2013 International Conference on Interactive Collaborative Learning

(ICL 2013)

Kazan, Russia 25-27 September 2013

IEEE Catalog Number: ISBN:

CFP1323R-POD 978-1-4799-0151-7

Page range

Table of Contents

Case Study-Based Collaborative Elearning	1–2
Fully Automated Virtual Lessons in Medical Education	3–8
Transformation of traditional educational settings	9–16
Environmental Engineering Program Preparing Engineers to Tackle New Challenges	17–21
Social Engineering Program Responding to Growing Economies	22–25
Undergraduate Chemical Technological Discipline Delivered Using Moodle E-Learning Platform	26–29
Research in engineering pedagogy	30–35
Basic approaches to assessment of educational results in engineering education	36–39
The peculiarities of chemical training of students at the technological University	40–41
Evaluating Virtual Experiential Learning in Engineering	42–48
Digital Serious Games and Simulation Games - Comparison of Two Approaches to Lean Training	49–53
Complex Approach for Preparation and Implementation of Continious Professional Education Programs in Technological University	54–55
Semantic Interoperability in the d-learning in the era of Cloud Computing: Simplicity or Complexity	56–60
Development of communicative competence of engineering student as a determinant of academic mobility	61–65
Modular and thesaurus approach in adaptive teaching basic and general professional chemical disciplines for bilingual students in a technological university	66–69
Legal problems of international cooperation in the education sphere considering globalization conditions	70–74
Designing a Positive Involvement for Parents in the Freshman Engineering Experience	75–81
Students' Perceptions on Practical Problem Solving in Mathematics in E-environment	82–87
Digital competency in higher education	88–91
Global Challenges in Engineering Education and Engineering Training at the Research Technological University	92–98
Education for Sustainable Development in Kazakhstan	Þ₽0E
Structural approach in translating compound terms of engineering protection	102–105
Contemporary technologies for training future chemical engineers	106–109
Developing Professor Skills to Design the Content of Training	110–111
ON FORMATION OF AN INNOVATIVE VISION IN THE ENGINEERING EDUCATION	112–113
Dialogue of cultures and confessions at Universities of the USA	114–116
The Formation of Student Communication Culture in the System of Professional Military Education at Civil Universities	117–119

Page range

Table of Contents

Collaborative Drawing Process Viewer for Enhancing Self-Drawing Reviewing Awareness 120-125 The national project "Education": national research universities as centres of innovative development of the engineering education in Russia 126-127 DEVELOPMENT OF TECHNICAL COMPETENCE OF THE STUDENTS - FUTURE ENGINEERS IN THE APPLICATION OF ELECTRONIC MANUAL 128–130 "Psychology of Success" for Future Engineers 131-134 Training of undergraduates of Mathematics and Computer sciences and Information Technologies based on an integrated approach 135–137 Multi-disciplinary Integration of engineering courses based on API-programming for CAD/CAE 138–139 Remote experiment a workplace for intangible knowledge 140–143 Global innovation gap and quality of education 144–145 Peculiarities of training technicians-technologists within the system «College - University» 146–148 The Ways to Adapt Technical University Students to Their Professional Activities by Means of Foreign Language 149-152 The organization of independent engineering and graphic preparation of students individually educational trajectories 153–156 Technology of training customer goods industry engineers at the university of a new type 157-159 The training profile management in the engineering competencies formation 160–163 Musimage: using social multimedia to engage pupils in classical music appreciation 164-170 Gamification-based assessement of group work 171–179 Learning Styles in Foreign Language Instruction: Two-year comparative study 180-183 Faculty professionalization through industry sponsored projects in Austrian Vocational Education and Training focused on chemistry 184-188 Integration of Universities and Business 189-191 Enhanced Reputation-based Tit-for-Tat Strategy for Collaborative Social Applications 192–197 The development of future engineers' intellectual competence 198-202 Conceptual clauses and peculiarities of the cognitively-structured training of engineering elite 203–207 Legal problems of international cooperation in the education sphere considering globalization conditions 208-212 Education in Composite Materials 213–218 The system of multi-level training of skilled workers for machine building industry 219-220 The Design and Implementation of Learner-Centered Guided In-service Programme for Technical Teacher Education 221-226 The development of the new ING-PAED IGIP Curriculum into an umbrella for modularised national and regional engineering education curricula 227-231 Configuarable and Flexible Immersive Learning Environment. An Enhanced Solution for the OpenSim Plattform to Support Endusers 232–237

Table of Contents

Title	Table of Contents	Page range
Project Management Education using Role-Play Training in an On-Li	ne Group-Work Environment	238–245
The characteristics of DC source as a part of Integrated e-learning in	Electricity	246–250
Training Competitive Specialists as the Priority of Modern Education		251–254
Educational environment quality evaluation on the basis of students s	atisfaction assessment	255–262
Creation of e-learning resources for Web-oriented disciplines		263–272
Factors Affecting the Quality of Secondary Vocational Schools in Slov	vakia	273–277
Supporting and developing engineering education in the UK and beyo	ond.	278–282
Enhancing the Undergraduate Engineering Students' Research Skills		283–289
Issues in remote laboratory developments for biomedical engineering	education	290–295
Training of international engineering educators according to the new	GIP curriculum	296–302
Collaborative Work with Large Amount of Graphical Content in a 3D	/irtual World: Evaluation of Learning Tools in vAcademia	303–312
Personal Learning Networks with Open Learning Groups - a Formal A	Approach	313–318
Towards students wellness in the new teaching/learning process of P	ower Electronics	319–322
Cooperative Learning and Website in Software Project Management	Pedagogy	323–329
An Interactive Educational Module Illustrating Sparse Matrix Compres	ssion via Graph Coloring	330–335
Solving differential equations with an emphasis on the stability of the	system	336–338
Ethics in Training of Engineers		339–341
New didactic systems of the engineering education		342–347
Development needs of engineers relating to orga-nizational and man	agerial competencies	348–350
Designing of the software web component of the didactic systems of	the engineering education	351–355
English for Special and Academic Purposes for Graduate Students a	Technological University	356–357
New Challenges in the Materials Education		358–359
EDUCacheIC: Interactive and Collaborative Successor of the EDUCa	che Simulator	360–366
Outstripping professional training in internationalization of higher edu	cation conditions	367–368
Different approaches to the concept of "technical intelligentsia" in Rus	sian and West sociology	369–370
The Way of Solving Quality Problems In the Non-State Educational Ir	stitution «Centre of Personnel Training – Tatneft»	371–372
Project-Oriented Approach in Postgraduate Training of Engineer Elite		373–376

Page range

Table of Contents

A Service Science Context in Education Driven by Disruptive Innovation and the Internet of Things	377–378
Visual Learning Environments in Electronic Engineering Education	379–388
Formation and Analysis of Competencies in Elite Engineering Specialists	389–392
A Role of Foreign Languages in Training Engineers	393–395
The synergetic approach to the substantiation of introduction of project-oriented management at the University	396–397
Transformation of Motivating Factors of Getting an Engineering Education in Terms of the Passionarity Ethnogeny Theory	398–400
Preparation of highly qualified female personnel for the development of light industry	401–402
Conceptual and Didactic Bases of Preparation of Engineering Skills in the Safety Area	403–410
Problems of multidimensional description and mathematical modeling of pedagogical systems	411–414
Need for marketing skills formation of experts in the field of nanotechnology	415–416
Proposal of an Extension of the IMS-LD Meta-model to Support Assessment of Collaborative Learning Activities	417–426
Technological Approach to the Reflection Development of Future Engineers	427–428
Higher Scientific Education for the Talented Youth - Motivating Scientific Pursuit and Laying the Ground for Academic and Creative Research	429–432
Bridging the Communication Gap of a Foreign Speaking Instructor in Hands On Pedagogy	433–435
The Development of the Future Engineers' Capacity for Creative Self-realization	436–437
Development of Future engineers' Critical thinking in Foreign language teaching	438–439
On line physic laboratory (on line labs) in engineering educational environment	440–443
Different approaches to the problems of intercultural communicative competence.	444–445
Organization of postgraduate students training in the technical field of sciences	446–449
Bilingual Terminology Dictionaries as an Effective Means of Developing Professional Foreign Language Communicative Competence	450–453
Storing experimental data in distributed network applications: common problems and general guidelines	454–457
Continuing pedagogical staff development in engineering University	458–461
Innovative Language Curricula at Technical University: Experience and Results	462-466
Professional development of technical university lecturers in field of innovation teaching	467–469
Smartphones for the Enhancement of Experiential Learning in a Botanical Garden	470–471
Challenges for Students Mobility Between European and Russian Universities	472–479
Gender Concept of Modern Education in Russia	480-482

Table of Contents

Title	Table of Contents	Page range
Development of Kazan School of Science in Engineering Pedagogi	CS	483–488
TRIZ-Based Engineering Education for Sustainable Development		489–493
Perspectives and challenges of developing joint and double-degree	programs in Russian higher professional education	494–496
Development of multimedia laboratory course for engineering stude	nts	497–500
Construction features of project management process model of inne	ovative activity in Kazan Federal University	501–505
Foreign experiences in light of higher education reforms		506–508
Innovational Scientific-Educational Laboratory		509-512
General Cultural Component as a Way to Form Engineering Compo	etencies	513–514
Designing of the content of didactic training of a higher school teach	ner. AMMMA	ÞÐE
Distance form of mastering translator's competence as a part of eng	gineering education in Kazan Federal University	519–521
Formation of professional competence of the engineer using improv	rement of communicative competences	522–524
Gamification of a Software Engineering Course and a detailed an	alysis of the factors that lead to it's failure	525–530
Experiment@Portugal 2012 - ongoing activities		531–535
Educational technologies of immigrants' adaptation in Russia and G	Germany:"Melting pot" or "Dialogue of Cultures"	536–538
Professional Training Competence of Future Environmental Engine	ers in Continuous Education System	539–541
Estimation of Additional Professional Education Quality		ÞÆDE
Designing of the information component of pedagogical knowledge	management system in a chair of technical university	544–546
Place and Role of Modern Optimization Methods in Training Chemi	cal Engineers	547–549
State Policy Priorities in the Sphere of Further Vocational Education	1	550-551
Student Educational Device for Electronic Applications - StudentED	EA	552–555
The formation of achievements portfolio as a means of self-develop	ment and a factor in competitiveness	556–558
Problems and Prospects of Engineering Personnel Training in the F	Russian Federation	559–560
Professional Accreditation of Engineering Programmes and EUR-A	CE labels in Russia	561–564
SMART INTEGRATED INFORMATION LEARNING ENVIRONMEN	IT FOR ENGINEERING BASED ON THE USE OF MODULAR DATA-CENTERS	565–568
Facing the challenges of the new technological setup: universities a	ind industrial engineering	569–570
Practice-oriented learning as a means of increasing adaptability and	d quality of engineering education	571–574
COMPETENCE ORIENTED TRAINING OF THE TECHNICAL UNIV	/ERSITY FACULTY THROUGH ENGLISH	575–576

Table of Contents

Title	Table of Contents	Page range
Collaborative Learning Using Google Facilities		577–582
Engineering Education in Malaysia - Meeting the Needs of a Rapidly	Emerging Economy and Globalisation	583–587
Interactive Adaptivity in Assessment as a Service		588–595
Researching Affective Computing Techniques for Intelligent Tutoring	Systems	596-602
A Systems Engineering Approach to Curriculum Design. An Engineer	ring Case Study	603–609
A New Approach to Collaborative Learning in Software Engineering	Focussed on Embedded Systems	610–616
Competence-based Approach to Aeronautical Engineering Education	n: Language Aspect	617–618
Practice-oriented educational technologies for training engineers		619–620
Language Learning Strategies and their Impact on Learner Autonom	у	621–622
Assessment 3.0 meets Engineering Sciences		623–630
The Role of Clusters in the Development of Postindustrial Economy		ÞÐŒ
Developing Double Degree bilingual Master's program "Social Work	in industry"	633–635
Didactic Design - a Systematic Approach for the Projecting of the Tr	aining Environment	636–638
The Influence of Natural and Math Sciences on Engineering Education	on in terms of Kostanay Region of Kazakhstan Republic	639–642
Structure-Logical Diagrams - Didactical Basis For Educational Inform	ation Technologies, E-Books and Educational Materials	ÞÐŒ
Dual system of a professional training in Tatarstan Republic		647–648
Learning motivation of engineers in the process of life-long education	n: socio-psychological aspect	649–652
An emotional learning environment for subjects with Autism Spectrum	n Disorder	653–659
Web-based Simulators Applied in the Pre-graduate Teacher Training		660–663
Formation of Educational Clusters, including Institutions of Different	Level Professional Education	664–665
Improvement of university education and educational service consum	ner interconnection in Russia	666–668
Didactic Game Designing for Future Clothing Constructer Training		669–672
Flexible Learning Model for Computer-aided Technical Translation		673–675
The Importance of Additional Language Training in Engineering Edu	cation	676–677
THE DEVELOPMENT OF A COMPETENCE-BASED MODEL FOR A	A GRADUATE AND PROFESSIONAL STANDEARDS	678–679
INTEGRATED SYSTEM OF TECHNICAL SPECIALISTS TRAINING	WITHIN THE MACHINE-BUILDING INDUSTRY EDUCATIONAL CLUSTER "KAMAZ -	680–684
SMALL SCALE CHEMISTRY AND SMALL LAB KIT		ÞÐE

Table of Contents

Title Table of Contents	Page range
E-Learning and Motivation Effects On Egyptian Higher Education	689–695
Learning challenges: Remote labs powered by the five senses	696–699
The on-line Collaborative Activity for Building Ontology: The Use of Output Ontology in e-testing	700–708
E-application for Individualized e-Learning	709–713
The Formation of Quality Management Competences in Engineering Education	714–716
Is Educational System Ready for ICT Utilization?	717–720
Professional Qualification in Engineering Education through the Construction Community from Brazilian Association of Portland Cement	721–725
Delivering Video Content in Educational Platforms	726–727
Technical impact on the future engineering education	728–733
Main Principles of Business Training in Technical University	734–735
The role of the maritime entrepreneurial universities in the engineering training for the marine economic activities of the Russia	736–739
Implementation of Practice-Oriented Educational Program for Applied Baccalaureate on the Direction "Chemical Technology"	740–740
Providing Engineering Students with International Team Experiences: A Pilot Study	741–743
Breaking with Tradition: A Case for Alternative Assessment in Physics	744–751
Active Learning in a Molecular Genetics Course - A Novice's Experience	752–756
Invention of Knowledge in TRIZ-based Education	757–764
Preparing Engineers for Intellectual Property Management	765–765
Development of entrepreneurial skills among engineering students	766–767
ACTIVE FORMS OF LEARNING IN THE DISCIPLINES OF SPECIALIZATION	768–768
NEW FORMS OF CONTINUING EDUCATION TEACHER PROFILE PROCESSING OF POLYMERS	769–771
Improving the laboratory environment by switching to embedded online labs	772–775
Solutions of systems of linear differential equations with constant coefficients in education of automation	776–777
Redesign of a Gamified Software Engineering Course	778–786
From interpretation to improvisation: a computer geometry approach	787–790
WikiBilim (Wiki Knowledge): salvation of the Kazakh language on the Internet	791–792
Inclusion of Extracurricular Activities and Student Competitions in the Curriculum Structure for Engineering Education: Experience Based on the Brazilian	793–800
ICT use at primary school to teach Physics: is the software that makes the difference or the method of its use in class?	801-806

Page range

Table of Contents

Title

807–810 An interactive video for groundwater flow An approach for creating an E-Learning recommender system supporting teachers of engineering disciplines 811-815 The effectiveness of virtual laboratories as a contemporary teaching tool in the teaching of electric circuits in Upper High School as compared to that of real labs 816-820 Faculty Professional Development within the Domains of Pedagogical Content Knowledge in Engineering 821-828 Þ£0E Modernization of engineering education as a guarantee of stable development of Russian economy 836–840 New Tendency for Technical Teachers Training: MADI STU Experience Innopolis University - A New IT Resource for Russia 841–848 Methodology, Technology, and Experience of Creativity in Modeling the Contemporary Engineering Education 849-855 Explorative Learning with technology in STEM - the OLAREX experience 856-860 Academic mobility is the main tool of the intercultural competence development of engineering students and scholars in China and Russia 861-863