature at
		~11Thz to present the imminent possibility of using an imaging Fourier
		Transform Spectrometer (FTS) as a diagnostic tool for tissue damage and
		repair.
		Facing the challenge of biosample imaging by FTIR with a synchrotron
Th-P.13	;;6	radiation source
		<u>M. Cestelli Guidi¹</u> ; C. Petibois ² ; M. Piccinini ³ ; A. Marcelli ¹
		¹ INFN Laboratori Nazionali di Frascati, Via E. Fermi 40, 00044 Frascati
		(RM), Italy; ² Université de Bordeaux 2, CNRS UMR 5248 CBMN, B8
		Avenue des facultés, F-33405, France; ³ Porto Conte Ricerche, SP 55, Porto
		Conte, Capo Caccia, km 8400, 07041 Alghero (SS), Italy
		FTIR synchrotron radiation microspectroscopy is a powerful molecular probe
		of biological samples at cellular resolution. Here it is discussed how an
		optimized combination of IR instrumentation (FPA detectors) and SR optical
		systems could reach the expected advantages of a SR-based system.
Th-P.14	;;7	Synchrotron Infrared Microspectroscopy at beamline 73 MAX-lab, Lund,
	, , -	Sweden.
		<u>A. Engdahl</u>
		MAX-lab, Lund University, Sweden
		The infrared beamline at MAX-lab in Lund is equipped with a Bruker
		Hyperion 3000 microscope combined with an IFS/66v FTIR instrument. In
		combination with a number of different detectors and objectives this makes it
		possible to study a large number of different samples.
Th-P.15	;;9	Dielectric Properties of a Molecularly Thin Water Layer in THz
111-1.13	, ,)	Frequency Range
		G.S. Park ¹ ; <u>S.J. Chang</u> ¹ ; D.H. Choi ¹ ; H.R. Park ² ; D.S. Kim ² ; W.H. Jhe ³
		¹ Center for THz-Bio Application Systems, Department of Physics and
		Astronomy, Korea, Republic of; ² Center for Subwavelength Optics,
		Department of Physics and Astronomy, Korea, Republic of; ³ Center for Nano-
		Liquids, Department of Physics and Astronomy, Korea, Republic of
		We report measurement of a molecularly thin water layer by means of THz
		time-domain spectroscopy operated under transmission mode. Dielectric
		properties of capillary-held wetting water between two solid surfaces were
		measured as a function of the distance between two solid surfaces.

Th-P.16	;;:	Solvation water of biomolecules seen through THz glasses <u>M. Heyden;</u> B. Born; M. Havenith
		Ruhr-University Bochum, Germany
		The THz absorption of the intermolecular vibrational modes of the hydrogen
		bond network of water has recently been found to define a dynamical solvation
		shell around solutes that extends beyond the first hydration layer. Here we
		study its properties using molecular dynamics simulations.
Th-P.17	3222	High Sensitivity of the Sensing Technique using Metal Mesh Devices
	-	Takashi Kondo ¹ ; K. Takigawa ¹ ; S. Kamba ¹ ; Y. Ogawa ²
		¹ Murata Manufacturing Company, Ltd., Japan; ² Graduate School of
		Agriculture, Kyoto University, Japan
		Metal mesh devices working on higher frequency were examined for detecting
		the small amounts of a substance. The results indicated that the sensitivity
		working at 10THz is 50 times the height of that working at 1THz.
Th-P.18	3224	Terahertz Time-Domain Spectroscopy (THz-TDS) Approach To the
111-F.10	3224	Quality Control on Pharmaceutical Products
		<u>Seizi Nishizawa</u>
		Advanced Infrared Spectroscopy Co., LTD., Japan
		Terahertz time-domain spectroscopy technique has recently been in progress
		with advantages over other conventional techniques and with a wide range of
		industrial applications. One of the latest industrial applications focusing on the
		quality control on pharmaceutical products will be described.
Th-P.19	3225	Terahertz Spectral Measurements of a Homologous Organic Series
		C. Russell ¹ ; <u>A.D. Burnett</u> ¹ ; J.E. Cunningham ¹ ; A.R. Pearson ² ; E.H. Linfield ¹ ;
		A.G. Davies ¹
		¹ School of Electrical and Electronic Engineering, University of Leeds, United
		Kingdom; ² Astbury Centre for Structural Molecular Biology, University of
		Leeds, United Kingdom We have studied the terahertz frequency spectra of a homologous organic
		series to investigate how a systematic molecular change directly affects the
		spectral modes. The spectra overall show similar absorption features, with the
		modes shifting to lower frequencies as the molecular mass increases
		Millimeter Wave Spectroscopy of Glucose and a Calcium-binding protein
Th-P.20	3227	using a Vector Network Analyzer
		<u>K. Shala;</u> B. Yang; T.T. To; R.W. Pickersgill; N. Krauss; R.S. Donnan
		Queen Marry, University of London, United Kingdom
		Abstract—A Millimeter wave vector network analyzer is used to analyze
		pectate lyase and different concentration glucose solutions. Data reveal
		concentration-dependant spectra for glucose and Ca2+-sensitive spectra for
		pectate lyase.
Th-P.21	3229	Characterization of Absorption Spectrum of Ethanol Gas for Use as
1II-P.21	5229	Terahertz Alcohol Sensor
		Junichi Hamazaki; S. Saito; I. Hosako
		National Institute of Information and Communications Technology, Japan
		The absorption spectra of pure ethanol gas and ethanol gas mixed with air
		were characterized to examine the use of ethanol gas as a terahertz alcohol
		sensor. A comparison of the spectra of both gases showed that the absorbance
		of the latter gas was ~ 1.3 times greater than that of the former gas.

322;	Terahertz Spectroscopy of Ascorbic Acid Oxidase in Aqueous Solutions
	<u>Christopher Que¹</u> ; A. Ramundo-Orlando ² ; K. Yamamoto ¹ ; M. Tani ¹
	¹ Research Center for Development of Far-Infrared Region, University of
	Fukui, Japan; ² Institute of Neurobiology and Molecular Medicine, Consiglio
	Nazionale delle Ricerche, Italy
	In this study, pure water or guanidine hydrochloride solution was added to
	ascorbic acid oxidase to obtain its native and denatured form, respectively.
	Results show that both native and denatured AAO in solution absorb THz
	weakly, though the denatured solution showed a higher absorbance.
3233	An Isolated Dual-Mode Converter for Dual-Channel Rotary Joint
	<u>Nai-Ching Chen¹</u> ; C.T. Wu ¹ ; C.Y. Yang ² ; T.H. Chang ¹
	¹ Physics Department, National Tsing Hua University, Taiwan; ² Electronic
	Systems Research Division, Chung-Shan Institute of Science and Technology,
	Taiwan
	This study proposes a dual-mode converter for coupling the TE01 and TM01
	modes in a circular waveguide. A pair of this converter could be connected
	with bearing and achieve a high isolation, broadband, dual-channel rotary joint
	for radar or satellite system.
2225	Extremely Wideband Multipath Propagation channel from 285 to 325
5255	GHz for a typical desk-top environment
	M.Y.W. Chia; <u>B. Luo;</u> C.K. Ang
	Institute for Infocomm Research, Singapore
	Propagation study over 285 GHz to 325 GHz for extremely wideband channel
	in high speed wireless communication will be presented. The Thz channel is
	measured in clutter conditions typically of office desktop environment.
	Measurements and path loss models of the multipath channel will be discussed

Th-P.263236THz communication with a Quantum Cascade Laser source and a Hot
Electron Bolometer detector
A. El Fatimy¹; Francesco Palma²; F.T. Teppe³; J.X. Xu⁴; J.V. Vachtomin⁵;
A.T. Tredicucci⁴; G.G. Goltsman⁵; W.K. Knap³

¹CNRS, Universitè Montpellier 2 (France), France; ²NTT New Tera

Technology s.r.l., Italy; ³CNRS, Universitè Montpellier 2, France; ⁴NEST,

CNR-INFM and Scuola Normale Superiore di Pisa, Italy; ⁵Moscow State

Pedagogical University, Russian Federation

We present the experimental study of the direct emission/detection system

based on the THz Quantum Cascade Laser as a source and Hot Electron

Bolometer (HEB) detector-in view of its application as an optical

communication system. We show that the system can efficiently transmit the

QCL THz pulses.

Th-P.27	3238	Simulation of a Ka-band "chebyshev" traveling wave tube on coupled
111-F.27	3230	cavity chain
		Dmitrij Komarov ¹ ; S.P. Morev ²
		¹ Federal State Unitary Enterprise "Research and Production Corporation
		"Toriy", Russian Federation; ² Federal State Unitary Enterprise "Research and
		Production Corporation "Toriy", Russian Federation
		Abstract: The simulation's results of the Ka-band TWT with high electronic
		efficiency ($\sim 20\%$), the gain coefficient (~ 50 dB) and a broad band operating
		frequency are presented.
Th-P.28	3239	A 0.25µm SiGe Millimeter-wave Damping Pulse Transmitter Chip with
111 1.20	0207	On-chip Loop Antenna Array
		<u>Nguyen Khanh¹</u> ; M. Sasaki ² ; K. Asada ¹
		¹ The Univ. of Tokyo, Japan; ² VDEC, Japan
		The paper presents a 100GHz - 120GHz pulse transmitter chip with a 54x24
		on-chip loop antenna array for in-door millimeter wave (mm-wave) imaging
		applications. This 4mmx4mm transmitter for beam-forming purpose is
		designed and fabricated in 2.5V 0.25µm 4-metal layer SiGe BiCMOS
		technology.
Th-P.29	323;	Terahertz Spectroscopy of Heavy and Superheavy Water Vapors
111-1.29	525,	<u>S.S. Nabiev¹</u> ; V.L. Vaks ² ; E.G. Domracheva ² ; L.A. Palkina ¹ ; E.A.
		Sobakinskaya ² ; M.B. Chernyaeva ²
		¹ Russian Research Centre "Kurchatov Institute", Russian Federation; ² Institute
		for Physics of Microstructures RAS, Russian Federation
		The paper reports on preliminary results of a study into a possibility of
		developing a fast method of atmospheric air analysis for the purpose of
		determination of the isotope composition of water vapors (H2 18O, HD16O,
		HTO) with the method of non-stationary terahertz (THz) range spectroscopy.
Th-P.31	3243	5-fold helically corrugated waveguide dispersion measurements
		K. Ronald ¹ ; S.V. Samsonov ² ; M. McStravick ¹ ; S.V. Mishakin ² ; W. He ¹ ; G.G.
		Denisov ² ; C.G. Whyte ¹ ; V.L. Bratman ² ; A.W. Cross ¹ ; N.G. Kolganov ² ; A.R.
		Young ¹ ; <u>A.D.R. Phelps¹</u> ; C.W. Robertson ¹ ; P. MacInnes ¹
		¹ SUPA, Department of Physics, University of Strathclyde, Glasgow, United
		Kingdom; ² Institute of Applied Physics, Russian Academy of Sciences,
		Nizhny Novgorod, Russian Federation
		Waveguide for microwave propagation with a 5-fold helical corrugation of the
		inner surface has the desirable properties of optimized dispersion, operation far
		from cut-off and high-breakdown electromagnetic field strength. This makes it
	~~ ~ ~	an excellent medium for sweep-frequency pulse compression.
Th-P.32	3245	Utilizing parallel plate waveguide modes for terahertz sensing
		F. Kernan; M. Wachsmuth; J.A. Higgins; B. Pejcinovic; L. Zurk; R. Campbell
		Portland State University, United States
		Parallel-plate waveguide sensors are investigated by characterizing TM and
		TE modes when filled with inhomogeneous and homogeneous samples.
		Effects of multi-mode TE propagation within PPW and radiation patterns are
		investigated. Lactose detection is demonstrated by TDS and CW-VNA
		techniques.
		1

Th-P.34	3247	Influence of phlegmatization on spectra of explosives in THz range
		M. Szustakowski; N. Palka; P. Zagrajek; <u>W.M. Ciurapinski</u>
		Military University of Technology, Poland
		We report on influence of phlegmatization of RDX and HMX on their spectra
		in 0.5-5.0 THz range. Measurements were carried out by means of Fourier
		Transform Spectrometry. Increase in attenuation is observed.
Th-P.35	3249	Spectral sampling method for identification explosives
		M. Szustakowski; M. Piszczek; R. Ryniec
		Military University of Technology, Poland
		Technological capabilities are not mature enough to analyze a wide THz
		range. It is however possible to develop narrow-band cascade lasers for this
		band. In this paper, a new concept of compounds identification, which bases
		on 14-subspectral definite (theoretical) THz detectors, is presented.
Th-P.36	324;	Concept of infrared sensor module for sniper detection system
		M. Kastek; R. Dulski; P. Trzaskawka; T. Sosnowski; H. Madura
		Military University of Technology, Poland
		The paper discusses technical possibilities to build system for sniper detection
		using infrared cameras. Concept of infrared sensor module for sniper activities
		detection was presented. The simulation of sniper detection ranges was done.
Th-P.37	3253	Design Studies of a 100 kW, 60 GHz CW Gyrotron for Plasma
III-P.5/	5255	Diagnostics
		<u>Machavaram Kartikeyan¹;</u> R.J. Jain ²
		¹ IIT Roorkee, India; ² Indian Institute of Technology Roorkee, India
		This paper presents the design studies of a 60 GHz conventional cavity
		gyrotron, designed for the plasma diagnostics for an experimental Tokamak in
		India. Mode selection procedure has been carried out.
Th-P.38	3255	Collective Thomson Scattering on FTU using a new ECRH launcher
		<u>G. Grossetti¹</u> ; A. Bruschi ¹ ; G. Granucci ¹ ; G. Grosso ¹ ; L. Lubyako ² ; V.
		Muzzini ¹ ; F.P. Orsitto ³ ; U. Tartari ¹ ; A. Moro ⁴
		¹ IFP-CNR, Italy; ² IAP, Russian Federation; ³ ENEA, Italy; ⁴ IFP - CNR, Italy
		The past measurements carried out with the CTS diagnostic presently installed
		at FTU showed that a different and more flexible CTS geometry was required
		to overcome the problem of back reflections. A solution is given by the new
		ECRH launcher which will be installed at FTU.

Th-P.39	3257	Differential-phase Reflectometry using Phased-array Antenna System in
111-1.37	5257	QUEST <u>K. Nagata¹</u> ; H. Idei ² ; M. Sakaguchi ¹ ; K. Dono ¹ ; Y. Wataya ¹ ; S. Kawasaki ² ; H. Zushi ² ; K. Hanada ² ; K. Nakamura ² ; M. Sakamoto ² ; M. Hasegawa ² ; Y. Higashizono ² ; Y. Takase ³ ; T. Maekawa ⁴ ; O. Mitarai ⁵ ; Y. Kishimoto ⁴ ; H. Nakashima ² ; A. Higashijima ² ¹ Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Japan; ² Research Institute for Applied Mechanics, Kyushu Univ.,
		Japan; ³ Department of Complexity Sci. and Eng., Univ. of Tokyo, Japan; ⁴ Inst. of Industrial Sci. and Tech. Research, Tokai Univ., Japan; ⁵ Graduate School of Energy Science, Kyoto Univ., Japan The differential-phase reflectometry has been developed to measure the
		density profile evolution, concerning electron Bernstein Wave (EBW) heating and current drive in the QUEST. The Phased Array Antenna (PAA) system was proposed for the reflectometry to improve the ratio of signal to noise. Terahertz radiation in an optical-field-induced ionization in air with a
Th-P.40	3259	pulsed electrostatic field
		T.H. Higashiguchi ¹ ; <u>Takeshi Higashiguchi</u> ¹ ; T.O. Otsuka ² ; N.Y. Yugami ² ; R.K. Kodama ³
		¹ Ursunomiya University, Japan; ² Utsunomiya University, Japan; ³ Osaka
		University, Japan We have demonstrated that the THz radiation can be generate by the burst
		current induced an optical-field-induced ionization. The central frequencies of
		the radiation are observed to be 0.12 - 0.15 and 0.04- 0.05 THz at the pulse durations of 100 and 300 fs (FWHM).
Th-P.41	325;	Experimental observation of frequency up conversion of terahertz using
111-1 .71	525,	laser produced plasmas <u>T.O. Otsuka¹</u> ; F.S. Suzuki ¹ ; M.N. Nakata ¹ ; T.H. Higashiguchi ¹ ; N.Y. Yugami ¹ ;
		<u>1.0. Otsuka</u> ; F.S. Suzuki ; M.N. Nakata ; 1.H. Higashiguchi ; N.Y. Yugami ; R.K. Kodama ²
		¹ Utsunomiya University, Japan; ² Osaka University, Japan
		We have observed frequency up conversion of terahertz radiation using a laser produced plasma. In our experiment the integrated power of a terahertz
		spectrum increased. We have confirmed that converted frequency depends on
		pumping laser energy i.e. plasma density. Effect of Prepulse on Intense THz Emission from Plasma Induced by
Th-P.42	3263	Two-Color Laser Pulses
		<u>Yasuo Minami</u> ; M.N. Nakajima; T.S. Suemoto Institute for Solid State Physics, The University of Tokyo, Japan
		In THz wave generation in air plasmas induced by laser pulses composed of
Th-P.43	3265	fundamental and second-harmonic waves, we introduced a prepulse, 0-2 ns before the main pulse. The prepulse suppressed the THz wave generated by the main pulse. We analyzed the suppression factor as a function of time-delay. A laboratory study of mechanisms for auroral kilometric radiation
		generation K. Ronald ¹ ; D.C. Speirs ¹ ; S.L. McConville ¹ ; K.M. Gillespie ¹ ; <u>A.D.R. Phelps</u> ¹ ; R. Bingham ² ; A.W. Cross ¹ ; C.W. Robertson ¹ ; C.G. Whyte ¹ ; W. He ¹ ; R.A. Cairns ³ ; I. Vorgul ³ ; B.J. Kellett ⁴
		¹ University of Strathclyde, United Kingdom; ² University of Strathclyde &

Th-P.44	3267	Rutherford Appleton Laboratory, United Kingdom; ³ University of St Andrews, United Kingdom; ⁴ Rutherford Appleton Laboratory, United Kingdom An experimental simulation of the Earths Auroral Magnetosphere has been created. Experiments have been undertaken to study the processes by which the auroral cyclotron maser emission occurs Diagnosis of Atmospheric Pressure Plasmas by using Terahertz Time-
111 1	5207	Domain Spectroscopy <u>Hideaki Kitahara¹</u> ; A.A. Ando ¹ ; K.K. Kitano ¹ ; M.T. Tani ² ; M.H. Hangyo ¹ ;
		S.H. Hamaguchi ¹
		¹ Osaka University, Japan; ² University of Fukui, Japan
		A parallel-plate atmospheric plasma generator has been built with the
		discharge electrodes that behave as a nondispersive terahertz (THz) waveguide for plasma diagnostics based on THz time-domain spectroscopy. An uniform
		glow-like atmospheric plasma is generated and THz waves propagate as designed.
		Heating of Si wafer using a sub-THz gyrotron FU CW V as a radiation
Th-P.45	3269	source
		Toshitaka Idehara ¹ ; Y. Urushizaki ¹ ; M. Shimizu ²
		¹ University of Fukui, Japan; ² Tokyo Electron LTD, Japan
		Heating effect of sub-THz radiation on Si Wafer is studied by using a
		Gyrotron FU CW V as a sub-THz radiation source. Increasing rate of the
		temperature is measured for several frequencies between 75 GHz and 200
		GHz. The highest increasing rate reaches 55 degree/sec at the frequency of
Th-P.46	326;	203. Development of a Compact Sub-Terahertz Second-Harmonic Gyrotron
111-1.40	520,	Toshitaka Idehara; S.S. Sabchevski
		University of Fukui, Japan
		A compact sub-THz second harmonic gyrotron with output parameters suitable
		for various spectroscopic studies is under development now at FIR FU
		Research Center. Here we present and the results of the initial computer-aided
		design (CAD) of this novel prospective member of the Gyrotron FU CW
		series.
Th-P.47	3273	The contribution of higher-order spatial harmonics in eigenvalues and
111-1.4/	5215	ohmic losses calculations in coaxial corrugated cavities
		<u>Z.C. Ioannidis¹</u> ; K. Avramides ² ; S. Kern ³ ; G.P. Latsas ¹ ; I.G. Tigelis ¹
		¹ University of Athens, Faculty of Physics, Greece; ² National Technical
		University of Athens, Greece; ³ Karlsruhe Institute of Technology (KIT),
		Institute of Pulsed Power and Microwave Technology (IHM), Germany
		The Spatial Harmonics Method has been used to study TE modes in a coaxial
		corrugated cavity. A numerical code has been developed to calculate
		eigenvalues, fields and ohmic losses on the walls. Numerical results are
		presented to clarify the influence of the higher–order modes to these
		calculations.

Th-P.48	3275	Nonlinear Oscillation Behavior of a Gyrotron Traveling-Wave Amplifier
		<u>Y.S. Yeh¹</u> ; Z.Q. Wu ¹ ; J.M. Huang ¹ ; J.L. Shiao ¹ ; J.N. Jhou ¹ ; C.C. Chiu ² ; T.H.
		Chang ²
		¹ Southern Taiwan University, Taiwan; ² National Tsing Hua University,
		Taiwan
		Beyond the start-oscillation current of the gyro-TWA, the amplification
		transits to the nonlinearly driven oscillation where the driven frequency
		approaches to the start-oscillation frequency. The performance of the gyro-
		TWA can be enhanced in the nonlinearly driven oscillation.
		·

Th-P.50	3277	Experimental Results of a 0.42 THz Harmonic Gyrotron Y.Y. Yan; <u>W.F. Fu</u> ; X.L. Li; X.Y. Yuan; S.L. Liu THz Research Center, School of Physical Electronics, University of Electronic Science and Technology, China We report primarily results of a 0.42 THz second harmonic gyrotron. In μs pulse length operation at 52kV and 3A, 4.4kW output power have been observed at the TE2,6 mode at 0.423 THz. Modes at fundamental, including
		the TE0,3 at 0.221 THz and the TE2,3 at 0.216 THz, have output powers up to 20kW.
Th-P.52	3279	Development of THz Gyrotron FU CW III using a 20 T superconducting magnet
		<u>K. Kosuga</u> ¹ ; T. Idehara ¹ ; R. Ikeda ¹ ; Y. Tatematsu ¹ ; I. Ogawa ¹ ; S. Mitsudo ¹ ; T. Saito ¹ ; L. Agusu ² ; J.C. Mudiganti ¹ ; M. Thumm ³
		¹ FIR center, Univ. FUKUI, Japan; ² Department of Physics, Haluoleo
		University, Indonesia; ³ Karlsruhe Institute of Thchnology, Association
		EURATOM-KIT, Institute für hochfrequenztecnik un, Germany
		A Gytrotron FU CW III using a 20 T superconducting magnet has been
		developed as a radiation source in the THz region. In the first experiment, THz radiation was observed.
	207	Development of a sub-THz CW gyrotron for the millimeter wave pulsed
Th-P.53	327;	ESR spectrometer
		<u>Seitaro Mitsudo;</u> N. Nakagawa; Y. Ohashi; T. Katayama; Y. Tatematsu; I. Ogawa; T. Idehara; T. Saito
		Research Center for Far-Infrared Region, University of Fukui, Japan
		We have developed a millimeter wave pulsed electron spin resonance (ESR) spectrometer by using a high power radiation source gyrotron. As the high power millimeter wave source, a CW operated sub-THz Gyrotron is constructed. Operating tests of Gyrotron has already carried out successfully.

Th-P.54	3283	The Design of a ~390 GHz Gyrotron Based on a Cusp Electron Gun
		F. Li; W. He; A.D.R. Phelps; A.W. Cross; C.R. Donaldson; L. Zhang; K.
		Ronald
		University of Strathclyde, United Kingdom
		A ~390 GHz harmonic gyrotron based on a cusp electron gun was designed.
		The cavity has been designed to suspend the competition modes. Power drop
		and arise of competition modes were found while the beam thickness and
		beam spread were considered in the 3D MGIC PIC simulation
Th-P.55	3285	Design of a frequency tunable 0.2 THz Gyrotron-Backward Wave
1111.00	5200	Oscillator
		<u>W.F. Fu</u> ; Y.Y. Yan; S.L. Liu
		THz Research Center, School of Physical Electronics, University of Electronic
		Science and Technology, China
		The preliminary design of a frequency tunable 0.2 THz gyrotron-BWO is
		presented. This gyrotron utilizes reflected structure, and simulations show that,
		the magnetic tuning bandwidth is over 1GHz, while power is over 1 kW, and
		the voltage tuning bandwidth is over 1GHz, while power is over 1 kV, and
Th-P.56	3287	Hydrogen Bonding Networks in Solvent Mixture and their Impact on the
		Mobility of Molecules as Probed by THz-TDS and NMR spectroscopy
		J.A. Zeitler; <u>R. Li;</u> C. D'Agostino; J.H.P. Collins; E.J.P. Parrott; M.D. Mantle;
		L.F. Gladden
		University of Cambridge, United Kingdom
		Both THz-TDS and NMR techniques were employed to study the hydrogen
		bonding networks formed in 2-propanol/water mixtures. The composition of
		such solvent mixtures is shown to significantly impact on the mobility of the
		solute molecules.
Th D 57	2290	Comparison of Expressions for Terahertz Generation for Bulk Optical
Th-P.57	3289	Rectification away from Normal Incidence
		Colin Bleasdale; R.A. Lewis
		University of Wollongong, Australia
		The purpose of the current work is to compare the expressions derived recently
		for bulk optical rectification to those already present in the literature at non-
		normal incidence to reconcile the differences between the expressions in these
		•
		papers.
Th-P.58	328;	Exploration of the origin of random error in spectrum intensity measured
	,	with THz-TDS
		M. Takeda; S.R. Tripathi; M. Aoki; N. Hiromoto
		Shizuoka University, Japan
		We examined the correlation between fluctuations of THz-pulse peak intensity
		and laser power to explore of the origin of random error in spectrum intensity
		measured with THz-TDS. This result indicates that the fluctuation of laser
		power will not be a predominant origin of the random error.
		Free Induction Decay of Ferromagnetic Resonance Observed by Time
Th-P.59	3293	Domain THz Spectroscopy in Nano-Ferromagnet -GaxFe2-xO3
		<u>M.N. Nakajima;</u> A.N. Namai; S.O. Ohkoshi; T.S. Suemoto
		The University of Tokyo, Japan
		Radiation of circularly polarized sub-THz wave due to spin precession was
		observed at room temperature. Nearly perfect conversion of the linear to

		circular polarized wave was realized around the natural resonances at 102
		GHz. ɛ-type GaxFe2-xO3 are very prospective for magneto-optic devices.
Th-P.60	3295	The THz Spectra and Analysis of Bi4Ge3O12 Crystal
		Wang Yali ¹ ; B.H. Hou ² ; H.Y. Wang ³ ; G.Z. Zhao ³ ; B.X. Yang ¹
		¹ College of Materials Science and Optoelectronic Technology, Graduate
		University of Chinese Academy o, China; ² College of Applied Sciences,
		Beijing University of Technology, China; ³ Department of Physics, Capital
		Normal University, China
		The THz time domain spectra of Bi4Ge3O12 (BGO) crystal were measured.
		The optical dielectric and power absorption function were obtained. There was
		one strong absorption band in the range of 1.5-2.3 THz. The absorption and
		dielectric characters show that the phonon polariton arises in BGO crystal.
Th-P.61	3297	Time-domain coherent Raman spectroscopy in THz frequency region
1111.01	5271	Masakazu Hibi; T. Furuya; C.T. Que; M. Tani
		Research Center for Development of Far-Infrared Region, University of Fukui,
		Japan
		Time-domain coherent-Raman spectroscopy in the THz frequency region
		using a mode-locked femtosecond laser was studied. In this report, we
		attempted to detect the coherent Raman signal with an improved SNR owing
		to the averaging effect of the high-repetition frequency femtosecond laser.
Th-P.62	3299	Terahertz Spectroscopy of Gas Hydrates
111-1.02	5277	<u>K. Takeya¹</u> ; I. Kawayama ² ; H. Murakami ² ; K. Ohgaki ³ ; M. Tonouchi ²
		¹ Japan, Osaka University, Japan; ² Institute of Laser Engineering, Osaka
		University, Japan; ³ Graduate School of Engineering Science, Osaka
		University, Japan
		A characteristic absorption and the dielectric constants of gas hydrates are
		determined by terahertz (THz) time domain spectroscopy. THz spectroscopy is
		a potentially useful technique to study gas hydrates for both fundamental and
	220	application.
Th-P.63	329;	Quantifying consumer perception of foodstuffs using THz spectrometry
		J. Bowen
		University of Reading, United Kingdom
		We discuss the potential of using THz spectrometry for the direct observation
		of phase transitions in foodstuffs, with the aim of quantifying consumer
		perception. Experimental results from phase transitions using a continuous
		wave spectrometer are reported.
Th-P.64	32: 3	Mitigating Scattering Effects in THz-TDS Measurements
		Mayank Kaushik; B.W.H. Ng.; B.M. Fischer; D. Abbott
		The University of Adelaide, Australia
		Scattering is a major problem in precise measurements of quasi-optical
		parameters of material samples. In this paper, we review some popular
		scattering mitigating techniques and propose a novel method that allows
		calculating true absorption spectra for unknown thickness and granularity of a
		sample.

Th-P.65	32: 5	The Effect of Optical Delay Line on THz Differential Time-Domain
111-1.05	52.5	Spectroscopy
		$\underline{Y.G. Loh}^1$; K.W. Moon ¹ ; H.W. Han ¹ ; I.M. Park ²
		¹ POSTECH, Korea, Republic of; ² Ajou University, Korea, Republic of
		The effect of optical delay line on THz differential time-domain spectroscopy
		(THz-DTDS) was studied, and we found that the optical delay line can
		significantly distort the THz DTDS signals due to sampling noise in lock-in
		detection.
		Analysis of terahertz absorptions of structural isomers of tyrosine using a
Th-P.66	32: 6	molecular orbital simulation and mid-infrared absorptions
		<u>Tomoaki Sakamoto¹</u> ; T. Tanabe ² ; T. Ohashi ² ; S. Yamagata ² ; Y. Oyama ² ; T.
		Kawanishi ¹ ; Y. Hiyama ¹
		¹ National Institute of Health Sciences, Japan; ² Tohoku University, Japan
		Differences of terahertz spectral features of tyrosine and its structural isomers
		were examined. The inter- and intra-molecular absorptions in a terahertz
		region were calculated by the structural optimization simulation gGaussian
		03 h at B3LYP/6-31G (d) level using the mid-IR absorptions.
Th-P.67	32: 8	Absorption Spectroscopy for SiO2 Particles by Using the Coherent
1111.07	32.0	Radiation Light Source
		<u>S. Okuda</u> ¹ ; T. Takahashi ²
		¹ Radiation Research Center/Osaka Prefecture University, Japan;
		² KURRI/Kyoto University, Japan
		The coherent transition radiation light source has been established by using a
		linear accelerator (linac) at Kyoto University Research Reactor Institute
		(KURRI). This has been applied to the absorption spectroscopy for SiO2 fine
		particles at a wavenumber range of 4-12 cm-1
	20	A Preliminary Study of Hydrogenation of Oils Using Terahertz Time
Th-P.68	32: :	Domain Spectroscopy
		B.S.Y. Ung; B.W.H. Ng; <u>D. Abbott</u>
		The University of Adelaide, Australia
		We begin a preliminary investigation to determine the extent at which
		terahertz time domain spectroscopy is able to detect the hydrogenation of
		unsaturated fats and oils within a simulated home cooking environment.
		Electronic States of One-dimensional Ca1-xNaxCo2O4 Probed by IR-THz
Th-P.69	32:;	Spectroscopy
		<u>Akinori Irizawa¹</u> ; M. Isobe ² ; R. Kato ³ ; G. Isoyama ³
		¹ Organization of Advanced Science and Technology, Kobe University, Japan;
		² National Institute for Materials Science, Japan; ³ Osaka University, Japan
		We have performed IR-THz spectroscopy on one-dimensional cobalt oxide
		Ca1-xNaxCo2O4. An insulating reflection in FIR region on CaCo2O4 (x=0)
		changed to a metallic one on Ca0.5Na0.5Co2O4 (x=0.5). Na substitution for
TI D 70	22.2	Ca site affected as a hole doping.
Th-P.70	32; 2	THz Spectroscopy to derive the optical Constants of Liquids
		<u>Ulrich Schade</u> ¹ ; B. Marchetti ² ; L.S. von Chrzanowski ³ ; J. Beckmann ³ ; A.
		Röseler ¹
		¹ HZB, BESSY II, Germany; ² INFN - Roma "Tor Vergata", Italy; ³ BAM,
		Fachgruppe VIII.3, Germany
		THz stand-off detection of explosives and other hazardous liquids in public

		areas becomes more and more relevant and with it the knowledge of their optical properties. We present here the results of THz transmission
		spectroscopy measurements of water-ethanol mixtures as a model.
Th-P.71	32; 4	Terahertz radiation from coherent antiferromagnetic magnons excited by
	, -	circularly polarized laser pulses
		Junichi Nishitani; T. Nagashima; M. Hangyo
		Institute of Laser Engineering, Osaka University, Japan
		We have observed terahertz radiation from coherent antiferromagnetic
		magnons excited by circularly polarized laser pulses. The polarity of the
		magnons is reversed by switching the helicity of the circular polarization.
		Inverse Faraday effect is a possible mechanism of the coherent magnon
Th D 70	22.6	excitation.
Th-P.72	32; 6	Si as an Emissive Optical Medium for the 3-12 im Band
		<u>Volodymyr Malyutenko</u> Institute of Semiconductor Physics, Ukraine
		Conventional methods of utilizing Si as light-emitting medium are limited to
		near-IR band (<2 im). Here we summarize our recent studies in silicon
		structures which efficiently and controllably emit in 3-12 im band, including
		novel device designs for LEDs, optical amplifiers, and radiative coolers
Th-P.73	32; 8	A novel fiber-based Terahertz Source
1111.75	52,0	<u>Y.D. Gong¹</u> ; G.B. Ren ² ; H. Dong ¹ ; J.H. Teng ³
		¹ Institute for Infocomm Research, Singapore; ² Central University for
		Nationalities, China; ³ Institute of Materials Research and Engineering,
		Singapore
		One kind of novel fiber-based Terahertz source: opt-THz fiber is proposed, it
		is based on the 2nd order nonlinearity in the poled optical fiber, where optical
		fiber is used to transmit optical power and distributely generate Terahertz
		while outside Terahertz fiber is used to transmit Terahertz.
Th-P.74	32; :	Theoretical investigation and modeling of mid-infrared pulse generation
111-Г./4	52, .	in a GaAs crystal using 30 fs pulses from fiber-optical laser
		Anahit Nikoghosyan; D.L. Hovhannisyan; R.M. Martirosyan; A.S.
		Nikoghosyan; A.A. Hakhoumian; R.M. Laziev; G.D. Hovhannisyan
		Yerevan State University, Armenia
		The results of the THz radiation generation by 30 fs lasers pulses with the
		wavelengths of 1.98 and 1.55 im in GaAs are presented. The process of mid-
		infrared pulse generation obtained from spectral filtration of a supercontinuum
		formed in the pump-pulse spectrum at the output of GaAs is studied
Th-P.75	3322	Theoretical analysis of conductivity and dielectric attenuations in
		millimeter-wave helical SWS
		Bao-Liang Hao; M.G. Huang; P.K. Liu; W. Liu
		Institute of Electronics, Chinese Academy of Sciences, China
		Conductivity and dielectric attenuation in millimeter-wave helical slow-wave
		structure (SWS) have been analyzed by a stratified dielectric helix tape and a
		3D electromagnetic model.

Th-P.76	3324	Heterodyne Detection of Output of Sub-THz RTD Oscillator Using InP-
III-F./0	3324	SBD Detector and RTD Local Oscillator
		<u>K. Karashima;</u> M. Shiraishi; K. Hinata; S. Suzuki; M. Asada
		Tokyo Institute of Technology, Japan
		We report on detection of output power from an RTD oscillator using a
		heterodyne receiver composed of an InP-SBD and an RTD local oscillator at
		around 430 GHz. Spectral linewidth of the RTD oscillators was estimated
		from the detected signal.
Th-P.77	3326	Intersubband Cavity Polaritons: The Role of Mirror Dispersion
		M. Zaluzny; W. Zietkowski
		Inst. of Physics, M. Curie-Sklodowska University, Poland
		We theoretically discuss the influence of cavity mirror dispersion on properties
		of intersubband-cavity-polaritons (ICPs). We show that it modifies
		substantially characteristics of the ICPs and should be taken into account
		modeling infrared light emitters based on ICPs.
		Continuous-wave terahertz generation using a vertically integrated horn
Th-P.78	3328	antenna photomixer
		<u>E. Peytavit¹</u> ; J.F. Lampin ¹ ; F. Hindle ² ; C. Yang ² ; G. Mouret ²
		¹ IEMN CNRS/Univ Lille1, France; ² LPCA UMR CNRS 8101 Université du
		Littoral Côte d'Opale, France
		A transverse Electromagnetic Horn Antenna is monolithically integrated with
		a low- temperature-grown GaAs vertical photoconductor forming a vertically
		integrated photomixer. Continuous-wave terahertz radiation is generated at
		frequencies up to 3.5 THz with a power level reaching 20 nW around 3 THz.
Th D 70	2220	Enhancement Approach of Ray-tracing Algorithm for Propagation
Th-P.79	3329	prediction at the MM-Wave Band
		Myoung-Won Jung
		Electronics and Telecommunications Research Institute, Korea, Republic of
		In this paper, we make periodic/random rough surfaces with the KA method
		and set up the measurement system. After, we compared with simulation and
		measurement results. Finally, we are proposed enhancement method of ray-
		tracing algorithm for MM-wave band.
Th-P.80	332;	Microwave Radiation from a Particle Revolving Along Shifted Equatorial
111-1.00	<i>332</i> ,	Orbit About a Dielectric Ball
		L.S. Grigoryan; H.F. Khachatryan; S.R. Arzumanyan; M.L. Grigoryan
		Institute of Applied Problems in Physics, Armenia
		A relativistic electron uniformly rotating along a shifted equatorial orbit about
		a dielectric ball may generate microwave Cherenkov radiation tens of times
		more intense as that generated at the revolution in a continuous, infinite and
		transparent medium.
Th-P.81	3333	Characterization of Semiconductor Materials as Terahertz Emitters
111-1.01	5555	under the Effect of In-Plane Magnetic Field
		K. Radhanpura; <u>R.A. Lewis</u>
		University of Wollongong, Australia
		The effect of magnetic field on emitted terahertz radiation is useful to
		determine the mechanism involved for THz generation. Semiconductor
		materials, which are potential sources of terahertz radiation, have been
		analyzed under the influence of in-plane magnetic field.

Th-P.82	3335	Radially-polarized terahertz radiation from relativistic laser plasma of
111-1.02	5555	metal foil target
		S.N. Nashima
		Osaka City University, Japan
		We investigated the radiation distribution and polarization characteristics of
		terahertz (THz) waves from a Ti foil target that was vertical to the incident
		plane. We found that the polarization of THz waves that radiated vertically
		was not linear and the polarizing axis was rotated.
Th-P.83	3337	Hydrodynamic simulation of heterodyne terahertz detection in a field
		effect transistor
		C. PALERMO ¹ ; <u>H. Marinchio¹</u> ; G. Sabatini ¹ ; P. Ziade ¹ ; P. Shiktorov ² ; E.
		Starikov ² ; V. Gruzinskis ² ; T. Laurent ¹ ; P. Nouvel ¹ ; J. Torres ¹ ; A. Penarier ¹ ; S.
		Blin ¹ ; L. Chusseau ¹ ; L. Varani ¹
		¹ Institut d'Electronique du Sud - UMR UM2-CNRS 5214, France;
		² Semiconductor Physics Institute, Lithuania
		We propose a hydrodynamic simulation of the heterodyne detection of
		terahertz signals in a High Electron Mobility Transistor in which the optical
		beating of two laser beams exciting plasma waves in the channel constitutes
		the THz local oscillator. We show the efficiency of such a mixer.
Th-P.84	3339	An In0.23Ga0.77As-based pHEMT-like Planar Gunn Diode Operating at
		116 GHz
		<u>Chong Li</u> ¹ ; A. Khalid ¹ ; L.B. Lok ¹ ; N.J. Pilgrim ² ; M.C. Holland ¹ ; G.M. Dunn ² ;
		D.R.S. Cumming ¹
		¹ University of Glasgow, United Kingdom; ² University of Aberdeen, United
		Kingdom
		An In0.23Ga0.77As-based planar Gunn diode operating in its fundamental
		transit-time mode of oscillation at 116 GHz is demonstrated. The diode has a
		pseudomorhpic HEMT-like structure grown on a semi-insulating GaAs
		substrate. The layer design was assisted by using a drift-diffusion model.
T D 07	222	Intersubband population inversion and stimulated transitions between
Th-P.85	333;	Landau levels in resonant tunneling multiple quantum well structures
		Yury Mityagin ¹ ; M.P. Telenkov ² ; P.F. Kartsev ³
		¹ P.N.Lebedev Physical Institute, Russian Federation; ² P.N. Lebedev Physical
		Institute of RAS, Russian Federation; ³ National Research Nuclear University
		(Mephi), Russian Federation
		The possibility is shown to achieve a population inversion in the system of
		Landau levels in resonant tunneling quantum well structures in a magnetic
		field. The mechanism allows the wide range tuning of the emitted terahertz
		frequency by the magnetic field strength variation
Th-P.86	3343	Solution growth of an organic N-benzyl-2-methyl-4-nitroaniline (BNA)
1111.00	5545	crystal for DFG-THz source
		T. Notake; M. Saito; M. Tang; Y. Wang; H. Minamide; H. Ito
		RIKEN, Japan
		A monochromatic THz radiation source with broadband tunability utilizing N-
		benzyl-2-methyl-4-nitroaniline (BNA) crystal has been developed. BNA
		quality was improved by applying solution growth method instead of melt
		method. BNA-THz source using difference frequency generation was further
		optimized.
		-r

Th-P.87	3345	Phase Noise Characteristics of Millimeter Wave Generated by Mach-
111-1.07	5545	Zehnder-Modulator-Based Flat Come Generator
		Isao Morohashi ¹ ; T. Sakamoto ¹ ; H. Sotobayashi ² ; T. Kawanishi ¹ ; I. Hosako ¹
		¹ Nat. Inst. Information and Communications Tech., Japan; ² Aoyama Gakuin
		University, Japan
		We demonstrate low phase noise characteristics of millimeter (MM) wave
		using Mach-Zehnder-modulator-based flat comb generator. MM waves are
		generated by beating optical two modes extracted from a comb signal. The rms
		phase noise of the signal measured at 37.5 GHz was 0.02 rad.
Th-P.88	3347	Theoretical model of a spark-gap for microwave generation
		S. Sytova; V. Tikhomirov
		Research Institute for Nuclear Problems of Belarusian State University,
		Belarus
		Theoretical model of a sharpening spark-gap in an arbitrary electrical circuit is
		proposed. Simulation of operation of a spark-gap in the system including flux
		compression generator, transformer, explosive wires and microwave
		backward-wave tube is studied.
Th-P.89	3349	Generation of shaped terahertz pulses
		S. Vidal; J. Degert; J. Oberle; E. Freysz
		CPMOH-Université de Bordeaux, France
		Phase-locked THz pulse pairs and tunable narrow-band THz pulses are
		generated by means of femtosecond optical pulse shaping combined with
		optical rectification in ZnTe crystal. THz spectra as narrow as 140 GHz and
		tunable between 0.5 and 2.5 THz are reported.
Th-P.90	334;	Hydrodynamic study of electronic, optical and thermal excitation of
111-1.90	554,	plasma waves in HEMTs
		C. PALERMO ¹ ; <u>H. Marinchio</u> ¹ ; G. Sabatini ¹ ; P. Ziade ² ; T. Laurent ¹ ; P.
		Shiktorov ³ ; E. Starikov ³ ; V. Gruzinskis ³ ; P. Nouvel ¹ ; J. Torres ¹ ; A. Penarier ¹ ;
		S. Blin ¹ ; L. Chusseau ¹ ; L. Varani ¹
		¹ Institut d'Electronique du Sud - UMR UM2-CNRS 5214, France; ² Laboratoire
		de Physique Appliquee, Universite Libanaise, Lebanon; ³ Semiconductor
		Physics Institute, Lithuania
		We investigate with an hydrodynamic model the influence of collective
		plasma modes in a FET channel under different biasing conditions and by
		considering both cases of external optical and electronic excitations. The
		spectral density of drain voltage fluctuations is also calculated.
Th-P.91	3353	Optical Parametric Oscillator for Continuous Wave Terahertz
		Generation by Optical Heterodyning
		Markku Vainio; M. Siltanen; L. Halonen
		University of Helsinki, Finland
		New continuous-wave singly resonant optical parametric oscillator (OPO)
		based on a bulk Bragg grating is presented. The OPO produces two coherent
		and spatially overlapping near-infrared beams with their frequency difference
		in the terahertz regime.

Th-P.923354Terahertz Emission from GaN Epilayers at Lateral Electric Field

<u>Vadim Shalygin</u>¹; L.E. Vorobjev¹; D.A. Firsov¹; V.Y. Panevin¹; A.N. Sofronov¹; G.A. Melentyev¹; A.V. Antonov²; V.I. Gavrilenko²; S. Suihkonen³; P.T. Törma³; M. Ali³; H. Lipsanen³

¹St. Petersburg State Polytechnic University, Russian Federation; ²Institute for Physics of Microstructures, Nizhny Novgorod, Russian Federation; ³Aalto University, School of Science and Technology, Espoo, Finland Emission of terahertz radiation from GaN has been observed at electric field exceeding impurity breakdown threshold. Distinctive features of the emission spectra can be assigned to electron transitions between excited and ground states of donors and to hot electron transitions to the donor states.

Th-P.95	3356	Rectangular waveguide with low metallic losses on side walls at THz
		Daniel Sánchez-Escuderos; M. Ferrando-Bataller; J.I. Herranz-Herruzo; M.
		Baquero-Escudero
		Universidad Politécnica de Valencia, Spain
		A rectangular waveguide for low-loss transmission at THz frequencies is
		proposed. The waveguide is based on the reflection of the fundamental mode
		on the side walls. By adding a stratified medium, a low impedance condition is
		obtained in the inner wall. Attenuation in side walls is eliminated.
Th-P.96	3358	Evolutionary Algorithms for the Design of Specific Microwave/Millimeter
111-P.90	3330	Wave Components
		Kartikeyan Machavaram; D.G. Goel
		IIT Roorkee, India
		This paper presents the role of Evolutionary Algorithms for the design and
		optimization of specific microwave/millimeter wave components. For this, we
		have taken two problems: one is a nonlinear taper for a 1.0-1.3 MW, long-
		pulse gyrotron operating at 127.5 GHz and another is a compact MSA.

Friday, September 10, 2010

	09:00	10:30 Friday Chair: K	-	Aula Magna
PL.11	335;	techniques <u>Hyeon Park</u> POSTECH - Center Advances in microw visualization of com is a powerful tool for	sion plasma physics via millin for Fusion Plasma, Korea, Rep vave technology and innovative pplex physics of the magnetic f or MHD physics in various dev on reassessed and a system desi	public of e ideas have enabled fusion plasmas. ECEI system ices and the potential of the
	11:00	12:30 Spectroscopy Chair: M. Von		Aula Magna
Fr-A1.1	3365	Spectroscopy Emilio Nanni; A.B. Griffin; R.J. Temkir Massachusetts Instit A 10 W, 250 GHz g power must be optir the effective value of	Hz Wave Coupling into Samp Barnes; Y. Matsuki; P. Wosko tute of Technology, United Star yrotron is used in DNP NMR S nally coupled into the sample. of B1 in the sample in our expense of new designs that increase	ov; B. Corzilius; R.G. tes Spectroscopy. The 250 GHz HFSS simulations show that criments is about 11
Fr-A1.2	3368	SubTHz Spectro Ekaterina Sobakinsk Institute for Physics	meter Based on a Radiation a <u>Kaya</u> ; A.L. Pankratov; V.L. Valor of Microstructures RAS, Russ of operation of subTHz spectra	ks sian Federation
Fr-A1.3	336:	Multiple-freque <u>N.K. Saat;</u> P. Dean; School of Electronic We describe multipl spatial resolution wa by measurement of	ency imaging using a teraher S.P. Khanna; M. Salih; A.G. E c and Electrical Engineering, U le-frequency imaging using a tr as found to be wavelength inde the far-field emission profile. A ples were measured, and compa-	Davies; E.H. Linfield United Kingdom unable THz QCL. The ependent, which is explained Attenuation coefficients of

Fr-A1.4	3372	A New Single Shot Terahertz Time Domain Spectrometer
ГІ-АІ.4	3312	for Rapid Product and Process Control
		Uli Schmidhammer; V. De Waele; P. Jeunesse
		Laboratoire de Chimie Physique, France
		A new simple time-domain THz spectrometer based on single-shot balanced
		detection of the electric field is presented. It allows for the recording of the full
		temporal THz profile at kHz acquisition rates. Its performances are
		demonstrated by measuring the fast drying process of acetone on Teflon.
Fr-A1.5	3374	Spatial and Spectral properties of small area THz generation for sub-
11-A1.5	5574	wavelength microscopy.
		A.C. Busacca ¹ ; <u>F. Buccheri¹</u> ; M. Peccianti ² ; R. Morandotti ³ ; T. Ozaki ³
		¹ University of Palermo, Italy; ² CNR, Italy; ³ INRS-EMT, Canada
		A highly localized THz source is a promising candidate for sub-wavelength
		microscopy, due to its superior radiation power throughput with respect to
		others near-field techniques. Here, we report on the spatial and the spectral
		near-field properties of our highly localized THz source.
Fr-A1.6	3376	Near-field spectra from broadband-infrared nanoscope
		<u>F. Keilmann;</u> S. Amarie
		Max Planck Institute of Quantum Optics, Germany
		We demonstrate 300 cm-1 wide MIR spectra of single pixels of 20 nm size, by
		coupling a fiber-laser-powered coherent spectrometer with a standard near-
		field microscope. Quantitative amplitude and phase spectra of phonon-
		resonant crystals will be compared with theory.

	11:00 -	12:30 Metamaterial Devices Chair: G. Righini	Aula Minor
Fr-B1.1	3377	Metamaterial-based Broadband Terahertz Modulato Sanaz Zarei University of Michigan, United States Broadband modulation of propagating terahertz waves at ro demonstrated using subwavelength metallic slit arrays. Our modulation of terahertz transmission by at least 55% at the frequency.	oom temperature is designs enable the
Fr-B1.2	337:	Bandpass Filters in the Terahertz Range based on A Alessandra Di Gaspare ¹ ; M. Ortolani ² ; O. Limaj ³ ; A. Nucar Rizza ¹ ; E. Palange ¹ ; P. Carelli ¹ ¹ Dipartimento di Ingegneria Elettrica e dell'Informazione, U dell'Aquila, Italy; ² CNR - Istituto di Fotonica e Nanotecnol ³ Università di Roma "la Sapienza", Italy We present the design, fabrication and experimental test of filters made of 2-dimensional arrays of Al slot dipoles on S are obtained through an inexpensive process with full freed can be easily implemented for applications in THz spectros	ra ³ ; S. Lupi ³ ; C. Jniversità ogie, Italy; terahertz bandpass i substrate. Filters om of design and

Fr-B1.3	3382	High-Order THz Bandpass Filters Achieved by Multilayer
11 01.5	5562	Complementary Metamaterial Structures
		M.L. Lu; W.L. Li; <u>E.R.B. Brown</u>
		University of California, Santa Barbara, United States
		A high-order, broadband THz bandpass filter is realized by a complementary,
		multi-layer metamaterial structure. A bandpass filter was designed, fabricated,
		and tested up to 0.7 THz. The good agreement between experimental results
		and theoretical prediction validates the proposed filter.
Fr-B1.4	3384	Ultrabroadband Metamaterial with Full Transmission Control
		J.S. Kyoung ¹ ; M.A. Seo ¹ ; H.R. Park ¹ ; H.S. Kim ¹ ; H. Bernien ¹ ; S.M. Koo ¹ ; B.J. Kim ² ; J.H. Choe ³ ; Y.H. Ahn ⁴ ; H.T. Kim ² ; N.K. Park ¹ ; Q. Park ³ ; K.J. Ahn ¹ ;
		D.S. Kim ¹
		¹ Seoul National University, Korea, Republic of; ² ETRI, Korea, Republic of; ³ Korea University, Korea, Republic of; ⁴ Ajou University, Korea, Republic of
		We study log periodic nanoresonators on VO2 thin film, amplifying available
		dynamic range for extinction and transmission. Over 1,000:1 extinction ratio
		for the nano-pattern is achieved when the film undergoes insulator-to-metal
		phase transition, compared with 10:1 ratio for the unpatterned cases.
Fr-B1.5	3386	Fishnet metamaterials on thin polymer film for terahertz applications
		Patrick Mounaix ¹ ; R. Yahiaoui ¹ ; H. Němec ² ; F. Kadlec ² ; c. Kadlec ² ; J. Schilling ³ ; M. Bari ⁴
		¹ CPMOH, France; ² Institute of Physics, Academy of Sciences of the Czech
		Republic, Czech Republic; ³ ZIK "SiLi-nano", Martin-Luther-Universität
		Halle-Wittenberg, Freiherr-von-Fritsch Str. 3,, Germany; ⁴ Science and
		Technology Research Partners Ltd., Ireland
		Double sided photolithography method on ultrathin polymer and a laser
		micromachining technique were used to fabricate fishnet structures. We
		performed simulations and experiments by terahertz time domain spectroscopy
		respectively. The effective parameters were extracted with a single shot
		approach.
Fr-B1.6	3388	THz Pulse Propagation through Woven-Steel-Mesh Metamaterials
		H.G. Roskos
		Johann Wolfgang Goethe University, Physikalisches Institut,, Germany
		We experimentally study single- and multi-layer woven metallic meshes and
		investigate their pass-band and dispersion characteristics. The structures are
		commercially available as precisely fabricated chemical particle filters, which facilitates their application as metamaterials.
		**

	11:00	- 12:30 Laser Driven Sources 3	Room 2	
		Chair: E. Suvorov		
Fr-C1.1	338:	Ultrabroadband Electric Field Generation and Detection from Far		
11-01.1	550.	Infrared to Optical Communication Frequency		
		<u>Eiichi Matsubara</u> ¹ ; M. Bitoh ¹ ; H. Shimosato ¹ ; M. A		
		¹ Osaka University, Japan; ² Osaka University and F	· · ·	
		We generated ultrabroadband coherent infrared wa	1	
		of 0.1-200 THz using difference frequency generat	•	
		GaSe, and dipole radiation from a photoconductive		
		the wave by time domain spectroscopy with a phot		
Fr-C1.2	3392	A Critical Analysis of THz Applications and Co	-	
	0072	Technologies: Challenges and Opportunities, an	nd Common Truths	
		Carter Armstrong		
		L-3 Communications Electron Devices, United Sta		
		The results of an analysis of THz applications and	1 2	
		be presented. This work was performed in support	e	
		Compact THz Sources held in 2007. Challenges an	nd opportunities will be	
F 61.4		discussed.		
Fr-C1.3	3393	THz Generation in a Photo-Activated Period		
		Joseph Penano ¹ ; P. Sprangle ¹ ; D. Gordon ¹ ; B. Hafi		
		¹ Naval Research Laboratory, United States; ² Icarus	s Research, Inc., United	
		States		
		A high-intensity short laser pulse, propagating oblight		
		periodically biased semiconductor array can photo		
		generate a periodic current density. The transient c	•	
		source of THz radiation over a wide frequency ran	-	
Fr-C1.4	3394	Control of Terahertz Wave Front using Arraye Device	a Teranertz Emission	
		<u>K. Beppu</u> ; T. Sugimoto; T. Kiwa; K. Tsukada		
		Okayama university, Japan		
		Arrayed THz emission device was proposed to cor	ntrol the wave front of THz	
		The simulation results indicated the THz wave from		
		the emission pattern of the device. The 4×4 arrayed		
		the emission pattern could be controlled by the bia		
Fr-C1.5	3396	Improved Performance of GaAs-based Tera	e	
		<u>C. Headley¹</u> ; L. Fu ² ; P. Parkinson ¹ ; X. Xu ¹ ; J. Lloy		
		M.B. Johnston ¹	, , , , , , , , , , , , , , , , , ,	
		¹ Department of Physics, University of Oxford, Uni	ited Kingdom; ² Research	
		School of Physics and Engineering, Australian Nat	-	
		We have improved the stability and performance of	•	
		(Auston) switches using a combination of (NH4)2	-	
		silicon nitride (Si3N4) encapsulation. The passivat		
		processes increased the average terahertz power ge	enerated four-fold.	

Fr-C1.6	3
11-C1.0	J.

397 The Study on the Interaction between Mimicking Surface Plasmon and two-Electron beam in the 3-mirror quasi-optical Cavity

Y.X. Zhang; M. Hu; P. Zhang; S.G. Liu

Terahertz Research Centre, University of Electron Science and Technology of China, China Mimicking surface plasmons can be used to interact with two-electron beam to

generate THz radiation. And the 3-mirror quasi-optical cavity has high Q and can collect the radiation energy efficiently, so the interaction in such special cavity may be a good way to generate THz.

	11:00 -	12:30 Biology 4 Chair: A. Markels	Room 3
Fr-D1.1	3399	Chemical microscopy and nanoscopy of bio-ma <u>E. Bruendermann</u> ; D.A. Schmidt; I. Kopf; K. Meister; Havenith Ruhr-University Bochum, Germany Raman microspectroscopy of human sperm cells and r microscopy of nanoscale biomaterials like nanografted performed. A newly developed station for the ANKA- several techniques to study the same sample at the sam	M. Filimon; M. nearfield infrared d DNA have been IR2 beamline combines
Fr-D1.2	339;	Terahertz time-domain spectroscopy on proteins, p biological molecules	peptides, and small
		 <u>Keisuke Tominaga</u>; A. Kaneko; O. Kambara; F. Zhang Kobe University, Japan Absorption coefficients and refractive indices of biolo macromolecules such as myoglobin and small molecul triphosphate have been obtained in the low-frequency domain spectroscopy to understand molecular dynamic 	gically important les such as adenosine region by terahertz time- cs and interactions.
Fr-D1.3	33: 3	Terahertz Time Domain Spectroscopy of Protein S <u>Katarzyna Tych</u> ¹ ; A.D. Burnett ¹ ; C.D. Wood ¹ ; J.E. Cu Pearson ² ; E.H. Linfield ¹ ; A.G. Davies ¹ ¹ School Electronic and Electrical Engineering, Univer Kingdom; ² Astbury Centre for Structural Molecular B Leeds, United Kingdom Broadband time-domain spectroscopy has been used to	nningham ¹ ; A.R. sity of Leeds, United iology, University of
Fr-D1.4	33: 5	absorption of single crystal proteins. A dehydration stutetragonal hen egg-white lysozyme is presented as a processing Rattling Ions to Probe sub-ps Water Netwon D.A. Schmidt ¹ ; Ö. Birer ² ; S. Funkner ¹ ; B.P. Born ¹ ; R.	udy of a single crystal of roof of concept. rk Dynamics
		 Schwaab¹; D.M. Leitner³; M. Havenith¹ ¹Department of Physical Chemistry II, Ruhr-Universit ²Department of Physical Chemistry II, Ruhr-Universit Address: Department of Chemistr, Turkey; ³Departme University of Nevada, United States We present THz measurements on fifteen solvated alk narrow band THz absorption and broad band THz Fou spectroscopies in order to shed new light on the control 	y Bochum; Present ent of Chemistry, cali halide salts using urier transform

Fr-D1.5	33: 7	kosmotropes (structure maker) or chaotropes (structure breaker). Terahertz spectroscopy of liquid water in frozen biological samples <u>Hiromichi Hoshina</u> ¹ ; A. Hayashi ¹ ; S. Ueno ² ; Y. Ogawa ³ ; C. Otani ¹ ¹ RIKEN Advanced Science Institute, Japan; ² Tohoku University, Japan; ³ Kyoto University, Japan Terahertz transmission spectra of frozen gelatin solution were measured. The observed spectrum shows that the scattering of ice crystal is negligibly small. The absorbance of liquid water in the sample was confirmed by subtracting those of ice and freeze dried gelatin from the observed spectrum.
	11:00 -	12:30 Plasma heating and diagnostics Room 7 Chair: K. Sakamoto
Fr-E1.1	33: 8	Utilization of collinear ECE detection/ECRH heating for activestabilization of plasma instabilitiesWaldo BongersFOM institute for plasma physics Rijnhuizen, NetherlandsOn TEXTOR proof of principle was demonstrated of using ECE measuredalong the QO ECRH line-of-sight for MHD control. Progress of such a systemon ASDEX-Upgrade, based on waveguides equipped with FADIS as diplexerin combination with an additional Mach-Zehnder-type absorptive filter, ispresented.
Fr-E1.2	33; 2	Electron Bernstein Wave Emission Diagnostics using Phased-array Antenna System in QUEST <u>Hiroshi Idei</u> Kyushu University, Japan The phased-array antenna has been developed for EBW emission diagnostics. The measured fields were in excellent agreements with those evaluated from the Kirchhoff integral. The broadband orthomode transducer was also developed to measure the wave polarization of the EBW emission.
Fr-E1.3	33; 5	Terahertz scattering technique for measuring decay of plasma filamentS.B. Bodrov;A.A. Murzanev;M.V. Tsarev;A.N. StepanovInstitute of Applied Physics of Russian Academy of Sciences, RussianFederationTerahertz scattering technique was proposed and used for investigation ofdynamics of plasma density in a filament formed in air by femtosecond laserpulses. Two orders of magnitude for 2 ns decay of plasma density wereobtained. The kinetic processes responsible for such a fast decay are discussed.
Fr-E1.4	33;7	Generation of Submillimeter Radiation by Strong Plasma Turbulence at Electron Beam – Plasma Interaction <u>A.V. Arzhannikov</u> ¹ ; A.V. Burdakov ² ; S.A. Kuznetsov ² ; M.A. Makarov ² ; K.I. Mekler ² ; V.V. Postupaev ² ; A.F. Rovenskikh ² ; V.F. Sklyarov ² ; S.L. Sinitsky ² ¹ Budker Institute of Nuclear Physics and Novosibirsk State University, Russian Federation; ² Budker Institute of Nuclear Physics SB RAS, Russian Federation The paper presents the results of the experimental investigation of the process of conversion of two Langmuir oscillations in one electromagnetic wave with the frequency twice as large as the plasma Langmuir frequency.

	11:00 -	12:30 Security and Stand-off Detection	Room 11
		Chair: I. Duling	
Fr-F1.1	33;9	Terahertz radar cross section measurements	
		Krzysztof Iwaszczuk ¹ ; H. Heiselberg ² ; P.U. Jepsen ¹	m 1 · 1
		¹ DTU FOTONIK – Department of Photonics Engineering,	
		University of Denmark, Denmark; ² Danish Defense Acqui	sition & Logistics
		Organization, Denmark	, .
		We present the result of terahertz radar cross section measured	
		objects including models of aircraft fighters. Application o	
Fr-F1.2	2400	system provides both values of radar cross section and rang	ging information.
Fr-F1.2	3422	Hilbert spectroscopy for security screening of liquids	1 1
		<u>Yuriy Divin</u> ¹ ; M. Lyatti ¹ ; V. Pavlovskiy ² ; u. Poppe ¹ ; K. Ur	
		¹ Forschungszentrum Juelich, Germany; ² Institute of Radio	Engineering and
		Electronics RAS, Russian Federation	1' 1 TT'11 4
		To distinguish between liquids in security screening, we had	
		spectroscopy and high-Tc Josephson detectors. Compact se	
		developed and reflection spectra of various liquids in bottle	
Fr-F1.3	3424	measured in the spectral range of 15 - 400 GHz with scann	
FI-F1.3	3424	An experimental 210 GHz radar system for 3D stand Jan Svedin ¹ ; S. Rudner ¹ ; G. Thordarsson ² ; N. Wadefalk ³ ; S	-on detection
		M. Abbasi ³ ; H. Zirath ³ ; J. Stake ³ ; T. Bryllert ³ ; J. Vukusic ³	S.E. Guillaisson ;
		¹ FOI, Sweden; ² SAAB Electronic Defense Systems, Swede	an: ³ Chalmara
		University of Technology, Sweden	cii, Chaimers
		A 210 GHz radar system for studies of person scanning at	stand off distances
		is presented. The radar uses a mechanically scanned RX fro	
		antenna-integrated MMIC. The TX part is based on an HB	
		data compression is made using the FMCW and SAR princ	
		Development of THz Gyrotrons with Pulse Solenoids for	
Fr-F1.4	3426	Concealed Radioactive Materials	Dettetting
		<u>Gregory Nusinovich</u> ¹ ; R. Pu ¹ ; T.M. Antonsen ¹ ; O.V. Sinits	vn ¹ · I Rodgers ¹ ·
		V.L. Granatstein ¹ ; A. Mohamed ¹ ; J. Silverman ¹ ; M. Al-She	
		Dimant ²	sixiny, 1.5.
		¹ University of Maryland, United States; ² Boston University	v United States
		The detection concept is based on focusing high-power TH	
		generated by compact gyrotrons in small spots where the b	
		initiated. Results of the study of air ionization by concealed	
		materials and design data of a 670 GHz gyrotron are report	
Fr-F1.5	3428	SubTHz and FTIR Spectroscopy of Explosive Vapo	
		E.A. Sobakinskaya ¹ ; <u>V.L. Vaks</u> ¹ ; S.S. Nabiev ² ; D.B. Stavro	
		¹ Institute for Physics of Microstructures RAS, Russian Fed	leration; ² Russian
		Research Centre "Kurchatov Institute, Russian Federation;	
		General Physics Institute RAS, Russian Federation	
		Discussed are experimental results of subTHz vapor phase	spectroscopy over
		solid samples of explosives, such as commercial trinitrotol	
		nitroglycerine (NG) and cyclonite (RDX).	