2012 IEEE 58th Holm Conference on Electrical Contacts

(Holm 2012)

Portland, Oregon, USA 23 – 26 September 2012

IEEE Catalog Number: ISBN:

CFP12HLM-PRT 978-1-4673-0778-9

TABLE OF CONTENTS

MODELING	I

CHAIR: G. WITTER
CO-CHAIR: ZK CHEN

1.1	An Analysis of Scale Dependent and Quantum Effects on Electrical Contact Resistance between Rough Surfaces			
	Robert L. Jackson, Erika R. Crandall and M. J. Bozack	1		
1.2	Phenomena of Arc Root Immobility in Electrical Contacts	11		
1.3	The Influence of Thermal Expansion and Plastic Deformation on a Thermo-Electro Mechanical Spherical Asperity Contact	16		
Снаі	ng Investigator Award ir: B. Malucci Chair: B. Rickett			
2.1	Quantitative Evolution of Electrical Contact Resistance between Aluminum Thin Films	23		
2.2	Characterization of Intermetallic Compounds in Al-Cu-Bimetallic Interfaces	31		
2.3	Principle of Arc Fault Detection for Solid State Power Controller	37		
2.4	Breakdown Electric Field Calculation of Hot SF6 and Its Application to High Voltage Circuit Breakers Xingwen Li, Hu Zhao, Xu Jiang, Shenli Jia and Qian Wang	43		
2.5	Contact Bounce Phenomena in a MEM Switch	49		

CHAIR	ectors 1: B. Rickett Hair: G. Flowers
3.1	Evaluation of Crimping as a Termination Technique for Carbon Nanotube Macro-Structures56 Jessica Hemond, Rod Martens and Andrew Loyd
3.2	The Effect of Wiping Distance on Contact Performance
3.3	Novel Helical Spring Contact for Low Force & Fine Pitch Applications
CHAIR	NG AND CHARACTERIZATION E: G. Drew HAIR: G. HAUPT
4.1	Selection Criteria for Residential Aluminum Connections
4.2	Novel Reflectometry Method Based on Time Reversal for Cable Aging Characterization83 Lola El Sahmarany, Fabrice Auzanneau and Pierre Bonnet
4.3	An Experimental Study on Contact Resistance Characteristics of Relay Contacts Operated in the Vicinity of New Telechelic Polyacrylate Polymers
CHAIR	FAULT SAFETY 1: J. Shea Hair: H. Czajkowski
5.1	Application of (Motor Protection) Circuit Breakers in Combination with Variable Frequency Drives
5.2	Diagnostic of Connector's Degradation Level by Frequency Domain Reflectometry101 F. Loete and C. Gilbert
5.3	Modeling of a Domestic Electrical Installation to Arc Fault Detection
	ACT FINISH I E: E. SMITH

The Effects of Lubrication on Electroplated Tin Surfaces: A Systematic Approach by

DOE-Methodology112

CO-CHAIR: R. COUTU

F. Ostendorf, T. Wielsch and M. Reiniger

6.1

6.2	Graphene Films for Corrosion Protection of Gold Coated Cuprous Substrates in View of an Application to Electrical Contacts	121
6.3	New Corrosion Resistant Plating to Reduce Gold Consumption in Connectors	128
6.4	Whisker Prevention Using Hard Metal Cap Layers E. R. Crandall, G. T. Flowers, P. Lall and M. J. Bozack	133
Сна	radation ir: M. Myers Chair: S. Noel	
7.1	Research on Accelerated Storage Degradation Testing for Aerospace Electromagnetic Relay	139
7.2	Degradation Phenomenon of Electrical Contacts Using a Micro-Sliding Mechanism - Minimal Sliding Amplitudes Estimated under Some Conditions by the Mechanism	147
7.3	Reliability Study of Low Normal Force LGA Sockets	155
Сна	ing Materials ir: G. Haupt Chair: G. Horn	
8.1	Silver Tungsten vs Silver Tungsten Carbide Contact Performance in Environmental Testing	165
8.2	A Study of Contact Endurance Switching Life as a Function of Contact Bond Quality, Contact Electrical Load and Residual Stresses for Silver Tin Indium Oxide Composite Rivet Contacts	172
8.3	Contact Material Combinations for High Performance Switching Devices Timo Mützel and Ralf Niederreuther	179
8.4	Effect of Ambient Temperature and Contact Force on Contact Resistance and Overtemperature Behaviour for Power Engineering Contacts Volker Behrens, Edgar Siegle, Jonas Schreiber, Thomas Honig and Michael Finkbeiner	185
	ting r: G. Flowers Chair: D. Gagnon	
9.1	Introduction of a "Modified Archard Wear Law" to Predict the Electrical Contact Endurance of Thin Plated Silver Coatings Subjected to Fretting Wear	191

9.2	Fretting Behavior of Au Plated Copper Contacts Induced by High Frequency Vibration	204		
9.3	Sliding Performance of Electrical Contact Pairs with Unsymmetrical Thick Gold Plating Yilin Zhou, Chuan Hong, Libiao Liu and Liangjun Xu	211		
Снаі	PELING II R: T. SCHOEPF CHAIR: X. ZHOU			
10.1	Finite Element Based Surface Roughness Study for Ohmic Contact of Microswitches	220		
10.2	Steady Temperature Rise Analysis of Non Segregated Phase Bus Based on Finite Element Method230 Jiaxin You, Huimin Liang, Guangcheng Ma, Guoliang Li and Guofu Zhai			
10.3	Role of Metallic Vapor Pressure in Contact Bouncing and Welding at Closure of Electrical Contacts in Vacuum			
Снаі	DAMENTALS R: R. JACKSON CHAIR: B. MALUCCI			
11.1	Current Density Analysis of Thin Film Effect in Contact Area on LED Wafer Shigeru Sawada, Shigeki Tsukiji, Shigeki Shimada, Terutaka Tamai and Yasuhiro Hattori	242		
11.2	Contact Resistance Reduction by Matching Current and Mechanical Load Carrying Asperity Junctions	248		
11.3	Current Redistribution across an Aging Contact Interface	256		
Снаі	TACT FINISH II R: R. COUTU CHAIR: M. MYERS			
12.1	Electrochemically Deposited Coating Systems on Aluminum for Contact Applications Stephanie Kissling, Wolfgang Schmitt and Volker Behrens	264		
12.2	Electrical Contact Resistance Presumption about Tin-Coated Copper-Alloy Contacts Using RF Sputtered SnOx Thin Films Keiji Mashimo and Yasuyuki Ishimaru	270		
12.3	The Influence of Surface Oxides on Whiskering E. R. Crandall, G. T. Flowers, P. Lall, E. K. Snipes and M. J. Bozack	275		

A	R	CI	N	G

CHAIR: P. SLADE CO-CHAIR: ZK CHEN

13.1	Observation of Changes of Contact Surface Profiles of Ag and AgSnO2 Contacts during	
	Switching Operations with an Optical Cross-Section Method	280
	Makoto Hasegawa and Keisuke Takahashi	
13.2	Influence of Source Voltage on Various Characteristics of a Contactor Comparing Make Only,	
	Break Only and Make and Break Arcs	287
	Kiyoshi Yoshida, Koichiro Sawa, Kenji Suzuki, Hideki Daijima and Kouetsu Takaya	
13.3	High-Speed Spectroscopic Imaging of Contact Surfaces Eroded by Break Arcs Junya Sekikawa	294
13.4	A Type of Attractive Force Calculation Model of Polarized Relay Based on Nonlinear Permanent Magnet Bar Subsection Model	300
	Huimin Liang, Jiaxin You, Weinan Xie, Guangcheng Ma and Guofu Zhai	
SLIDI	ING	
Снап	r: E. Smith	
Co-C	HAIR: C. LEUNG	
14.1	Time Series Analysis in the Study of Sliding Electrical Contacts	305
	C. Holzapfel	
14.2	Influence of Arc Discharge on Carbon Commutator and Brush Wear in DC Motor Driving	
	Fuel Pump	312
	Koichiro Sawa, Liqing Liu and Takahiro Ueno	
14.3	Sliding Scar Analyses of High Speed Sliding Contact Characteristics of Cu-Sn Based Composite	
	Materials Containing WS2	318
	Yoshitada Watanabe and Ryohei Saito	
14.4	High Speed Data across Sliding Electrical Contacts	323
	Glenn F. Dorsey, Donnie S. Coleman and Barry K. Witherspoon	
Autho	r Index	e 334