2011 IEEE International SOC Conference

(SOCC 2011)

Taipei, Taiwan 26 – 28 September 2011

IEEE Catalog Number: ISBN:

CFP11ASI-PRT 978-1-4577-1616-4

TABLE OF CONTENTS

Section PL1 – Plenary Session I

Keynote: The Future Microprocessor: Return of the ASIC% Yale N. Patt, University of Texas at Austin, Austin, Texas, USA

Plenary: Nanosystems: Technologies and Architectures for Sensing and Computing *Prof. Giovanni De Micheli, Director, EPF, Lausanne, Switzerland*

Plenary: From Global Telecare Development Trends to Taiwan's Biomedical Electronic System: Opportunity and Outlook'

Prof. Chih-Kung Lee, President, Institute for Information Industry, Taipei, Taiwan

Special Section S1 – Digital Microfluidic Biochips

Chair: Prof. Tsung-Yi Ho, National Cheng Kung University

- **S1.1 Digital Microfluidic Biochips: A Vision for Functional Diversity and More than Mo** *""") Prof. Krishnendu Chakrabarty, Duke University*
- S1.2 Recent Research and Emerging Challenges in the System-Level Design of Digital Microfluidic Biochips[…]*

Paul Pop, Elena Maftei, Jan Madsen, Technical University of Denmark

*Tsung-Wei Huang*¹, Yan-You Lin², Jia-Wen Chang¹, Tsung-Yi Ho¹ ¹National Cheng Kung University, ²Duke University

Section T1 – Embedded Tutorial

T1.1 Post Silicon Debug of SOC Designs%

Prof. Virendra Singh, Indian Institute of Science, Bangalore, India, Prof. Masahiro Fujita, Tokyo University, Tokyo, Japan

Section A1 – Green Circuits I

A1.1 An Energy-Efficient 10T SRAM-based FIFO Memory Operating in Near-/Sub-threshold Regions^{.....}%

Wei-Hung Du, Ming-Hung Chang, Hao-Yi Yang, Wei Hwang National Chiao Tung University

Lei Wang¹, Markus Olbrich¹, Erich Barke¹, Thomas Buechner², Markus Buehler², Philipp Panitz² ¹Institute of Microelectronic Systems, ²IBM Research & Development Boeblingen, Germany

A1.3 Novel Adaptive keeper LBL technique for Low Power and High Performance Register files \$ Na Gong¹, Geng Tang¹, Jinhui Wang², Ramalingam Sridhar¹ ¹University at Buffalo, SUNY, ²Beijing University of Technology

A1.4 Integration of Code Optimization and Hardware Exploration for A VLIW Architecture by Using Fuzzy Control System *

Xiaoyan Jia and Gerhard Fettweis Dresden University of Technology, Germany

A1.5 A COMPACT DELAY-RECYCLED CLOCK SKEW-COMPENSATION AND/OR DUTY-CYCLE-**CORRECTION CIRCUIT** (**&** *Yi-Ming Wang*¹, *Jen-Tsung Yu*¹, *Yuandi Surya*¹, *Chung-Hsun Huang*²

¹National Chi Nan University, ²National Chung-Cheng University

A1.6 A LOW-POWER ALL-DIGITAL PHASE MODULATOR PAIR FOR LINC TRANSMITTERS""(,

Ping-Yuan Tsai, Tsan-Wen Chen, Chen-Yi Lee National Chiao-Tung University

A1.7 A LOW POWER WIDE TUNING RANGE VCO WITH COUPLED LC TANKS) &

Shouxian Mou, Kaixue Ma, Kiat Seng Yeo, Nagarajan Mahalingam, Thangarasu Bharatha Kumar Nanyang Technological University, Singapore

A1.8 A Design Strategy for Sub-Threshold Circuits Considering Energy-Minimization and Yield-Maximization +

Junva Kawashima, Hiroyuki Ochi, Hiroshi Tsutsui, Takashi Sato Kyoto University

Section B1 – Analog & Biomedical Circuits I

B1.1 A Silicon Core for an Acoustic Archival Tag^{.....}*'

Godi Fischer and Thomas Rossby University of Rhode Island

B1.2 A NOVEL APPROACH TO ESTIMATE THE IMPACT OF ANALOG CIRCUIT PERFORMANCE BASED ON THE SMALL SIGNAL MODEL UNDER PROCESS VARIATIONS *** + \$

Po-Yu Kuo, Siwat Saibua, Dian Zhou The University of Texas at Dallas

B1.3 Low Power 120 KSPS 12bit SAR ADC with a Novel Switch Control Method for Internal CDAC *** +* Abhisek Dey and Tarun Kanti Bhattacharyya

IIT KGP

Section B2 – EDA and Design Tools

B2.1 Simultaneous Escape Routing Based on Routability-Driven Net Ordering, %

JIn-Tai Yan, Tung-Yen Sung, Zhi-Wei Chen Chung-Hua University

B2.2 A CAD Methodology for Automatic Topology Selection & Sizing "", +

Supriyo Maji and Pradip Mandal IIT, Kharagpur

B2.3 System Power Analysis with DVFS on ESL Virtual Platform- '

*Wen-Tsan Hsieh*¹, *Yi-Siou Chen*², *Jen -Chieh Yeh*¹, *Shih-Che Lin*¹, *Hsing-Chuang Liu*¹ ¹Industrial Technology Research Institute, Taiwan, R.O.C., ²National Cheng Kung University, Taiwan, R.O.C.

B2.4 A 65nm STANDARD CELL SET AND FLOW DEDICATED TO AUTO-MATED ASYNCHRONOUS CIRCUITS DESIGN^{....}--

Matheus Moreira, Bruno Oliveira, Julian Pontes, Ney Calazans PUCRS

Section P1 – Poster Session & Reception

P1.1 DOUBLE-DIFFERENTIAL RECORDING AND AGC USING AMPLIFIER ASIC **** (\$)

Shin-Liang Deng, Chun-Yi Li, Robert Rieger National Sun Yat-Sen University

P1.2 Dynamic Calibration of feedback DAC Non-Linearity for a 4th Order CT Sigma Delta for Digital Hearing Aids Dynamic Calibration of feedback DAC Non-Linearity for a 4th Order CT Sigma Delta for Digital Hearing Aid^{****}%-

Syed Naqvi, Ilker Deligoz, Sayfe kiaei, Bertan Bakkaloglu Arizona State University

P1.3 A REDUCED SIGNAL FEED-THROUGH 6-TAP PRE-EMPHASIS CIRCUIT FOR USE IN A 10GB/S BACKPLANE COMMUNICATIONS SYSTEM **** %*/

Harry Tai, Peter Noel, Tadeusz Kwasniewski Carleton University

P1.4 FEASIBILITY STUDY FOR COMMUNICATION OVER POWER DISTRIBUTION NETWORKS OF MICROPROCESSORS ***** %

Rajesh Thirugnanam and Dong Ha Virginia Tech

P1.5 On-Demand Memory Sub-System for Multi-Core SoCs *Po-Tsang Huang, Yung Chang, Wei Hwang* Institute of Electronics, National Chiao-Yung University

P1.6 WELL TAPPING METHODOLOGIES IN POWER-GATING DESIGN %&,

*Kaijian Shi¹ and David Tester*² ¹Synopsys, ²Structured Custom

P1.7 POWER-AWARE DESIGN TECHNIQUE FOR PAC DUO BASED EMBEDDED SYSTEM **** % &

Shui-An Wen, Huang-Lun Lin, Wei-Min Cheng, Chi Wu, Chun-Chin Chen, Kun-Hsien Tsai Industrial Technology Research Institute

P1.8 Low Voltage SRAMs and the Scalability of the 9T Supply Feedback SRAM ""% * Janna Mezhibovsky, Adam Teman, Alexander Fish

Ben-Gurion University

P1.9 Ultra Low Power QC-LDPC Decoder with High Parallelism% &

Ying CUI, Xiao PENG, Zhixiang CHEN, Xiongxin ZHAO, Yichao LU, Dajiang ZHOU, Satoshi GOTO IPS, Waseda University

P1.10 A SAR ADC BIST for Simplified Linearity Test *** %

Soon-Jyh Chang¹, An-Sheng Chao¹, Hsin-Wen Ting²

¹National Cheng Kung University, 70101, Tainan, Taiwan., ²National Kaohsiung University of **Applied Sciences**

P1.11 Concept and Design of Exhaustive-Parallel search algorithm to support Quality-of-service in **Network-on-Chip *** **** *Meganathan Deivasigamani*¹, *Shaghayeghsadat Tabatabaei*², *Axel Jantsch*², *Naveed Mustafa*², *Hamza*

Ijaz², Haris Bin Aslam², Shaoteng Liu²

¹Madras Institute of Technology, Anna University, Chennai-600044, India, ²Royal Institute of Technology, Stockholm, Sweden

P1.12 TSV Sharing through Multiplexing for TSV Count Minimization in High-Level Synthesis¹¹%*

Wen-Pin Tu, Yen-Hsin Lee, Shih-Hsu Huang Chung Yuan Christian University

P1.13 Power Characteristics of Asynchronous Networks-on-Chip[…]%\$

Maher Rashed¹, Mohamed Abd El Ghany¹, Mohammed Ismail² ¹German University in Cairo, ²The Ohio State University, Columbus, USA

P1.14 DESIGN OF COMPLEX CIRCUITS USING THE VIA-CONFIGURABLE TRANSISTOR ARRAY **REGULAR LAYOUT FABRIC**^{***} **

Marc Pons¹, Francesc Moll¹, Antonio Rubio¹, Jaume Abella², Xavier Vera³, Antonio González³ ¹UPC, ²BSC-CNS, ³Intel

P1.15 YIELD-AWARD PLACEMENT OPTIMIZATION FOR SWITCHED-CAPACITOR ANALOG

Chien-Chih Huang¹, Jwu-E Chen¹, Pei-Wen Luo², Chin-Long Wey¹ ¹National Central University, Jhongli, Taiwan, ²Industrial Technology Research Institute, Hsinchu, Taiwan

P1.16 AN ANALYTICAL MODEL TO ESTIMATE PCM FAILURE PROBABILITY DUE TO PROCESS

Mu-Tien Chang and Bruce Jacob University of Maryland, College Park

Section PL2 – Plenary Session II

Chair: Norbert Schuhmann, Fraunhofer IIS

PL2.1 Boosting performance efficiency in multiprocessor systems through multi-threading^{...,}%,

Gideon Intrater, VP - Product Marketing and Applications, MIPS Technologies

Section A3 – Embedded and Multicore Systems

A3.1 Configurable Workload Generators for Multicore Architectures%

Amayika Panda, Annie Avakian, Ranga Vemuri University of Cincinnati

A3.2 Computation and Communication Aware Run-Time Mapping for NoC-based MPSoC Platforms[…]%)

Samarth Kaushik, Amit Kumar Singh, Thambipillai Srikanthan Nanyang Technological University, Singapore

A3.3 De-Cache: A Novel Caching scheme for Large-Scale NoC based Multiprocessor Systems-on-Chips^{****}% %

Azeez Sanusi and Magdy Bayoumi The University of Louisiana, Lafayette

A3.4 A High-Performance Low VMIN 55nm 512Kb Disturb-Free 8T SRAM with Adaptive VVSS Control[…]% +

Hao-I Yang¹, Shih-Chi Yang¹, Mao-Chih Hsia¹, Yung-Wei Lin¹, Yi-Wei Lin¹, Chien-Hen Chen¹, Chi-Shin Chang¹, Geng-Cing Lin¹, Yin-Nien Chen¹, Ching-Te Chuang¹, Wei Hwang¹, Shyh-Jye Jou¹, Nan-Chun Lien², Hung-Yu Li³, Kuen-Di Lee³, Wei-Chiang Shih³, Ya-Ping Wu³, Wen-Ta Lee³, Chih-Chiang Hsu³
¹Dept. of Electronics Eng. & Inst. of Electronics, National Chiao-Tung University, ²Faraday Technology Corporation and Dept. of Electronics Eng. & Inst. of Electronics, National Chiao-Tung University, ³Faraday Technology Corporation

Section B3 – Verification and Test

Yi-Li Lin and Alvin W.Y. Su National Cheng Kung University

B3.2 CGA: Combining Cluster Analysis with Genetic Algorithm for Regression Suite Reduction of Microprocessors ***** &

Liucheng Guo, Jiangfang Yi, Liang Zhang, Xiaoyin Wang, Dong Tong Dept. of Computer Science, Peking University

B3.3 High Reliability Built-in Self-Detection and Self-Correction Design for DCT/IDCT Application *Chang-Hsin Cheng*¹, *Chung-Hsu*², *Chung-Kai Liu*¹, *Shih-Yin Lin*¹ Industrial Technology Research Institute, ²National Dong Hwa University

B3.4 A Register-Transfer Level Testability Analyzer[…] &%

Yen-An Chen, Chun-Yao Wang, Ching-Yi Huang, Hsiu-Yi Lin National Tsing Hua University

Section A4 – Technology and Variation

Joan Mauricio, Francesc Moll, Josep Altet Universitat Politècnica de Catalunya

A4.2 A Parametric DFM Solution for Analog Circuits: Electrical Driven Hot Spot Detection, Analysis and Correction Flow^{……}& %

Rami Fathy¹, Ahmed Arafa¹, Sherif Hany¹, Abdelrahman ElMously¹, Haitham Eissa¹, Mohamed Dessouky¹, David Nairn², Mohab Anis³ ¹Mentor Graphics, ²University of Waterloo, ³American University in Cairo

A4.3 A 144-configuration context MEMS optically reconfigurable gate array **** *

Yuichiro Yamaji and Minoru Watanabe Shizuoka University

Section B4 – Communication Circuits

B4.1 VLSI Design of Area-Efficient Memory Access Architectures for Quasi-Cyclic LDPC Codes^{****}**&** *Ming-Der Shieh*¹, *Shih-Hao Fang*¹, *Shing-Chung Tang*², *Der-Wei Yang*¹ ¹National Cheng Kung University, ²Himax Technology

B4.2 Low Power Gm-Boosted Differential Colpitts VCO^{.....}&(+

Yi-Pei Su¹, Wei-Yi Hu¹, Jia-Wei Lin¹, Yun-Chung Chen¹, Sakir Sezer², Sao-Jie Chen¹ ¹National Taiwan University, Taiwan, ²Queen's University Belfast N Ireland, UK

B4.3 A Multi-Segment Clocking Scheme to Reduce On-Chip EMI^{.....}&) %

Behzad Mesgarzadeh, Iman Esmail Zadeh, Atila Alvandpour Linkoping University - Sweden

Luncheon Speaker

Luncheon Speaker: "SoC Test"......&) *

L.-T. Wang, President & CEO SynTest

Special session S2 – Software Defined Radio

Chair: Prof. Hsi-Pin Ma, Tsing-Hua Univ

S2.1 Baseband Signal Processing in SDR^{....}&),

Prof. Tzi-Dar Chiueh, Graduate Institute of Electronics Engineering, National Taiwan Uinversity and Director General of National Chip Implementation Center

¹Wright State University, ²Texas Woman's University

S2.3 CONFIGURABLE BASEBAND DESIGNS AND IMPLEMENTATIONS OF WIMAX/LTE DUAL SYSTEMS BASED ON MULTI-CORE DSP^{......}&*)

Jen-Yuan Hsu, Chien-Yu Kao, Ping-Heng Kuo, Pangan Ting Industrial Technology Research Institute

Section T2 – Embedded Tutorial

T2.1 Manufacturing Test of Systems-on-a-Chip (SoCs)^{……}&+&

Prof. Jacob Abraham, University of Texas at Austin

Section A5 – Network on Chip (Noc)

A5.1 Multi-Pheromone ACO-based Routing in Network-on-Chip System Inspired by Economic Phenomenon^{……}&+'

Hsien-Kai Hsin, En-Jui Chang, Chih-Hao Chao, Shu-Yen Lin, An-Yeu Wu National Taiwan University

A5.2 FAIR RATE PACKET ARBITRATION IN NETWORK-ON-CHIP &+,

Falko Guderian, Erik Fischer, Markus Winter, Gerhard Fettweis TU-Dresden A5.3 Transport Layer Assisted Routing for Non-Stationary Irregular Mesh of Thermal-Aware 3D Network-on-ChipSystems^{****}& (

Chih-Hao Chao, Tzu-Chu Yin, Shu-Yen Lin, An-Yeu Wu National Taiwan University

- A5.4 TSV-Based 3D-IC Placement for Timing Optimization^{***} & *Yi-Rong Chen, Hung-Ming Chen, Shih-Ying Liu* National Chiao Tung University
- A5.5 Fault Tolerant Application-Specific NoC Topology Synthesis for Three-Dimensional Integrated Circuits ***
- " Yi-Xue Zheng, Po-Ping Kan, Liang-Bi Chen, Kai-Yang Hsieh, Bo-Chuan Cheng, Katherine Shu-Min Li National Sun Yat-Sen University
- A5.6 Exploring Virtual-Channel Architecture in FPGA based Networks-on-Chip^{****} \$& Ye Lu, John McCanny, Sakir Sezer Queen's University Belfast

A5.7 A Novel Methodology for Multi-Project System-on-a-Chip[…]' \$,

Chih-Chyau Yang, Nien-Hsiang Chang, Shih-Lun Chen, Wei-De Chien, Chi-Shi Chen, Chien-Ming Wu, Chun-Ming Huang National Chip Implementation Center (CIC), Hsinchu, Taiwan

Section B5 – Architecture & Multimedia Systems

B5.1 VFSMC - A CORE FOR CYCLE ACCURATE MULTITHREADED PROCESSING IN HARD REAL-TIME SYSTEMS-ON-CHIP ***** ***

Siegfried Brandstätter¹ and Mario Huemer² ¹DICE GmbH & Co KG, ²Klagenfurt University

- **B5.2 An Analog Gamma Correction Implementation for High Dynamic Range Applications** *Yuan Cao and Amine Bermak* HKUST
- **B5.3 Low Power tri-state Register files Design for modern out-of-order processors ***** *Na Gong¹, Geng Tang¹, Jinhui Wang², Ramalingam Sridhar¹* ¹University at Buffalo, SUNY, ²Beijing University of Technology

Section B6 – Reconfigurable Systems

B6.1 INSTRUCTION SET CUSTOMIZATION FOR AREA-CONSTRAINED FPGA DESIGNS &

Alok Prakash¹, Siew Kei Lam¹, Christopher T. Clarke², Thambipillai Srikanthan¹ ¹CHiPES, Nanyang Technological University, Singapore, ²University of Bath, UK

B6.2 HoneyComb: A Multi-grained Dynamically Reconfigurable Runtime Adaptive Hardware Architecture ''''''')

Alexander Thomas, Michael Rueckauer, Juergen Becker Karlsruhe Institute of Technology–Institute for Information Processing

B6.3 COMPILER-ASSISTED TECHNIQUE FOR RAPID PERFORMANCE ESTIMATION OF FPGA-BASED PROCESSORS^{.....} (%

Yan Lin Aung, Siew Kei Lam, Thambipillai Srikanthan Nanyang Technological University

B6.4 HIGH PERFORMANCE MULTI-ENGINE REGULAR EXPRESSION PROCESSING (+

Thianantha Arumugam, Sakir Sezer, Dwayne Burns, Vishalini Vasu Queen's University Belfast

Section T3 – Embedded Tutorial

Section A7 – Green Circuits II

- **A7.1 A Single-Phase Energy Metering SoC with IAS-DSP and Ultra Low Power Metering Mode**[…]) (Nianxiong Tan¹, Yan Zhao¹, Kun Yang², Shupeng Zhong², Changyou Men² ¹Zhejiang University, ²Vango Technologies, Inc.
- **A7.2 PVT Variations Aware Optimal Sleep Vector Determination of Dual Vt Domino OR Circuits**^{.....}**)** *Na Gong¹, Jinhui Wang², Ramalingam Sridhar¹* ¹University at Buffalo, SUNY, ²Beijing University of Technology
- A7.3 Sleep Signal Slew Rate Modulation for Mode Transition Noise Suppression in Ground Gated Integrated Circuits^{....}*)

Hailong Jiao and Volkan Kursun The Hong Kong University of Science and Technology

Section B7 – Analog & Biomedical Circuits II

B7.1 An Energy-Efficient OFDM-Based Baseband Transceiver Design for Ubiquitous Healthcare Monitoring Applications **** +%

Tzu-Chun Shih, Tsan-Wen Chen, Wei-Hao Sung, Ping-Yuan Tasi, Chen-Yi Lee National Chiao Tung University

- **B7.2 Design of A Neural Recording Amplifier with Tunable Pseudo Resistors**^{*****} +* *Kai-Wen Yao¹, Cihun-Siyong Alex Gong², Shan-Ci Yang¹, Muh-Tian Shiue¹* ¹National Central University, Taiwan, ²Industrial Technology Research Institute, Taiwan
- **B7.3 Efficient Design and Synthesis of Decimation Filters for Wideband Delta-Sigma ADCs**^{...,} , *Rajaram Mohan Roy Koppula, Sakkarapani Balagopal, Vishal Saxena* Boise State University

Section A8 – Invited Talks from IBM

- A8.1 Technology Trends and Implications on SoC Design[…], * Jeffrey L. Burns, IBM TJ Watson
- A8.2 The Pending Arrival of Phase Change Memory: The Implications on the Memory-Storage Hierarchy and on Future Systems Development^{.....,}, + Stefanie Chiras, IBM Austin Research Lab
- **A8.3 FLOORPLANNING CHALLENGES IN EARLY CHIP PLANNING**[…], , Jeonghee Shin, John Darringer, Guojie Luo, Merav Aharoni, Alexey Lvov, Gi-Joon Nam, Michael Healy IBM Research