# **2012 Optical Interconnects Conference**

## Santa Fe, New Mexico, USA 20-23 May 2012



IEEE Catalog Number: CFP12HSD-PRT **ISBN:** 

978-1-4577-1620-1

### **TABLE OF CONTENTS**

### Monday, May 21, 2012

| PLE               | Warehouse - Scale Computing                                                                                                    |     |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------|-----|
| PLE1              | Photonic Technologies and Warehouse Scale Computing: What The Future<br>Holds?                                                 | N/A |
| <b>MA</b><br>MA 1 | <b>Communications Systems and Integration</b>                                                                                  | 1   |
| MA2               | Comparisons between 28 Gb/s NRZ, PAM, CAP and optical OFDM systems for Datacommunication Applications                          | 3   |
| MA3               | Enabling 850nm VCSELs for 100GbE Applications                                                                                  | 5   |
| MA4               | Scaling Hybrid-Integration of Silicon Photonics in Freescale 130nm to TSMC 40nm-CMOS VLSI Drivers for Low Power Communications | 7   |
| MA5               | Ge Quantum Well Electro-Absorption Modulatorwith 23 GHz Bandwidth                                                              | 8   |
| <b>MB</b><br>MB1  | Hybrid Photonics<br>Hybrid Silicon / III-V Sources for Optical Interconnects                                                   | 10  |
| MB2               | Highly-Efficient, Low-Noise Si Hybrid Laser using Flip-Chip Bonded SOA                                                         | 12  |
| MB3               | InP Membrane Based Broadband Regenerator for silicon-based Optical<br>Interconnect Applications                                | 14  |
| MB4               | 1.3µm Hybrid Silicon Electroabsorption Modulator                                                                               | 16  |
| MB5               | Hybrid Chip-Scale Optical Interconnects Using Multiple Quantum Well Devices<br>Bonded to Silicon                               | 18  |
| MB6               | Compact High-Speed InP Microdisk Modulators Heterogeneously Integrated on a SOI Waveguide                                      | 20  |
| MB7               | Micro-Ring Resonator based Electro-Absorption Modulators on the Hybrid III-V on Silicon Platform                               | 22  |
| мс                | Silicon Optics                                                                                                                 |     |
| MC1               | Silicon Photonics and Interconnects: Roadmap for Implementation                                                                | 24  |
| MC2               | Low Loss Waveguide Integration within a Thin-SOI CMOS Foundry                                                                  | 25  |
| MC3               | Optical Interlayer Coupling Design for Optical Interconnects Based on Mirror<br>Enhanced Grating Couplers                      | 27  |
| MC4               | Monolithic Silicon Waveguides in Bulk Silicon                                                                                  | 29  |
|                   |                                                                                                                                |     |

#### Tuesday, May 22, 2012

| TuA  | Large Computing Systems                   |     |
|------|-------------------------------------------|-----|
| TuA1 | Requirements for the DOE Exascale Program | N/A |

| TuA2               | Optical Interconnects for High-Performance Computing Systems                                                          | 31  |
|--------------------|-----------------------------------------------------------------------------------------------------------------------|-----|
| <b>TuB</b><br>TuB1 | Novel Devices<br>Nanoneedle Lasers                                                                                    | N/A |
| TuB2               | Modulation Speed Enhancement of DirectlyModulated Lasers Using a Micro-ring<br>Resonator                              | 32  |
| TuB3               | Improved Quantum Efficiency of GaInAsP/InP Top Air-Clad Lateral Current<br>Injection Lasers                           | 34  |
| TuB4               | Novel Nonlinear Photonic Functionalities in Silicon Nanowires                                                         | 36  |
| TuB5               | Experimental Characterization of the Optical-Power Upper Boundin a Silicon<br>Microring Modulator                     | 38  |
| <b>TuC</b><br>TuC1 | Photonic Links and Devices I<br>Low-Energy VCSEL Links                                                                | 40  |
| TuC2               | Energy Efficient 850 nm VCSELs Operating Error-free at 25 Gb/s over Multimode<br>Optical Fiber up to 600 m            | 42  |
| TuC3               | Energy-Efficient Passive and Active Photonic Devices for a Silicon Macrochip                                          | N/A |
| TuC4               | Lateral Versus Interdigitated Diode Design for 10 Gb/s Low-Voltage Low-Loss<br>Silicon Ring Modulators                | 44  |
| TuC5               | Active Wavelength Control of Silicon Microphotonic Resonant Modulators                                                | 46  |
| TuC6               | Adiabatic Resonant Microring (ARM) Modulator                                                                          | 48  |
| <b>TuD</b><br>TuD1 | Photonic Links and Devices II<br>Implementation of Light Peak Optical Interconnects for Portable Computing<br>Systems | N/A |
| TuD2               | A Metal Thermal Shunt Design for Hybrid Silicon Microring Laser                                                       | 50  |
| TuD3               | Amorphous Silicon Grating-Type Layer-to-Layer Couplers for Intra-Chip<br>Connection                                   | 52  |
| TuD4               | Silicon Based Double-layer 1x12 Multimode Interference Coupler for Three-<br>dimensional Photonic Integration         | 54  |
| TuD5               | Recent Progress on 3-D Integrated Intra-Chip Free-Space Optical Interconnect                                          | 56  |
| <b>TuP</b><br>TuP1 | <b>Poster Session</b> Simulation for Efficient Germanium VCSEL for Optical Interconnects                              | 58  |
| TuP2               | 10 Gb/s Operation of GaInAs/InP Top Air-Clad. Lateral Junction Waveguide-type<br>Photodiode                           | 60  |
| TuP3               | Design of a Speculative Network Adapter for Shared Memory Communications in 45 nm CMOS                                | 62  |
| TuP4               | Energy-Efficient Optical Broadcast for NanophotonicNetworks-on-Chip                                                   | 64  |
| TuP5               | Measurement of Room Temperature Electroluminescence from Ge Quantum Well<br>Waveguides                                | 66  |

| TuP6  | Self-Consistent Opto-Thermal-Electronic Simulation of Micro-Rings for Photonic<br>Macrochip Integration                             | 68  |
|-------|-------------------------------------------------------------------------------------------------------------------------------------|-----|
| TuP7  | Energy Use in Optical Modulators                                                                                                    | 70  |
| TuP8  | Design of Uncooled High-Bandwidth Ultra-Low Energy per Bit Quantum Dot Laser<br>Transmitters for Chip to Chip Optical Interconnects | 72  |
| TuP9  | Integrated Free-Space Optical Interconnects: All Optical Communications On- and Off-chip                                            | 74  |
| TuP10 | Defect Enhanced Silicon-On-Insulator Microdisk Photodetector                                                                        | 76  |
| TuP11 | Semiconductor Optical Amplifier with Polarization Diversity for Optical<br>Interconnect                                             | 78  |
| TuP12 | High-Capacity Optical Interconnects Using WDM Photonic Integrated Circuits in GaAs                                                  | 80  |
| TuP14 | Through Silicon Via (TSV) Technology Creates Electro-Optical Interfaces                                                             | 82  |
| TuP15 | Engineered Polymers for Optical Interconnects                                                                                       | 84  |
| TuP16 | Scalable Non-Blocking Optical Routers for Photonic Networks-on-Chip                                                                 | B#5 |
| TuP17 | Highly Alignment Tolerant Optical HD-SDI Interconnect                                                                               | 88  |
| TuP19 | Embedded Optical Waveguides in Silicon for inter and intra-chip data Optical Interconnects                                          | 90  |
| TuP20 | Direct Digital Drive Modulation for Optical Interconnects                                                                           | 92  |
| TuP21 | Optical Camera Link Cable for the Industrial Applications                                                                           | 94  |
| TuP22 | A Hybrid Plasmonic Directional Coupler for On-Chip Optical Interconnect                                                             | 96  |
| TuP23 | Experimental Demonstration of DSP based Crosstalk Cancellation in WDM Optical<br>Interconnects                                      | 98  |
| TuP24 | A Novel Low-Waveguide-Crossing Floorplan for Fat Tree Based Optical<br>Networks-on-Chip                                             | 100 |
| TuP25 | Light-Induced Self-Written Polymeric Waveguides for Low-Cost Integration of Single-Mode Devices                                     | 102 |
| TuP26 | Non-Blocking Wavelength-Routed $4 \times 4$ Silicon Optical Router for On-Chip<br>Photonics Networks                                | 104 |
| TuP27 | Physical Layer Scalability of Energy-Efficient Heterogeneous Optical Space<br>Switches                                              | 106 |
| TuP28 | Parameter Optimization for the Light Absorption of Plasmonics-Based High<br>Responsivity Photo-Detectors                            | 108 |
| TuP29 | Thermal Analysis for 3D Optical Network-on-Chip Based on a Novel Low-Cost<br>6x6 Optical Router                                     | 110 |

#### Wednesday, May 23, 2012

#### WA Photonic Interconnects and Circuits

WA1 High Performance Silicon Photonics Technology for Ubiquitous Communications: 112 Intrachip to Data Warehouses

| WA2 | Silicon Photonics for High Data Rate Optical Interconnect                                                                      | 113 |
|-----|--------------------------------------------------------------------------------------------------------------------------------|-----|
| WA3 | Ultra Low-Power Receiver Design for Dense Optical Interconnects                                                                | 115 |
| WB  | Photonic Networks                                                                                                              |     |
| WB1 | Optical Interconnection Networks for Energy Efficient Processor-Memory<br>Communications                                       | N/A |
| WB2 | Ultra-Low Power Optical Routers for Photonic Networks-on-Chip                                                                  | B#5 |
| WB3 | Four-Port Broadband Optical Router Based on $1 \times 3$ Optical Switches                                                      | 119 |
| WB4 | High-Bandwidth Optical Interconnect Technologies for Next-Generation Server<br>Systems                                         | 121 |
| WB5 | Experimental Demonstration of Wavelength-Reconfigurable Optical Packet- and Circuit-Switched Platform for Data Center Networks | 123 |
| WC  | Novel Packaging and Modulators                                                                                                 |     |
| WC1 | Broadband Low-Loss Interconnects Enabled by Photonic Wire Bonding                                                              | 125 |
| WC2 | Self-Organized Lightwave Network for Three-Dimensional Integrated Optical<br>Interconnects                                     | 127 |
| WC3 | Compact Coupling and Packaging Concepts for Flexible and Stretchable Polymer<br>Optical Interconnects                          | 129 |
| WC4 | A 25 Gb/s 400 fJ/bit Silicon Traveling-Wave Modulator                                                                          | 131 |
| WC5 | Extremely Low Vp×L Slow Light Photonic Crystal Modulator with GHz Bandwidth                                                    | 133 |
| WC6 | High Speed Travelling Wave Carrier Depletion Silicon Mach-Zehnder Modulator                                                    | 135 |
| WD  | Interconnect Optics                                                                                                            |     |
| WD1 | Compact Multi-Fiber Physical Contact Connector for Optical Fiber<br>Interconnection                                            | 137 |
| WD2 | Manufacturing of Board Level Waveguide Bus Using Hard Mold                                                                     | 139 |