2013 IEEE Photonics Conference

(IPC 2013)

Bellevue, Washington, USA 8 – 12 September 2013

IEEE Catalog Number: ISBN:

CFP13LEO-POD 978-1-4577-1505-1

TABLE OF CONTENTS

September 9, 2013

MA	Biophotonics (BIO)	
Optical Imag	ging and Cytometry	
MA1.2	Lensfree Holographic Imaging Discovers Chiral Ribbon Trajectories of Sperms	1
MA1.3	Lensfree Holographic Cytometry Using Plasmonic Nanoparticles	3
MA1.4	A Miniaturized Particle Detection System for HIV Monitoring	5
MA1.5	Multimode Spectroscopy in Dielectric-Grating-Coupled Surface Plasmon Sensors	8
Advances in	ост	
MA2.2	In Vivo OCT Imaging Based on La-Codoped Bismuth-Based Erbium-Doped Fiber	10
MA2.3	Almost Instantaneous Monte Carlo calculation of Optical Coherence Tomography Signal Using Graphic Processing Unit	12
МВ	Displays & Lighting (DISL)	
TFTs For AM	OLEDs	
MB1.1	Present Status and Open Issues of Amorphous Oxide Semiconductor TFT technology	14
MB1.2	Recent Progress on the Vacuum Deposition of OLEDs with Feature Sizes = 20um Using a Contact Shadow Mask Patterned In-situ by Laser Ablation	16
MB1.3	Dielectric Tuning Strategies for Flexible Display Backplane Transistors	18
LED Lighting	9	
MB2.1	Quality LED Lighting and Displays using Nanocrystals	19
MB2.2	Freeform Optics for LED Lighting	
MB2.3	Red, Green, and Blue Colloidal Quantum Dot-based Optically Pumped Distributed Feedback Lasers	22
Novel Displa	ays	
MB3.1	A multi-directional backlight for a wide-angle, glasses-free 3D display	24
MB3.3	Angle-insensitive reflective color filters using lossy materials	26
MB3.4	Guided-Mode Resonant Color Filter Array for Reflective Displays	28
МС	Optical Interconnects (OI)	
Applications		
MC1.2	Simply Fabricated All Polymer Electro-Optic Modulator	30

MC1.3	Microring-based Wavelength-Selective Reflection/Rejection Filter with Independently Determined Bandwidth and Reflectance	32
Devices a	and Architectures	
MC2.1	New device concepts for low-energy high-density interconnects	34
MC2.2	Vertical Optical Power Delivery and Inter-chip Interconnect Concept Based on Surface-normal MQW Modulators	36
MC2.3	Rapid Melt Grown Germanium Gate PhotoMOSFET on a Silicon Waveguide	38
Integrati	on and Devices	
MC3.2	Design of electroabsorption modulator based on Ge/SiGe multiple quantum wells, integrated on SOI waveguides	40
MC3.3	High-Speed Stacked Tunneling PiN Electro-Optical Modulators	42
MC3.4	New Model for Mode Partition Noise and Relative Intensity Noise in VCSEL-based Optical Links	44
MC3.5	Wavelength-Routed Optical Networks-on-Chip Built with Comb Switches	46
MC3.6	An Optical Diode Based on Nonlinear Second-Order Silicon Microring Resonator	48
MD	High Power/Intensity Sources (HPIS)	
Filamenta	ation and Novel Lasers	
MD1.1	Observing filamentation dynamics with strong field processes	50
MD1.2	Wavelength Tuning of Highly Stable High-Order Harmonics Generated from Carbon Plasma	51
MD1.3	Optical amplification of VUV femtosecond pulses at 126 nm in OFI Ar2* amplifier	53
MD1.4	Advantages of zero-phonon line pumping in 100kHz Yb:YAG thin-disk regenerative amplifier	55
MD1.5	High power narrow linewidth fiber Raman lasers	
Strongfie	ld Ultrafast Interactions	
MD2.1	Spatial-temporal Imaging in the Strong-field Limit	59
MD2.2	Generation of coherent continua in soft X rays using a carrier-envelope phase-controlled few-cycle infrared light source	60
MD2.3	Multimillijoule Sub-Optical-Cycle Parametric Waveform Synthesis for Attosecond Science	61
MD2.4	Generation of few-mJ, two-cycle laser pulses with carrier-envelope phase stabilization	63
MD2.5	Development of a high-average-power, thin-disk ring oscillator	65
Ultra-Int	ense and High-Power Lasers	
MD3.1	High temporal contrast ultra-intense and ultra-short laser facility and its applications	
MD3.2	Transverse Amplified Spontaneous Emission (TASE) as a main limiting factor for	

	the gain aperture enlargement	
MD3.3	High Power Pulse Generation in Fiber CPA System via Active Feedback Spectral Compensation	
MD3.4	Recent progress in the development of a Petawatt beamline in SG-II upgrade project	72
MD3.5	Status of the SG-?-UP Laser Facility	73
ME	Semiconductor Lasers (SL)	
Quantum	Dot Lasers I	
ME1.1	InGaN/GaN Quantum Dot Lasers	75
ME1.2	Tunable Millimeter-wave and THz Signal Generation with a 1310nm Quantum Dot Distributed-Feedback Laser	77
ME1.3	Mode-locked Quantum-Dot Hybrid Soliton Pulse Source	79
ME1.4	Microscopic versus alpha-factor descriptions of dynamics in quantum-dot lasers	81
ME1.5	Investigation of Linewidth Enhancement Factor in Injection-Locked Quantum Dot Lasers with Four-Wave Mixing Analysis	83
Semicono	luctor Lasers Tutorial	
ME2	Green Nanophotonics for Future Datacom and Ethernet Networks	85
Hybrid II	I-V on Silicon Lasers	
ME3.1	Heterogeneous Integration as a Manufacturing Platform for Photonic Integrated Circuits	87
ME3.2	Extremely uniform lasing wavelengths of InP microdisk lasers heterogeneously integrated on SOI	89
ME3.3	Design of a High Contrast Grating GaSb-based VCSEL integrated on Silicon- On-Insulator	91
ME3.4	An Evanescent Hybrid Silicon Laser Neuron	93
ME3.5	High Performance Superluminescent Diode with InAs Quantum-Dashes and Chirped AlGaInAs Barriers Active Region	95
ME3.6	Characteristics and applications of InGaN micro-light emitting diodes on Si substrates	97
MF	Photonic Integration and Packing (PIP)	
Mid IR ar	nd Fluidic Integration	
MF1.1	High-brightness quantum cascade laser spectrometers based on master-oscillator-power-amplifier arrays	99
MF1.2	Silicon-on-insulator mid-infrared planar concave grating based (de)multiplexer	100
MF1.3	Mode Transformers for Substrate Removed Waveguides	102
MF1.4	Germanium-on-silicon mid-infrared waveguides and Mach-Zehnder interferometers	104

MF1.5 Multimode interference transition region for loss reduction in Arrayed Waveguide Grating integrated photonic spectrographs

MF	Photonic Materials and Metamaterials (PMM)	
Novel Integ	ration Technologies - PIP/PMM Joint Session	
MF2.3	Quantum Integrated Photonics on GaAs	108
MF2.4	Control of quantum-dot emission in photonic metamaterials	109
Integrating	and Packing Technologies	
MF3.1	A generic approach to InP-based Photonics	+\$'
MF3.2	An Active-Passive Monolithic Integration Platform with Low Loss Passive Section	111
MF3.3	Asymmetric Phase-Tunable Mach-Zehnder Interferometer Based on Silica- on-Silicon Planar Lightwave Circuit	
MF3.4	Multichannel Optical Coupling to a Silicon Photonics Chip Using a Single-Step Bonding Process	115
MF	Optical Communications (OC)	
OFDM		
MG1.2	Fiber nonlinearity Mitigation in CO-OFDM Systems using Dual Compensators	
MG1.3	Assessment of Performance Improvement of DD-OFDM Systems Achieved by Symbol Precoding	119
MG1.4	OFDM symbol synchronization based on virtual subcarriers	121
MG1.5	Improvement of RF-Pilot Phase Noise Compensation for Coherent Optical OFDM Systems via CPE Equalizer	
MG	Optical Communications (OC)	
DSP For Tra	nsmission	
MG2.1	Digital Coherent Optical Access Networks	125
MG2.2	Impact of ADC Parameters on Nonlinear Compensation Performance in 200 Gb/s Polarization-Multiplexed QAM Transmission	127
MG2.3	Training-Aided Frequency Offset Estimation in 16-QAM Nyquist Transmission Systems	129
MG2.4	BICM Coded Modulation and 4D Modulation for Long-Haul Optical Transmission System	131
FEC		
MG3.1	Advances in Error Correction Coding for High-Speed Optical Transmission	133
MG3.2	LDPC-Coded TCM-QPSK Optical Transmission Scheme Outperforming LDPC-Coded BPSK	135
MG3.3	Phase-Mask Covered Optical Steganography Based on Amplified Spontaneous	137

Emission Noise

MG3.4	Comparison of analytical models for the nonlinear noise in dispersive coherent optical communications systems	139
МН	Nanophotonics (NANO)	
МН	Non-linear and Ultrafast Optics (NLUO)	
Laser Coo	ling	
MH1.1	Laser Cooling in Solids: Demonstration of 115K All-Solid-State Cryocooler	141
MH1.2	Laser Cooling Based on Nitride Structures	143
Excitonics		
MH2.1	Optically-active hybrid nanostructures: Injection of hot plasmonic electrons, exciton-plasmon interaction, chirality and related applications	145
MH2.2	Nanophotonics of Quantum Dot-Protein Composites	146
MH2.3	Exciton dynamics in near-surface InGaN quantum wells coupled to colloidal nanocrystals	147
MH2.4	Energy transfer in epitaxial Er $0 < \text{sub} > 3 < / \text{sub} >$ thin films grown on $\text{Si}(111)$ substrates	149
Nanophot	onics For Light Emission	
MH3.2	Highly flexible, full-color, top-emitting quantum dot light-emitting diode tapes	151
MH3.3	Multi-colour emission from GaAs core-AlGaAs shell photonic nanowires	153
MH3.4	ZnO p-n Homojunction Random Laser Based on Nitrogen Doped p-type Nanowires	155
MH3.5	Design of Compact IIIV/Si Distributed Feedback Lasers	157
Septe	mber 10, 2013	
TuA	Biophotonics (BIO)	
Optical Bi	osensors	
TuA2.2	Photonic Crystal Biodetection Using a Portable Smartphone System	159
TuA2.3	Organic distributed feedback laser biosensor	161
TuA2.4	Absorption spectroscopy of glucose based on a silicon photonics evanescent sensor.	163
TuA2.5	Photonic Crystal Biosensor with In-Situ Synthesized DNA Probes for Enhanced Sensitivity	165
Cell and T	issue Imaging	
TuA3.1	Multi-parameter quantitative live cell imaging with digital holographic microscopy	167
TuA3.2	Observation of Photoreceptor with Retinitis Pigmentosa by Differential Interference Contrast Microscopy	169
TuB	Displays & Lighting (DISL)	

III-V Lightir	ng	
TuB1.1	GaN Based Light-Emitting Diode on Silicon (LEDoS) Micro-Displays for BLU-Free Full-Color Projector Application	171
TuB1.2	The potential of III-nitride laser diodes as a future solid-state lighting source	173
TuB1.3	InGaN Micro-LED-Pillar as the Building Block for High Brightness Emitters	174
Novel Displa	y Technologies	
TuB2.1	Flexible glass substrates for display and lighting applications	176
TuB2.2	Nanocrystal LEDs with enhanced external quantum efficiency enabled by the use of phosphorescent molecules	178
TuB2.3	Transition from a color filter to a polarizer of a metallic nano-slit array	180
TuB2.4	Feedback Architecture for Uniform Brightness in TFT AMOLED Displays	182
TuC	Microwave Photonics (MWP)	
Components	for Microwave Photonics	
TuC1.1	Slab-Coupled Optical Waveguide (SCOW) Devices and Photonic Integrated Circuits (PICs)	184
TuC1.2	High Power and High Linearity Photodiodes for RF Photonics	186
TuC1.3	High-Power and High-Linearity Photodiode-Array Module based on a 1×4 MMI Splitter	189
TuC1.4	Mitigation of Photodiode Even-Order Distortion Using Photonic Predistortion Linearization Techniques	
Analog Option	cal Modulation	
TuC2.1	Noise Sources in Microwave Photonic Links	193
TuC2.2	Compound Semiconductor Electro-optic Modulators for Microwave Photonics Applications	195
TuC2.3	Digital-signal-processing-assisted optical coherent detection of uplink radio- over-fiber signal and its phase noise cancellation effect	197
TuC2.4	Simple Digital Linearization for Phase-modulation Photonic Downconvertion	199
Wideband A	nalog Optical Links	
TuC3.1	High-Performance Free-Space Photonic Links for Frequency/Time Transfer	201
TuC3.2	Hybrid Millimeter-Wave/Free-Space Optical System for High Data Rate Communications	203
TuC3.3	Real-time WiFi and Gigabit Data Transmission in Multiband 60-GHz Radio- over-fiber System for Band-Mapped Broadband Wireless Services	205
TuC3.4	Broadband Radio-over-Fiber Link Based on High-Speed Optical Modulator for Multi-Band Millimeter-Wave Radio	207
TuC3.5	Optical demodulation of THz signals	209

Optical Micro/Nano Resonators & Devices

TuD

Microreso	nators and Devices	
TuD1.1	Exploring Crystalline Whispering Gallery Mode Resonators and Their Applications	211
TuD1.2	An Active Add-Drop Filter Using an Ytterbium and Erbium co-doped Silica Microsphere	213
TuD1.3	Ultrasound Sensing Using a Fiber Coupled Silica Microtoroid Resonator Encapsulated in a Polymer	215
TuD1.4	Precision transfer printing of ultra-thin AlInGaN micron-size light-emitting diodes	217
TuD1.5	Role of Thermal Stress in Athermal Waveguide Design Using TiO2 Waveguides on a Silicon Substrate	219
Ring Reso	nators I	
TuD2.1	Redesigning active and passive microring resonators	221
TuD2.2	A Monolithic Microring Transmitter in 90 nm SOI CMOS Technology	223
TuD2.3	A Kac CROW Delay Line	225
TuD2.4	Fabrication Method for Encapsulation of Low-Index, Narrowband Guided-Mode Resonance Filters	227
High-Q Mi	croresonators	
TuD3.1	New Directions for High Q Microcavities	229
TuD3.2	Increasing the Spectral Bandwidth of Optical Frequency Comb Generation in a Microring Resonator using a Slotted Waveguide	230
TuD3.3	Frequency Comb-induced Nonlinear Coupling Effect in Microresonators	232
TuE	Semiconductor Lasers (SL)	
Quantum	Dot Lasers II	
TuE1.1	InP-based 1.5 µm Quantum Dot Lasers: Static and Dynamic Properties	····+\$)
TuE1.1 TuE1.2	InP-based 1.5 µm Quantum Dot Lasers: Static and Dynamic Properties Jitter Reduction by Optical Feedback of Passively Mode-locked Quantum-Dot Lasers	····+\$) 234
	Jitter Reduction by Optical Feedback of Passively Mode-locked Quantum-Dot	•
TuE1.2	Jitter Reduction by Optical Feedback of Passively Mode-locked Quantum-Dot Lasers	234
TuE1.2 TuE1.3	Jitter Reduction by Optical Feedback of Passively Mode-locked Quantum-Dot Lasers Intensity stability and wavelength separation in dual-wavelength QD lasers Low Temperature Threshold Current Density Effect by P-Doping in InP/AlGaInP	234
TuE1.2 TuE1.3 TuE1.4 TuE1.5	Jitter Reduction by Optical Feedback of Passively Mode-locked Quantum-Dot Lasers Intensity stability and wavelength separation in dual-wavelength QD lasers Low Temperature Threshold Current Density Effect by P-Doping in InP/AlGaInP Quantum Dot Laser Diodes	234 236 238
TuE1.2 TuE1.3 TuE1.4 TuE1.5	Jitter Reduction by Optical Feedback of Passively Mode-locked Quantum-Dot Lasers Intensity stability and wavelength separation in dual-wavelength QD lasers Low Temperature Threshold Current Density Effect by P-Doping in InP/AlGaInP Quantum Dot Laser Diodes CdSe/ZnS colloidal quantum dots for solution-processed DFB lasers	234 236 238
TuE1.2 TuE1.3 TuE1.4 TuE1.5 Vertical-C	Jitter Reduction by Optical Feedback of Passively Mode-locked Quantum-Dot Lasers Intensity stability and wavelength separation in dual-wavelength QD lasers Low Temperature Threshold Current Density Effect by P-Doping in InP/AlGaInP Quantum Dot Laser Diodes CdSe/ZnS colloidal quantum dots for solution-processed DFB lasers	234 236 238 240
TuE1.2 TuE1.3 TuE1.4 TuE1.5 Vertical-C TuE2.1	Jitter Reduction by Optical Feedback of Passively Mode-locked Quantum-Dot Lasers Intensity stability and wavelength separation in dual-wavelength QD lasers Low Temperature Threshold Current Density Effect by P-Doping in InP/AlGaInP Quantum Dot Laser Diodes CdSe/ZnS colloidal quantum dots for solution-processed DFB lasers avity Surface Emitting Lasers Low power consumption 1310 nm VCSELs for 4x10 Gbps CWDM links Transverse Mode Control of VCSELs Using Angular Dependent High-contrast	234 236 238 240
TuE1.2 TuE1.3 TuE1.4 TuE1.5 Vertical-C TuE2.1 TuE2.2	Jitter Reduction by Optical Feedback of Passively Mode-locked Quantum-Dot Lasers Intensity stability and wavelength separation in dual-wavelength QD lasers Low Temperature Threshold Current Density Effect by P-Doping in InP/AlGaInP Quantum Dot Laser Diodes CdSe/ZnS colloidal quantum dots for solution-processed DFB lasers avity Surface Emitting Lasers Low power consumption 1310 nm VCSELs for 4x10 Gbps CWDM links Transverse Mode Control of VCSELs Using Angular Dependent High-contrast Grating Mirror High Speed Polarization Modulation of Oxide Confined Asymmetric VCSELs in	234 236 238 240 242 244

Integrated L	aser Sources	
TuE3.1	High Temperature Operation of Lambda-scale Embedded Active-region Photonic- crystal Lasers	252
TuE3.2	2.2 pJ/bit Operation of Hybrid Integrated Light Source on A Silicon Optical Interposer for Optical Interconnection	254
TuE3.3	On-Chip Laser Source for 100Gb/s Space-Division Multiplexing Transmitter in InP	
TuE3.4	Small signal modal gain measurement of ridge waveguide semiconductor optical amplifiers operating at 2µm suitable for active-passive integration	258
TuE3.5	Wavelength-Tunable Four -Channel DFB Laser Array Monolicthically Integrated with MMI and SOA	
TuF	Optical Fiber Technology (OFT)	
Non-Linearit	ry in Optical Fiber	
TuF1.1	Can Fibers Replace OPOs?	262
TuF1.2	Material modified microstructured fibers for nonlinear and sensor applications	263
TuF1.3	Optical Deposition of MoS2 on an Optical Fiber Facet, Its Reflectometry and Nonlinear Response	265
TuF1.4	Broadband Low Chromatic Dispersion and Supercontinuum Generation in a Conventional Step Fiber and an OAM-Supporting Vortex Fiber using a Submicron Slot	267
TuF2.1	Multicore EDFA for Space Division Multiplexing	269
TuF2.2	Phosphosilicate Raman Gain Fibers with Varying Core Concentration for Enhanced SBS Suppression	271
TuF2.3	Dual-Band 810/1480 nm Tm3+:ZBLAN Fiber Laser	273
TuF2.4	All-fiber broadband mid-IR source through wavelength translation: Design and simulation	275
Long Haul T	ransmission Fiber	
TuF3.1	Next Generation Optical Transmission Fibers	277
TuF3.2	Bending effects in multicore optical fibers	279
TuF3.3	Dispersion Tolerance Enhancement using Full Optical Duobinary Detection in Optimized 20-70 Gb/s NRZ Transmission.	281
TuF3.4	Optical Tunable Demultiplexing of a QPSK Data Channel into two BPSK sub-Channels using Phase-Sensitive Optical Amplifier	283
TuG	Optical Communications (OC)	
Signal Proce	essing and OFDM	
TuG1.1	Warped Dispersive Transform and its Application to Analog Bandwidth Compression	285
TuG1.2	Proposal of A Hybrid OFDM-PPM Technique for Free Space Optical Communications Systems	287
TuG1.3	Modified Asymmetrically-Clipped Optical Orthogonal Frequency-Division	289

	Multiplexing System Performance	
TuG1.4	Time Domain Reshuffling of Asymmetrically Clipped Optical OFDM Signals	
TuG1.5	Pedestal-free Optical Pulse Generation utilizing a Modified Time Lens without Optical Filtering	293
TuG1.6	Self-referenced non-interferometric complete optical signal characterization from intensity-only measurements	295
Spatial Di	vision Multiplexed Transport	
TuG2.1	Long-haul transmission technologies with multi-core fiber	297
TuG2.2	The MODE-GAP Project	299
TuG2.3	A Multi-Ring Multi-OAM-Mode Fiber for High-Density Space-Division Multiplexing (7 Rings X 22 OAM Modes)	301
TUG2.4	19-core Fan-in/Fan-out Waveguide Device for Dense Uncoupled Multi-core Fiber	303
Devices F	or Transmission Systems	
TuG3.1	100Gbit/s Compact Receiver Module with the Built-in Optical De-multiplexer	305
TuG3.2	100Gbit/s Compact Transmitter Module Integrated with Optical Multiplexer	307
TuG3.3	A 16-Channel Monolithic Silicon Nanophotonic Receiver	309
TuG3.4	Simultaneous Polarization Demultiplexing and Demodulation of PolMux-DPSK Signals in a Silicon Chip	311
TuG3.5	Performance Evaluation of Direct-Detection OFDM Optical Receivers with RF	313
	Down-Conversion	
TuH	Nanophotonics (NANO)	
TuH Nanoplasi	Nanophotonics (NANO)	
	Nanophotonics (NANO)	315
Nanoplasi	Nanophotonics (NANO) monics Flat Optics based on Metasurfaces: Molding Wavefronts with Optical Antenna	315 316
Nanoplas TuH1.1	Nanophotonics (NANO) monics Flat Optics based on Metasurfaces: Molding Wavefronts with Optical Antenna Arrays Nanoplasmonic three-dimensional surfaces with strong surface-normal electric	
Nanoplasi TuH1.1 TuH1.2	Nanophotonics (NANO) monics Flat Optics based on Metasurfaces: Molding Wavefronts with Optical Antenna Arrays Nanoplasmonic three-dimensional surfaces with strong surface-normal electric field enhancement Study and measurement of plasmonic properties of gold double nanotube	316
Nanoplasi TuH1.1 TuH1.2 TuH1.3	Nanophotonics (NANO) monics Flat Optics based on Metasurfaces: Molding Wavefronts with Optical Antenna Arrays Nanoplasmonic three-dimensional surfaces with strong surface-normal electric field enhancement Study and measurement of plasmonic properties of gold double nanotube structure arrayed on a polymer substrate	316 318
Nanoplasi TuH1.1 TuH1.2 TuH1.3 TuH1.4	Nanophotonics (NANO) monics Flat Optics based on Metasurfaces: Molding Wavefronts with Optical Antenna Arrays Nanoplasmonic three-dimensional surfaces with strong surface-normal electric field enhancement Study and measurement of plasmonic properties of gold double nanotube structure arrayed on a polymer substrate A CMOS-Compatible Polarization Splitting Antenna	316 318 320
Nanoplasi TuH1.1 TuH1.2 TuH1.3 TuH1.4 TuH1.5 TuH1.6	Nanophotonics (NANO) monics Flat Optics based on Metasurfaces: Molding Wavefronts with Optical Antenna Arrays Nanoplasmonic three-dimensional surfaces with strong surface-normal electric field enhancement Study and measurement of plasmonic properties of gold double nanotube structure arrayed on a polymer substrate A CMOS-Compatible Polarization Splitting Antenna Unidirectional Excitation of Surface Plasmon Using a Dielectric Loaded Aperture Simulation and experimental studies on plasmonic properties associated with gold	316 318 320 322
Nanoplasi TuH1.1 TuH1.2 TuH1.3 TuH1.4 TuH1.5 TuH1.6	Nanophotonics (NANO) monics Flat Optics based on Metasurfaces: Molding Wavefronts with Optical Antenna Arrays Nanoplasmonic three-dimensional surfaces with strong surface-normal electric field enhancement Study and measurement of plasmonic properties of gold double nanotube structure arrayed on a polymer substrate A CMOS-Compatible Polarization Splitting Antenna Unidirectional Excitation of Surface Plasmon Using a Dielectric Loaded Aperture Simulation and experimental studies on plasmonic properties associated with gold nanofin array on a polymer film	316 318 320 322
Nanoplasi TuH1.1 TuH1.2 TuH1.3 TuH1.4 TuH1.5 TuH1.6	Nanophotonics (NANO) monics Flat Optics based on Metasurfaces: Molding Wavefronts with Optical Antenna Arrays Nanoplasmonic three-dimensional surfaces with strong surface-normal electric field enhancement Study and measurement of plasmonic properties of gold double nanotube structure arrayed on a polymer substrate A CMOS-Compatible Polarization Splitting Antenna Unidirectional Excitation of Surface Plasmon Using a Dielectric Loaded Aperture Simulation and experimental studies on plasmonic properties associated with gold nanofin array on a polymer film ssion in Resonant Nanostructing Obtaining Bright Visible Light Emission from "Bulk" Silicon by Nanocavity	316 318 320 322 324

TuH2.4	Efficient Coupling of Optical-Antenna Based nanoLED to a Photonic Waveguide	331
Optical Na	noresonators	
TuH3.2	Topology Optimized Mode Conversion In a Photonic Crystal Waveguide	333
TuH3.3	Optical filters enabled by the Rayleigh anomaly: Theory and experiment	335
TuH3.4	Photonic Integrated Interferometer Based on Silicon-on-Insulator Nano-Scale MMI Couplers	337
TuH3.5	Optically-Controlled Extinction Ratio and Q-factor Tunable Silicon Microring Resonators Based on Optical Forces	339
Septer	nber 11, 2013	
WA	Photodetectors, Sensors, Systems and Imaging (PSSI)	
Plasmonics	For Enhanced Detection	
WA1.1	Plasmonics and Nanoantennas for Infrared Detectors	341
WA1.2	Plasmonically Enhanced ZnO Thin-Film-Photo-Transistor with Dynamic Responsivity Control	343
WA1.3	Gain and noise characteristics of 3D Nanopillar Optical Antenna Avalanche Detectors	
WA1.4	A Plasmonic Kick to Silicon-Germanium Multi-Quantum-Well Photodetectors	
WA1.5	Hot-carrier photodetector beyond spectral limit	348
WA2.1	Photonic microwave generation with high-power photodiodes	350
WA2.2	High-Power Flip-Chip Balanced Photodetector with >40 GHz Bandwidth	352
WA2.3	Ultra-Fast (325 GHz) Near-Ballistic Uni-Traveling-Carrier Photodiodes with High Sub-THz Output Power under a 50 Ohm Load	354
WA2.4	High-Speed, High-Efficiency, and Large-Area p-i-n Photodiode for Operations from 850 to 1550 nm Optical Wavelengths	356
Novel Aval	anche Photodiodes	
WA3.1	Recent Advances in InAs Avalanche Photodiodes	358
WA3.2	Full-band Monte Carlo simulation of single photon avalanche diodes	360
WA3.3	Method for Performance Analysis and Optimization of APD Optical Receivers Operating Under Dynamic Reverse Bias	362
WA3.4	Negative feedback and multiple gain mechanisms for sensitivity improvement in 1550nm optical detection	364
Photon Co	unting Nanowire Technologies	
WA4.1	Superconducting Nanowire Avalanche Photodetectors	366
WA4.2	Infrared photon counting with superconducting nanowire single-photon detectors	368
WA4.3	Low-noise NbTiN superconducting nanowire single-photon detectors integrated with Si3N4 wavequides	370

WB Non-linear and Ultrafast Optics (NLUO)

Nonlinear In	maging and Techniques	
WB1.1	CARS Holography	372
WB1.2	Self-Pumped Phase Conjugate Mirror Using the Divergent Spherical Wave	374
WB1.3	Nonlinear dynamics of Bragg-domain acousto-optic hybrid feedback for first-order scattering of profiled optical beams	376
Nanolasers	and Nonlinear Effects	
WB2.2	Silicon-Organic Hybrid Slot Waveguide Based Three-Input Multicasted 160-Gbit/s Optical Hexadecimal Addition/Subtraction using Multi-FWM and m-ary PSK	378
WB2.3	Mid-infrared to telecom-band stable supercontinuum generation in hydrogenated amorphous silicon waveguides	380
WB2.4	Saturable Absorption in Vertically Inserted and Overlaid Monolayer-Graphene in Optical Waveguide for All-Optical Switching	382
WB3.1	Plasmonic Enhancement of Third Order Nonlinear Optical Effects: Figures of Merit	384
WB3.2	Observation of stable, polarization-locked, vector bound states of solitons from a carbon-nanotube mode-locked fiber laser	386
WB3.3	Moving Gap Solitons in Coupled Bragg Gratings with Dispersive Reflectivity	388
WB3.4	Families of moving Bragg grating solitons in cubic-quintic nonlinear media with dispersive reflectivity	390
WB3.5	Computational Methods for Determining the Stability of Pulses in Passively Modelocked Laser Systems	392
THz Isolato	rs and Supercontinuum Generation	
WB4.1	Broadband nonreciprocal THz isolators	
WB4.2	Shot-to-shot spectrally-resolved characterization of continuous-wave-triggered supercontinuum near 1 um	396
WB4.3	Effect of the CW-seed's linewidth on the seeded generation of supercontinuum	398
WB4.4	Efficient calculation of the mid-infrared supercontinuum spectrum in As2S3 photonic crystal fibers	400
wc	Microwave Photonics (MWP)	
Nonlinear P	henomena and Noise in Microwave Photonics	
WC1.1	Parametric Optical Processes for Microwave Photonics	402
WC1.2	Comparing Nonlinear Fiber and a Silicon Nanophotonic Waveguide for Implementing a Microwave Photonic Filter	404
WC1.3	Optical Subtraction using Nonlinear Mixing	406
WC1.4	Low noise microwave generation with Er:fiber laser optical frequency dividers	408
WC1.5	Photonic Phase Noise Characterization of W-band Oscillators	410
Applied Mici	rowave Photonics	

WC2.1	Spurious-free Microwave Photonic Filter Employing Optical Frequency Comb with Quadratic Phase	412
WC2.2	Electro-Optic Beam Forming Device Using a Two-Dimensional Array of Patch- Antennas Embedded with Orthogonal-Gaps for Millimeter-Wave Signals	414
WC2.3	Beam Reconfigurable Microstrip Antenna using Photo-induced Parasitic Elements	
WC2.4	Characterisation of InAs:GaAs Quantum Dot-Based Photoconductive THz Antennas	418
WC2.5	Time-Reversal of $\mu s\mbox{-long}$ Radiofrequency Signals with Approximate Temporal Imaging	
MWP Tutoria	al - Photonic Microwave-to-Digital Conversion, Clark	
WC4.1	Photonic Microwave-to-Digital Conversion	422
WD	Optical Micro/Nano Resonators & Devices	
Ring Resona	etors II	
WD1.1	CMOS Compatible Micro-Ring Resonator Lasers	424
WD1.2	100 GHz Passive Mode-locked Laser based on Nonlinear Silicon Microring Resonator	426
WD1.3	Accurate post-fabrication trimming of ultra-compact resonators on silicon	428
WD1.4	High-Q resonators on double-layer SOI platform	430
WD1.5	A Thermally Reconfigurable Reflection Canceller for Adaptive On-Chip Optical Isolation on SOI	432
Microresona	tors and Gratings	
WD2.1	Grating Assisted Mode Coupling in Microring Resonators	434
WD2.2	2.5 THz Bandwidth On-Chip Photonic Fractional Hilbert Transformer based on a Phase-Shifted Waveguide Bragg Grating	436
WD2.3	Tunable Grating Fabry-Perot-Based Wavelength Add/Drop Multiplexer in Silicon Photonics	438
WD2.4	Wavelength and Bandwidth Tunable SOI Switch Using Integrated Gratings	440
WD2.5	Multi-Period Bragg Gratings in Silicon Waveguides	442
New Effects	in Microresonators	
WD3.2	Transfer Printed Nanomembrane High-Q Filters Based on Displaced Double-Layer Fano Resonance Photonic Crystal Slabs	444
WD3.3	Surface-Scattering-Induced Mode Splitting in a Rolled-Up Semiconductor Microtube	446
WD3.4	Single-mode lasing of Lambda-scale Embedded Active-region Photonic-crystal (LEAP) laser with in-line coupled waveguide	448
WD3.5	High Q silicon photonic crystal cavities for functional cladding materials	450
Sensing and	Optomechanics of Optical Microresonators	

WD4.1	Sensing and Optomechanics using Whispering Gallery Mode Microbubble Resonators	452
WD4.2	Thermo-Optomechanical Oscillations in High-Q ZBLAN Microspheres	454
WD4.3	DYg][b`cZ`Cdhc! A YVX Ub]VW``Hi bUV`Y`G]`]Wtb`8E DG? '8Ya cXi `Uhcf	456
WD4.4	Hybrid Plasmonic Toroid Resonator with Utral-small Mode Volume and High Purcell Factor	
WD4.5	Polarization Dependent Loss of Graphene-on-Silicon Waveguides	460
WE	Semiconductor Lasers (SL)	
Plasmonic	Nanolasers & Quantum Cascade Lasers	
WE1.3	Antenna-coupled THz quantum cascade lasers for high-power emission	462
WE1.4	Ultra-Short Pulses from Quantum Cascade Structures with Distributed Gain and Absorption	464
High-Powe	er Lasers & Laser Arrays	
WE2.1	Advances in High Power Semiconductor Lasers	466
WE2.2	VCSEL design for high power, densely packed arrays	468
WE2.3	Ultra-low repetition rate mode-locked semiconductor disk laser	470
WE	Photonic Materials and Metamaterials (PMM)	
Quantum I	Pots and Wires	
Quantum I WE3.1	Oots and Wires Quantum dot materials for ultrafast optoelectronics	472
_		472 474
WE3.1	Quantum dot materials for ultrafast optoelectronics InAs/GaAs quantum-dot lasers and detectors on silicon substrates for silicon	
WE3.1 WE3.2	Quantum dot materials for ultrafast optoelectronics InAs/GaAs quantum-dot lasers and detectors on silicon substrates for silicon photonics High performance GaAs/AlGaAs radial heterostructure nanowires grown by	474
WE3.1 WE3.2 WE3.3 WE3.4	Quantum dot materials for ultrafast optoelectronics InAs/GaAs quantum-dot lasers and detectors on silicon substrates for silicon photonics High performance GaAs/AlGaAs radial heterostructure nanowires grown by MOCVD	474 476
WE3.1 WE3.2 WE3.3 WE3.4	Quantum dot materials for ultrafast optoelectronics InAs/GaAs quantum-dot lasers and detectors on silicon substrates for silicon photonics High performance GaAs/AlGaAs radial heterostructure nanowires grown by MOCVD Optical Nano-Hairs for Micro-Optical Applications	474 476
WE3.1 WE3.2 WE3.3 WE3.4 Metmateri	Quantum dot materials for ultrafast optoelectronics InAs/GaAs quantum-dot lasers and detectors on silicon substrates for silicon photonics High performance GaAs/AlGaAs radial heterostructure nanowires grown by MOCVD Optical Nano-Hairs for Micro-Optical Applications als and Plasmonics	474 476 478
WE3.1 WE3.2 WE3.3 WE3.4 Metmateric WE4.2	Quantum dot materials for ultrafast optoelectronics InAs/GaAs quantum-dot lasers and detectors on silicon substrates for silicon photonics High performance GaAs/AlGaAs radial heterostructure nanowires grown by MOCVD Optical Nano-Hairs for Micro-Optical Applications als and Plasmonics New Designer Dielectric Metamaterial with Isotropic Photonic Band Gap Collective Spontaneous Emission and Strong Coupling in Semiconductor	474 476 478 480
WE3.1 WE3.2 WE3.3 WE3.4 Metmateria WE4.2 WE4.3	Quantum dot materials for ultrafast optoelectronics InAs/GaAs quantum-dot lasers and detectors on silicon substrates for silicon photonics High performance GaAs/AlGaAs radial heterostructure nanowires grown by MOCVD Optical Nano-Hairs for Micro-Optical Applications als and Plasmonics New Designer Dielectric Metamaterial with Isotropic Photonic Band Gap Collective Spontaneous Emission and Strong Coupling in Semiconductor Hyperbolic Metamaterials	474 476 478 480 483
WE3.1 WE3.2 WE3.3 WE3.4 Metmateria WE4.2 WE4.3	Quantum dot materials for ultrafast optoelectronics InAs/GaAs quantum-dot lasers and detectors on silicon substrates for silicon photonics High performance GaAs/AlGaAs radial heterostructure nanowires grown by MOCVD Optical Nano-Hairs for Micro-Optical Applications als and Plasmonics New Designer Dielectric Metamaterial with Isotropic Photonic Band Gap Collective Spontaneous Emission and Strong Coupling in Semiconductor Hyperbolic Metamaterials Synthesis of monodispersed Ag nanoparticles and their optical characterization	474 476 478 480 483 485
WE3.1 WE3.2 WE3.3 WE3.4 Metmateri WE4.2 WE4.3 WE4.5 WF	Quantum dot materials for ultrafast optoelectronics InAs/GaAs quantum-dot lasers and detectors on silicon substrates for silicon photonics High performance GaAs/AlGaAs radial heterostructure nanowires grown by MOCVD Optical Nano-Hairs for Micro-Optical Applications als and Plasmonics New Designer Dielectric Metamaterial with Isotropic Photonic Band Gap Collective Spontaneous Emission and Strong Coupling in Semiconductor Hyperbolic Metamaterials Synthesis of monodispersed Ag nanoparticles and their optical characterization Optical Topological Transitions in metamaterials - QED and related effects	474 476 478 480 483 485
WE3.1 WE3.2 WE3.3 WE3.4 Metmateri WE4.2 WE4.3 WE4.5 WF	Quantum dot materials for ultrafast optoelectronics InAs/GaAs quantum-dot lasers and detectors on silicon substrates for silicon photonics High performance GaAs/AlGaAs radial heterostructure nanowires grown by MOCVD Optical Nano-Hairs for Micro-Optical Applications als and Plasmonics New Designer Dielectric Metamaterial with Isotropic Photonic Band Gap Collective Spontaneous Emission and Strong Coupling in Semiconductor Hyperbolic Metamaterials Synthesis of monodispersed Ag nanoparticles and their optical characterization Optical Topological Transitions in metamaterials - QED and related effects Optical Fiber Technology (OFT)	474 476 478 480 483 485

W/E2 2	Halium Diama Indused Malagular philiaity is a Hallaw Optical Fiber	402
WF2.3	Helium Plasma Induced Molecular-philicity in a Hollow Optical Fiber	493
WF2.4	Micro-Displacement Sensors Based on Plastic Photonic Bandgap Bragg fibers	495
Novel Wa	veguide	
WF3.1	Plasmonic Two Wire Terahertz Fibers with Highly Porous Dielectric Support	497
WF3.2	Dynamics in photonic crystal fiber ring cavities	499
WF3.3	Polygonal core optical fiber fabrication and its dispersion characteristics	501
WF3.4	Asymmetric-Clad Large Mode Area Leakage Channel Fibers with Low Bending and Higher Differential Losses	
WF	Special Symposium on the internet of things	
SL Tutoria	al - VCSELs for Green High Performance Computers and Computer Interconnects,	Bimber
WF4.2	Architectures for future sensor networks	505
wc	Ontical Naturalis & Cristonia (ONC)	
WG	Optical Networks & Systems (ONS)	
Networki		
WG1.1	100-Gbit/s Hybrid Optoelectronic Packet Switching Technologies for Data-centric Future Networks	507
WG1.2	Performance Tradeoffs of 120 Gb/s DP-QPSK in ROADM Systems Employing Broadcast-and-Select Versus Route-and-Select Architectures	509
WG1.3	Experimental and Simulation Analysis of the W-band SC-FDMA Hybrid Optical-Wireless Transmission	
WG1.4	Recent Advance of Digital Signal Processing for Optical Communications	513
Sub-Syste	ems	
WG2.1	Optical transceiver ICs based on 3D die-stacking of opto-electronic devices	515
WG2.2	Optimization of Transceiver Signal Clipping in Polarization Multiplexing QPSK (PM-QPSK) Systems with Nyquist Signals	517
WG2.3	FWM-Based SAC Label Recognition for Optical Packet Switched Networks	519
WG2.4	Scalability of Optical Passive Waveguide Circuits for Recognition of 8-bit BPSK Labels	521
WG2.5	Intensity Noise Mitigation in SAC OCDMA Systems Using a Divided Spectrum Balanced Detection Scheme	523
Networki	ng II	
WG3.1	Ultra-Broadband, Highly Efficient Coherent Wavelength Conversion in Quantum Dot SOA	525
WG3.2	Optimizing Power Efficiency in Radio-over-Fiber Systems	527
WG3.3	1 Tb/s WDM-OFDM-PON Power Budget Extension Techniques	529
WG3.4	The Practical Limit to Impairment-Aware Scheduling in All-Optical Routers	531
WG3 5	Low-Penalty Ultrahigh-Speed Transmission of 640-Ghaud/s (3.84-Thit/s) 64-0AM	533

tunability in the infrared

WG **Optical Communications (OC) Optical Networking Technologies** WG4.2 Impact of electrical power distribution optimization of coexisting OFDM-based 535 signals in converged dispersion-compensated LR-PON WG4.3 537 Full-Duplex In-band OOK-Downlink/OFDM-Uplink Transmitted over 40km of SSMF in RSOA-based Radio-over-Fiber system 539 WG4.4 A Novel Receiver for Spectrally Efficient Direct Detection Optical OFDM WG4.5 Performance of Precoding Multi-user MIMO Indoor Visible Light Communications WH Nanophotonics (NANO) **Carbon Nanophotonics** WH1.1 The Interaction of light and Graphene: Basics, Devices, and Applications 543 WH1.2 Hybrid Plasmonic Wavequide Incorporating Double Graphene Sheets 544 WH1.3 Gain assisted surface plasmon polaritons propagation in a Graphene based Schottky junction WH1.4 Carbon nanotube modified optical fiber surface plasmon resonance sensor 548 WH1.5 Low-Loss Wedge Hybrid Plasmonic Terahertz Waveguide with Ultra-Small 550 Subwavelength Mode Area **Nanophotonic Sensors and Imaging** 552 WH2.1 Giga-pixel nanoimaging using computational on-chip microscopy WH2.2 POLARITONIC METAMATERIAL FOR SUPER-RESOLUTION TRAPPING AND 554 **SENSING** WH2.3 Surface plasmon resonance in metal super-period nanoslit grating and 556 spectrometer sensor WH2.4 558 Arrays of Suspended Plasmonic Nanodiscs WH2.5 Circular Plasmonic Interferometers for Ultrasensitive Low-Background Optical 560 Sensing WH2.6 Material selection for pure and stable structural color of Morpho-inspired 562 reflectors **Plasmonic Absorbers and Devices** WH3.2 Broadband light absorber based on one-dimensional gratings in semiconductor 564 films WH3.3 Plasmonic Signal Amplification by Monolithically Integrated Metal-Oxide-566 Semiconductor Field-Effect Transistors WH3.4 Waveguiding in Asymmetric Hybrid Plasmonic Structures 568 WH3.5 Electrically controlled resistive switching assisted active ultra-broadband optical 570

Nanophoto	nic Light Harvesting	
WH4.1	GaAs/InAs Quantum Dot High Efficiency Solar Cell	572
WH4.2	Semiconductor-less Photovoltaic Device	574
WH4.3	Low Aspect Ratio Nanophotonic Filled Cavities with Q-Matching for Scalable Thermophotovoltaic Power Conversion	576
WH4.4	Broadband Back Grating Design for Thin Film Solar Cells.	578
WH4.5	Fabrication of Nano-imprinted Resonant Structures for Thin-Film Solar Cell Applications	580
Septen	nber 12, 2013	
ThA	Photodetectors, Sensors, Systems and Imaging (PSSI)	
CMOS Base	d Detectors and Imaging	
ThA1.1	Efficient Detection of 1310 nm Light Using Silicon Nanoscaled p/n Junctions	··),&
ThA1.2	Design, Modeling and Fabrication of a CMOS Compatible p-n Junction Avalanche Photodiode	584
ThA1.3	Impact of Layout on the Performance of Photodiodes in $0.18\mu m$ CMOS SOI	586
ThA1.4	High-Speed Low-Noise PNP PIN Phototransistor Integrated in a 0.35 μm CMOS Process	588
ThA1.5	Time-of-Flight Range Finding Sensor Using a PNP Bipolar Phototransistor in a 0.35 μm CMOS Process With High Immunity Against Background Light	590
ThA1.6	A New CMOS Readout Circuit Approach for Multispectral Imaging	592
Microscopy	and IR Imaging Technologies	
ThA2.1	Label-free Medical Imaging with High-Speed Stimulated Raman Spectral Microscopy	594
ThA2.2	Enhanced Space-Bandwidth Product In Lensfree on-Chip Microscopy	596
ThA2.3	Mid-wave infrared interband cascade photodetectors and focal plane arrays based on InAs/GaSb superlattices	598
ThA2.4	Modulation Transfer Function of Infrared Focal Plane Arrays	600
ThA2.5	Nanoscale resolution Image Plane Holographic Microscopy	602
ThA2.6	Time resolved extreme ultraviolet Fourier transform holography	604
Novel Option	cal Sensors	
ThA3.1	Ultra-Thin Multi-Axial Shear Stress Sensor Based on a Segmented Photodiode	606
ThA3.2	Electro-optic Voltage Sensor based on BGO for Air-Insulated High Voltage Substations	608
ThA3.3	Functionalized Distributed Feedback Lasers for Hydrogen Sensing Applications	610
ThA3.4	Observing hydrogen induced deformations in palladium thin-films	612

ThA3.5	Fabrication and experimental characterization of cascaded SOI micro-rings for high-throughput label-free molecular sensing	614
ThA3.6	Sensitivity analysis of thin waveguide SOI ring resonators for sensing applications	616
ThB	Non-linear and Ultrafast Optics (NLUO)	
Propagation	and Effects of Few-Cycle and Ultrafast Laser Pulses	
ThB1.1	Few-Cycle Fiber Lasers Based on Self-Similar Pulse Propagation	618
ThB1.2	Relative Timing Jitter of Passively Synchronized Er-doped and Yb-doped Mode-Locked Fiber Lasers	619
ThB1.3	All-fiber generation of few-cycle pulses at 1950 nm by triple-stage compression of a Thulium-doped laser system	621
ThB1.4	Spectral compression of an all-normal dispersion fiber laser	623
ThB1.5	Polarization shaper-assisted dual-quadrature spectral shearing interferometry	625
ThD	Optical Micro/Nano Resonators & Devices	
Plasmonic D	evices	
ThD1.1	Surface Plasmon Nanocavities Composed of Metallic Wall and 1-D Photonic Crystal	627
ThD1.2	Optical Properties of a Silver Nanodisk for Application to Optical Frequency Selective Surfaces	629
ThD1.3	Plasmonic Transparent Electrodes for Molecular Organic Photovoltaics with Enhanced Absorption	631
ThD1.4	Properties of Silver Nanoridge Surface Plasmon Waveguide Modes	633
ThD1.5	Defect-free fabrication of periodic structures using extreme ultraviolet Talbot lithography	635
ThE	Photonic Materials and Metamaterials (PMM)	
Hybrid Mate	rial Platforms	
ThE1.1	InP Membrane On Silicon integration technology	637
ThE1.2	Engineering the optical constants of sputtered amorphous silicon films by crystallization with rapid thermal annealing	639
ThE1.3	Analytical Model for Ge/GeSn Hetero- Phototransistors on Si Substrate at 1.55 μm	
ThE1.4	Fabrication of Electrically-pumped Resonance-cavity Membrane-reflector Surface-emitters on Silicon	643
ThE1.5	Tailoring of YIG film properties via compositional tuning by multi-beam pulsed laser deposition	645
ThE1.6	The Role of Processing Towards Application of Organic EO Material Modulators	647
ThE	Photonic Integration and Packing (PIP)	
Transceiver	Integration Technologies	

ThE2.1	A Scaled CMOS Platform for Photonics	649
ThE2.2	Large-scale InP Photonic Integrated Circuit Packaged with Ball Grid Array for 2D Optical Beam Steering	651
ThE2.3	Coherent Receiver PIC for 112Gb/s DP-QPSK Using Multi-Guide Vertical Integration in InP	
ThE2.4	Simultaneous Formation of Spot-Size Converters and Photodiode Waveguides to 90deg Hybrid for Compact Coherent Receiver by Selective Regrowth	655
ThE2.5	40Gb/s 2R optical processing using monolithic integration of SOA and EAM	657
ThF	Special Symposia on Optical Data Storage	
Holographi	c Data Storage	
ThF1.1	Multi-terabyte holographic data storage demonstrator	659
ThF1.2	Rational design of photopolymer materials for holographic data storage	661
ThF1.3	Binary-to-Ternary Sparsity Encoding for Holographic Data Storage	663
ThF1.4	Influence of Readout Beam Aberration in Microholographic Recording	665
ThF2.1	Integration of Heat Assisted Magnetic Recording Technology into Enterprise Hard Disk Drives	667
ThF2.2	Next generation photonic storage: ultra-high capacity, ultra-high security and ultra-long lifetime	669
ThG	Optical Communications (OC)	
	Optical Communications (OC) Signal Processing In Optical Communications	
		671
All-Optical	Signal Processing In Optical Communications Low-Noise Optical Frequency Multicasting Using Multi-Mode Phase-Sensitive	671 673
All-Optical ThG1.1	Signal Processing In Optical Communications Low-Noise Optical Frequency Multicasting Using Multi-Mode Phase-Sensitive Interaction	
All-Optical ThG1.1 ThG1.2	Signal Processing In Optical Communications Low-Noise Optical Frequency Multicasting Using Multi-Mode Phase-Sensitive Interaction Bandwidth-tunable optical filters based on photonic Hilbert transformation	673
All-Optical ThG1.1 ThG1.2 ThG1.3	Signal Processing In Optical Communications Low-Noise Optical Frequency Multicasting Using Multi-Mode Phase-Sensitive Interaction Bandwidth-tunable optical filters based on photonic Hilbert transformation Efficient Packing for Phase Regenerative Channels Experimental Demonstration of Wavelength Conversions of Optical 36QAM and	673 675
All-Optical ThG1.1 ThG1.2 ThG1.3 ThG1.4	Signal Processing In Optical Communications Low-Noise Optical Frequency Multicasting Using Multi-Mode Phase-Sensitive Interaction Bandwidth-tunable optical filters based on photonic Hilbert transformation Efficient Packing for Phase Regenerative Channels Experimental Demonstration of Wavelength Conversions of Optical 36QAM and 64QAM through FWM in HNLF	673 675 677
All-Optical ThG1.1 ThG1.2 ThG1.3 ThG1.4 ThG1.5 ThH	Signal Processing In Optical Communications Low-Noise Optical Frequency Multicasting Using Multi-Mode Phase-Sensitive Interaction Bandwidth-tunable optical filters based on photonic Hilbert transformation Efficient Packing for Phase Regenerative Channels Experimental Demonstration of Wavelength Conversions of Optical 36QAM and 64QAM through FWM in HNLF A Comparison of Nonlinear Media for Parametric All-Optical Signal Processing	673 675 677
All-Optical ThG1.1 ThG1.2 ThG1.3 ThG1.4 ThG1.5 ThH	Signal Processing In Optical Communications Low-Noise Optical Frequency Multicasting Using Multi-Mode Phase-Sensitive Interaction Bandwidth-tunable optical filters based on photonic Hilbert transformation Efficient Packing for Phase Regenerative Channels Experimental Demonstration of Wavelength Conversions of Optical 36QAM and 64QAM through FWM in HNLF A Comparison of Nonlinear Media for Parametric All-Optical Signal Processing Nanophotonics (NANO)	673 675 677
All-Optical ThG1.1 ThG1.2 ThG1.3 ThG1.4 ThG1.5 ThH Nanophoto	Signal Processing In Optical Communications Low-Noise Optical Frequency Multicasting Using Multi-Mode Phase-Sensitive Interaction Bandwidth-tunable optical filters based on photonic Hilbert transformation Efficient Packing for Phase Regenerative Channels Experimental Demonstration of Wavelength Conversions of Optical 36QAM and 64QAM through FWM in HNLF A Comparison of Nonlinear Media for Parametric All-Optical Signal Processing Nanophotonics (NANO) nic Devices and Resonators Performance improvements in Silicon-nitride integrated photonic switches by	673 675 677
All-Optical ThG1.1 ThG1.2 ThG1.3 ThG1.4 ThG1.5 ThH Nanophoto ThH1.1	Signal Processing In Optical Communications Low-Noise Optical Frequency Multicasting Using Multi-Mode Phase-Sensitive Interaction Bandwidth-tunable optical filters based on photonic Hilbert transformation Efficient Packing for Phase Regenerative Channels Experimental Demonstration of Wavelength Conversions of Optical 36QAM and 64QAM through FWM in HNLF A Comparison of Nonlinear Media for Parametric All-Optical Signal Processing Nanophotonics (NANO) nic Devices and Resonators Performance improvements in Silicon-nitride integrated photonic switches by annealing	673 675 677 679
All-Optical ThG1.1 ThG1.2 ThG1.3 ThG1.4 ThG1.5 ThH Nanophoto ThH1.1 ThH1.2	Signal Processing In Optical Communications Low-Noise Optical Frequency Multicasting Using Multi-Mode Phase-Sensitive Interaction Bandwidth-tunable optical filters based on photonic Hilbert transformation Efficient Packing for Phase Regenerative Channels Experimental Demonstration of Wavelength Conversions of Optical 36QAM and 64QAM through FWM in HNLF A Comparison of Nonlinear Media for Parametric All-Optical Signal Processing Nanophotonics (NANO) nic Devices and Resonators Performance improvements in Silicon-nitride integrated photonic switches by annealing Omnidirectional resonance in microcavity for high resolution filter	673 675 677 679

Post Deadline Papers

PD.1	Reconfigurable Orbital-Angular-Momentum Manipulation and Switching of Polarization- $^{\circ}$ - $\%$ Multiplexed 100-Gbit/s QPSK Data Channels
PD.2	First Demonstration of a Hybrid Integrated Light Source on a Si Platform Using a Quantum — *- ' Dot Laser under Wide Temperature Range
PD.3	Modulation Bandwidth Enhancement of Quasi-single-mode Transverse Coupled Cavity VCSEL $^{\cdots *}$ -)
PD.4	Graphene Excitable Laser for Photonic Spike Processing *- +
PD.5	Four Wave Mixing Based Wavelength Conversion and Multicasting of 16-QAM Signals in a Silicon Nanowire
PD.6	480 km Transmission of MDM 576-Gb/s 8QAM using a Few-Mode Re-circulating +\$% Loop