2014 IEEE Transportation Electrification Conference and Expo

(ITEC 2014)

Dearborn, Michigan, USA 15-18 June 2014

Pages 1-515

IEEE Catalog Number: ISBN:

CFP14TEB-POD 978-1-4799-2263-5

Oral Presentation Sessions at ITEC 2014

TS1: Modeling and Analysis of Electric Machines

Monday, June 16th, 2:00 pm – 3:20 pm

- TS1-1 Analytical 2-D Slot Model for Predicting AC Losses in Bar-Wound Machine Windings due to Armature Reaction ^{...}% Wanjun Zhang and Thomas Jahns University of Wisconsin-Madison, USA
- TS1-2 **Temperature effects on steady state performance of an Induction Machine and a Switched Reluctance Machine**^{...}+ Nasim Arbab, Wei Wang, Arash Hassanpour Isfahani and Babak Fahimi University of Texas at Dallas, USA

TS1-3 Adaptive Model Predictive Current Control for DSSRM Drives "% Xin Li and Pourya Shamsi Missouri University of Science and Technology, USA

TS1-4 Outer Rotor IPM Generator With Wide Constant Power Region for Automotive Applications ***** Emanuele Fornasiero, Mattia Morandin, Nicola Bianchi, Silverio Bolognani and Enrico Carraro University of Padova, Italy

TS2: Thermal modeling and analysis

Monday, June 16th, 2:00 pm – 3:20 pm

- TS2-1 State-Space Based Multi-Nodes Thermal Model for Li-ion Battery^{...}&' Ying Xiao and Babak Fahimi University of Texas at Dallas, USA
- TS2-2 **Transient Electro-Thermal Analysis for a MOSFET based Traction Inverter *** *** Kai Yang¹, Jing Guo¹, Hao Ge¹, Berker Bilgin¹, Voiko Loukanov² and Ali Emadi¹ ¹McMaster University, Canada, ²DV Electronics Ltd, Canada
- TS2-3 Electrothermal Modeling and Experimental Validation of a LiFePO4 battery cell[…]* Ying Xiao and Babak Fahimi University of Texas at Dallas, USA

TS2-4 Heat Response of Prismatic Li-ion Cells^{...}(% Maryam Ghalkhani¹, Gholam-Abbas Nazri², Narayan Kar¹ and Mehrdad Saif¹ ¹University of Windsor, Canada, ²Frontier Applied Sciences and Technologies, LLC, USA

TS3: Converter/Inverter Performance Analysis

	Monday, June 16 th , 4:20 pm – 5:40 pm
TS3-1	Investigating the Influence of Interconnection Parasitic Inductance on the Performance of SiC Based DC-DC Converters in Hybrid Vehicles […] () Di Han, Woongkul Lee, Jukkrit Noppakunkajorn and Bulent Sarlioglu University of Wisconsin-Madison, USA
TS3-2	Stability analysis of a tightly controlled load supplied by a DC-DC boost converter with a modified sliding mode controller) & Louis-Marie Saublet ¹ , Roghayeh Gavagsaz Ghochani ¹ , Serge Pierfederici ¹ , Babak Nahid- Mobarakeh ¹ and Juvelino Da Silva ² ¹ GREEN, University of Lorraine, France, ² ERTE, BOWEN, France
TS3-3	Performance Comparison Study of Two- and Three-Level Inverter for Electric Vehicle Application, Abhijit Choudhury ¹ , Pragasen Pillay ¹ , Mohammed Amer ² and Sheldon. S Williamson ¹ ¹ Concordia University, Canada, ² TM4 Inc, Canada
TS3-4	Dynamic Analysis of the Interaction between an Interleaved Boost Converter with Coupled Inductor and a Constant Power Load […] * (Ruoyu Hou ¹ , Pierre Magne ¹ , Berker Bilgin ¹ , Sanjaka Wirasingha ² and Ali Emadi ¹ ¹ McMaster University, Canada, ² Chrysler Group LLC, USA

TS4: Industry Presentation-only Session: Advancements in Inverter Technology

Monday, June 16th, 4:20 pm – 5:40 pm

TS4-1	Losses comparison of two and three level IGBT inverters […] B#5 Robert Ratz Ricardo, USA
TS4-2	HV Transient Voltage Failure Mitigation in Traction Inverters ^{•••} B#5
	Brian Peaslee
	Magna Electronics, USA
TS4-3	Total Harmonics Distortion investigation of two and three level inverters as
	function of the switching frequency […] B#5
	Robert Ratz
	Ricardo, USA
TS4-4	Closing the Test Gap – Advanced Testing of Traction Inverters ^{•••} B#5
	Horst Hammerer
	SET Power Systems GmbH, Germany

TS5: Conductive/Inductive charging technology, battery standards

Tuesday, June 17th, 2:00 pm – 3:20 pm Design of a Universal Inductive Charger for Electric Vehicles[…]+\$ Nan Liu and Thomas Habetler

Georgia Institute of Technology, USA

TS5-1

- TS5-2 A bidirectional battery charger for electric vehicles with V2G and V2H capability and active and reactive power control ···+* Iason Vittorias, Michael Metzger, Dennis Kunz, Matthias Gerlich and Georg Bachmaier Siemens AG, Corporate Technology, Germany
- TS5-3A High Density 3.5 kW Isolated On-Vehicle Battery Charger Using SiC SBDs and SiC
DMOSFETs^{...}, &
Timothy Han, Seok Joo Jang, Jared Preston and David Ouwerkerk
Global Power Electronics, Inc., USA

TS5-4 **EV Battery Standards Gap Analysis Related to Damaged and Recycled Batteries** "B#5 Rich Byczek Intertek, USA

TS6: Industry Presentation-only Session: Electric Machines and Drives

Tuesday, June 17th, 2:00 pm - 3:20 pm

- TS6-1 Latest sintered NdFeB magnet technology "Heavy rare-earth reduction technique "B#5 Takashi Yawata Shin-Etsu Chemical Co., Japan
- TS6-2 **Traction motor optimization to meet range objectives "B#5** Brian Peaslee Magna Electronics, USA
- TS6-3
 Performance/cost comparison of induction-motor (copper rotor & aluminum rotor)

 & permanent-magnet-motor in a hybrid electric car TB#5

 Malcolm Burwell

 International Copper Association, USA
- TS6-4 Shaft Voltages and currents in Traction Motors Issues and Remedies "B#5 Matt Roman Electro Static Technology, USA

TS7: Converter/inverter control strategies

Tuesday, June 17th, 4:20 pm – 5:40 pm

TS7-1A Passive Auxiliary Circuit for Load and Line Independent Zero Voltage Switching
in Full Bridge Converters with Reduced Conduction Losses for Transportation

	Applications […] , + Alireza Safaee ¹ , Praveen Jain ² and Alireza Bakhshai ²
	¹ Bombardier Inc., Canada, ² Queen's University, Canada
TS7-2	DC Bus Current Harmonics of a Three-phase PWM Inverter with the Zero Sequence Injection […] - (Saeid Haghbin Chalmers University of Technology, Sweden
TS7-3	Philosophy of Topology and Components Selection for Cost and Performance in Automotive Converters '''%\$\$ Alexander Isurin and Alexander Cook Vanner inc., USA
TS7-4	High-Efficiency Pulse-Width Modulated Full-Bridge Converter for Low-Voltage Battery Charging Applications %\$) Min-Kwon Yang, Hyoung-Sup Cho, Seung-Jae Lee and Woo-Young Choi Chonbuk National University, Korea (South)
	TS8: Advanced battery management
	Tuesday, June 17 th , 4:20 pm – 5:40 pm
TS8-1	Optimal Power Split and Sizing of Hybrid Energy Storage System for Electric Vehicles […] Junyi Shen, Amin Hasanzadeh and Alireza Khaligh University of Maryland, USA
TS8-2	Power Management for Plug-in Hybrid Electric Vehicles using Reinforcement Learning with Trip Information % Chang Liu and Yi Lu Murphey University of Michigan-Dearborn, USA
TS8-3	Battery Management System in the Bayesian Paradigm: Part I: SOC Estimation *** Ienkaran Arasaratnam ¹ , Tjong Jimi ² and Ryan Ahmed ¹ ¹ McMaster University, Canada, ² Ford Motor Company, Canada
TS8-4	Battery Operation Cycle Management for Electric Vehicles with Battery Switching Technology […] ‰, Georgios Doukas ¹ , Pavol Bauer ¹ and Jos van der Burgt ² ¹ Delft University of Technology, Netherlands, ² DNV KEMA, Netherlands

TS9: Energy storage system modeling, development and evaluation

Wednesday, June 18th, 8:30 am - 10:10 am

TS9-1Battery evaluation in a systems context using Battery Component in the Loop "% (
Neeraj Shidore¹, Namdoo Kim¹, Daehung Lee¹, Ram Vijayagopal¹, Aymeric Rousseau¹,

Jason Kwon², Eric Haggard³ and Benoit Honel³ ¹Argonne National Laboratory,United States, ²Samsung SDI Korea (South), ³LMS International, United States

TS9-2 A multi physical model for PEM fuel cells including a two dimensional fluidic finite element analysis in real time "%('

Pierre Massonnat, Fei Gao, Damien Paire, David Bouquain and Abdellatif Miraoui University of Technology Belfort-Montbeliard, France

- TS9-3Hybrid Electric Vehicle Simulation with Integrated Battery Compact Physical Model ...% -
Mike Arnett¹, Iakovos Papadimitriou¹ and John Milios²

 ¹Gamma Technologies, Inc., USA, ²Sendyne Corp., USA
- TS9-4
 Development of a Hybrid Energy Storage System for Electric and Hybrid Electric

 Vehicles ··· %)
 Kun Zhuge and Mehrdad Kazerani

 University of Waterloo, Canada

TS10: Vehicle modeling diagnostics and testing

Wednesday, June 18th, 10:30 am - 12:10 pm

- TS10-1 Industry Presentation-only: Modeling Hybrid Systems Using Advanced Simulation Technology "B#5 Emad Dlala ANSYS, USA
- TS10-2 Industry Presentation-only: Piecewise Linearization for Nonlinear Powertrain Models^{•••}B#5 Simon O. Omekanda

Chrysler Group LLC, USA

- TS10-3 Diagnosis of Open-Circuit Switch Faults in Multilevel Active-NPC (ANPC) Inverters "%* Jiangbiao He and Nabeel Demerdash Marquette University, USA
- TS10-4
 A discrete-time tool to analyze the stability of weakly filtered active front-end PWM converters "%* *

 Mehdi Karbalaye Zadeh¹, Gavagsaz Ghochani Roghayeh², Pierfederici Serge², Nahid-Mobarakeh Babak² and Marta Molinas¹

 ¹Norwegian University of Science and Technology, Norway, ²GREEN, University of Lorraine, France

 TS10-5
 Simplified Electric Vehicle Powertrain Model for Pange and Energy Consumption
- TS10-5 Simplified Electric Vehicle Powertrain Model for Range and Energy Consumption based on EPA Coast-down Parameters and Test Validation by Argonne National Lab Data on the Nissan Leaf^{...}%+' John G. Hayes and Kevin Davis University College Cork, Ireland

TS11: Vehicles charging planning and management

Wednesday, June 18th, 10:30 am – 12:10 pm

TS11-1	Hybrid Multi-Agent Based Resilient Control for EV connected Micro Grid System "%+- Andrew Hintz, Udupi Prasanna and Kaushik Rajashekara The University of Texas at Dallas, USA
	The University of Texas at Dallas, USA
TS11-2	Industry Presentation-only: HEV System Design and Validation: Virtual Supply
	Chains B#5
	Kurt Mueller
	Synopsys, USA
TS11-3	Multiplexed Electric Vehicle Charger Provides Affordable and Flexible Level 2
	Charging %)
	Northron Crummon Electronic Systems, USA
	Northrop Grunnan Electronic Systems, USA
TS11-4	Game Theoretic Approach to Offering Participation Incentives for Electric Vehicle to
	Vehicle Charge Sharing ^{···} &
	Promiti Dutta and Albert Boulanger
	Columbia University, USA
TS11-5	Control Strategies for Electric Vehicle (EV) Charging Using Renewables and Local
	Storage ^{···} % +
	Charles Castello ¹ , Tim LaClair ² and L. Curt Maxey ²
	¹ NASA, USA, ² Oak Ridge National Laboratory, USA

TS12: Traction Motors: Design and Optimization

Wednesday, June 18th, 10:30 am – 12:10 pm

- TS12-2 Comparative study of Structural Rigidity of Induction Machine and Switched Reluctance Machine^{...}&% Lizon Maharjan, Shiliang Wang, Arash Hassanpour Isfahani, Wei Wang and Babak Fahimi University of Texas at Dallas, USA
- TS12-3 **Optimization of a traction PMASR motor according to a given driving cycle **** & **%** Enrico Carraro, Mattia Morandin and Nicola Bianchi University of Padova, Italy

TS12-4	A Novel Linear Induction Motor Equivalent-Circuit with Optimized End-Effect Model including Partially-Filled End Slots &&% Konrad Woronowicz and Alireza Safaee Bombardier Inc, Canada
TS12-5	Multiphase Machines for Electric Vehicle Traction &&* Nigel Schofield ¹ , Xin Niu ² and Omid Beik ¹ ¹ McMaster University, Canada, ² The University of Manchester, United Kingdom
	TS13: Converter/Inverter Design and Control
	Wednesday, June 18 th , 10:30 am – 12:10 pm
TS13-1	Laminated Busbar Design Criteria in Power Converters for Electrified Powertrain Applications […] &' & Mariam Khan ¹ , Berker Bilgin ¹ , Pierre Magne ¹ , Sanjaka Wirasingha ² and Ali Emadi ¹ ¹ McMaster University, Canada, ² Chrysler Group LLC, USA
TS13-2	Design Analysis and Improvement of an IGBT Gate Drive Circuit for Magnet Power Supplies using a Physics-Based Circuit Model […] &', Byeong Song and Ju Wang Argonne National Labortory, USA
TS13-3	Sensitivity Analysis of the Control of a Three-phase Open-End Winding H-bridge Drive […] &((Abdelfatah Kolli ¹ , Olivier Bethoux ² , Alexandre De Bernardinis ¹ , Eric Laboure ² and Gerard Coquery ¹ ¹ IFSTTAR, France, ² LGEP, France
TS13-4	Balanced Multiphase High Frequency Micro-Distribution Power Bus For Electric Vehicles […] &) \$ Frederick Klatt Best Electric Machine, USA
TS13-5	A two-phases interleaved One Cycle Control PFC for Automotive Application&)) Davide Giacomini and Alex Lollio International Rectifier, Italy
	Poster Session 1: Power Electronics and Motor Drives Monday, June 16th, 12 pm to 2 pm

PS1-1 **Time-domain Steady-state Analysis of Fixed-Frequency Series Resonant Converter with Phase-Shift Modulation**^{...}**&***% Alireza Safaee¹, Praveen Jain² and Alireza Bakhshai² ¹Bombardier Inc. Canada, ²Queen's University, Canada

	Vehicles […] &* , Roufin Mahmood, Taimoor Shah and Habibur Rehman American University of Sharjah, United Arab Emirates
PS1-3	A Hybrid Observer for the Full-Speed-Range Sensorless Control of Interior Permanent Magnet Motor Drives […] &+' Yu Li, Allan Taylor and Kevin (Hua) Bai Kettering University
PS1-4	High Range On-line Electric Vehicles Powered by Inductive Power Transfer […] &+, Stijn Wolterink and Pavol Bauer Delft University of Technology, Netherlands
PS1-5	Flux-weakening Loop Design for EV Drive with Permanent Magnet Synchronous Motor […] &,) Quanrui Hao, Diego Mascarella and Geza Joos McGill University, Canada
PS1-6	Efficiency Comparison of Wire and Wireless Battery Charging: Based on Connection Probability Analysis ^{***} &- \$ Mohammad Kabalo ¹ , Florence Berthold ¹² , Benjamin Blunier ¹ , David Bouquain ¹ , Sheldon Williamson ² and Abdellatif Miraoui ¹ ¹ University of Technology Belfort-Montbeliard, France, ² Concordia university, Canada
PS1-7	Dynamic Performance Analysis of Novel Series-connected Capacitor-run Three-phase Induction Motor Fed by Single-phase Supply […] &- * Hui Zhong ¹ , Lin Zhao ² and Yuzhe Zhang ² ¹ Shandong University, China, ² Gannon University, USA
PS1-8	Interleaved SVPWM and DPWM for Dual Three-Phase Inverter-PMSM: An Automotive Application * & Subhadeep Bhattacharya, Diego Mascarella and Geza Joos McGill University, Canada
PS1-9	Variable Speed Brushless Hybrid Permanent Magnet Generator for Hybrid Electric Vehicles […] \$, Omid Beik ¹ , Nigel Schofield ¹ and Ahmad Al-Adsani ² ¹ McMaster University, Canada, ² PAAET, Kuwait
PS1-10	Design and Electromagnetic Analysis of a Novel 3-DOF Deflection Type Permanent Magnet Actuator " % Zheng Li ¹ , Caisheng Wang ² , Qingqing Lun ¹ and Lu Zhang ¹ ¹ Hebei University of Science and Technology, China, ² Wayne State University, USA
PS1-11	A Novel 3-DOF Sensing Methodology for M-DOF PM Motors […] &\$ Zheng Li ¹ , Caisheng Wang ² , Manjie Guo ¹ and Jun Ma ¹ ¹ Hebei University of Science and Technology, China, ² Wayne State University, USA
PS1-12	Investigation of Key Factors Influencing the Response of Permanent Magnet

	Synchronous Machines to Three-Phase Symmetrical Short-Circuit Faults *** &) Gilsu Choi and Thomas Jahns	
	University of Wisconsin at Madison, USA	
PS1-13	Average-Value Modeling of Hysteresis Current Controlled Brushless DC Motor Drives ``' ' %	
	Hanling Chen and Aaron Cramer University of Kentucky, USA	
PS1-14	FPGA Based D-PLL Control Technique of CLL Resonant Converter for EV Battery Chargers $\overset{\dots}{}$ ' +	
	Asa Erdem, Colak Kerim, Bojarski Mariusz and Czarkowski Dariusz New York University, USA	
PS1-15	Investigating Safety Issues Related to Electric Vehicle Wireless Charging Technology'''' ('	
	Yabiao Gao ¹ , Kathleen Farley ² and Zion Tse ¹	
	¹ University of Georgia, USA, ² Southern Company Services, Inc., USA	
PS1-16	A Fuzzy Logic Approach for Fault Diagnosis and Recovery in PHEV and EV Chargers "" (Weiqiang Chen, Luocheng Wang, Artur Ulatowski and Ali Bazzi	+
	University of Connecticut, USA	
PS1-17	Design of A Wireless Charging System Used in Light-duty Electrified Automobiles ····) & Yongsheng Fu and Hua (Kevin) Bai	
	Kettering University, USA	
PS1-18	Current Sensor Fault-Tolerant Operation of Dual Traction Inverters using Six-Phase Current Reconstruction Technique \cdots) ,	
	Haizhong Ye and Ali Emadi	
	McMaster University, Canada	
PS1-19	A Drive Cycle Based Electro-Thermal Analysis of Traction Inverters $^{\cdots }$ ' (
	Haizhong Ye, Kai Yang, Hao Ge, Pierre Magne and Ali Emadi	
	McMaster University, Canada	
PS1-20	Power Electronic Converters for 12/8 Switched Reluctance Motor Drives: A	
	Comparative Analysis […] +\$	
	Jin Ye and Ali Emadi	
	McMaster University, Canada	
PS1-21	Design Considerations for Loosely Coupled Inductive Power Transfer (IPT) System	
	for Electric Vehicle Battery Charging - A Comprehensive Review *** +*	
	Kunwar Aditya and Sheldon Williamson	
	Concordia University, Canada	
PS1-22	A Digital PWM Current Controller for Switched Reluctance Motor Drives […] , &	
	Fei Peng and Ali Emadi	
	memaster University, Canada	

PS1-23	Comprehensive Review of PV/EV/Grid Integration Power Electronic Converter Topologies for DC Charging Applications ····· , , Siddhartha Anirban Singh and Sheldon Williamson Concordia University, Canada
PS1-24	Analytical Design Methodology of Double Stator Switched Reluctance Machine ···· - · Mengying Luo and Babak Fahimi University of Texas at Dallas, USA
PS1-25	Inductive Power Transfer System With Improved Characteristics […] Dionisios Voglitsis ¹ , Georgios Tsengenes ² and Pavol Bauer ¹ ¹ Delft University of Technology, Netherlands, ² CO-WORKER Technology, Sweden
PS1-26	Robust Nonlinear Position Control of DC Motor with Friction (\$+ Maha Sabra, Bashar Khasawneh and Mohamed A Zohdy Oakland University, USA
PS1-27	Optimal Microgrid Component Sizing using Mixed Integer Linear Programming (% Xiang Yu, Pawel Malysz, Shahin Sirouspour and Ali Emadi McMaster University, Canada
PS1-28	Theoretical analysis and experimental investigation of a high frequency bidirectional CPT system "(% Dionisios Voglitsis, Todor Todorcevic, Venugopal Prasanth and Pavol Bauer Delft University of Technology, Netherlands
PS1-29	A Practical Approach to Inductive-Power-Transfer Systems for Transportation Applications using Boucherot Bridge Method […] (&+ Konrad Woronowicz and Alireza Safaee Bombardier Inc., Canada
PS1-30	Vibration Monitoring of PM Synchronous Machine with Partial Demagnetization and Inter-turn Short Circuit Faults ('' Zhi Yang, Xiaodong Shi and Mahesh Krishnamurthy Illinois Institute of Technology, USA
PS1-31	Analysis of Stator Winding Inter-turn Short-circuit Fault in Interior and Surface Mounted Permanent Magnet Traction Machines […] (' - Chunyan Lai, Aiswarya Balamurali, Vicki Bousaba, Lakshmi Varaha Iyer and Narayan Kar University of Windsor, Canada
PS1-32	A Flux-Weakening Control Approach for Interior Permanent Magnet Synchronous Motors Based on Z-Source Inverters […] (() Muyang Li, Jiangbiao He and Nabeel Demerdash Marquette University, USA
PS1-33	A Comprehensive Evaluation of SiC Devices in Traction Applications () % Fei Shang, Alejandro Pozo Arribas and Mahesh Krishnamurthy Illinois Institute of Technology, USA

PS1-34	Design of a Phase-Shifted ZVS Full-Bridge Front-End DC/DC Converter for Fuel Cell Inverter Applications () *	
	Ian P. Farneth, Michael B. Satinu, Haoyu Wang and Alireza Khaligh	
	University of Maryland, USA	
PS1-35	Review and Comparison of Bi-Directional AC-DC Converters with V2G Capability for	
	Behnam Koushki ¹ , Alireza Safaee ² , Praveen Jain ¹ and Alireza Bakhshai ¹	
	¹ Queens University, Canada, ² Bombardier Transportation Inc., Canada	
PS1-36	High Bandwidth Energy Storage Devices for HEV/EV Energy Storage System (*, Masood Shahverdi ¹ , Michael Mazzola ¹ , Nicolas Sockeel ² and James Gafford ¹	
	1 Mississippi State University, USA, 2 EPF Graduate School of Engineering, France	

Poster Session 2: Vehicle Powertrains and Energy Storage

Tuesday, June 17th, 12 pm to 2 pm

- PS2-1 **Tabu Search based Solution to the Electric Vehicle Energy Efficient Routing Problem (+'** Rami Abousleiman and Osamah Rawashdeh Oakland University, USA
- PS2-2 **Parameters Design and Speed Control of A Solar Race Car with In-wheel Motor** (+-Junnian Wang, Xu Zhang and Dan Kang Jilin University, China
- PS2-3 **Improved Lithium-Ion Battery Model with Hysteresis Effect** (,) Rudy Tjandra¹, Suguna Thanagasundram², King Jet Tseng¹ and Andreas Jossen³ ¹Nanyang Technological University, Singapore, ²Tum Create Centre of Electromobility, Singapore, ³Technische Universitat Munchen, Germany
- PS2-4 **Review on the aging mechanisms in Li-ion batteries for electric vehicles based on the FMEA method**^{...}(-' Christian Schlasza¹, Peter Ostertag¹, Daniela Chrenko², Reiner Kriesten³ and David

Bouquain⁴

1Robert Bosch GmbH, Germany, 2University of Burgundy, France, 3University of Applied Sciences Karlsruhe, Germany, 4University of Technology Belfort-Montbeliard, France

PS2-5 **Testing Environment for Vehicle to Grid (V2G) Applications for Investigating a** Voltage Stability Support Method[…](--Christoph Aldejohann, Jonas Maasmann, Willi Horenkamp, Fritz Rettberg and Christian Rehtanz TU Dortmund University, Germany

PS2-6	Fuel Cell Modeling With dSPACE And OPAL-RT Real Time Platforms () () Elena Breaz ¹ , Fei Gao ² , Damien Paire ² and Radu Tirnovan ¹		
	¹ Technical University of Cluj Napoca, Romania, ² University of Technology of Belfort Montbeliard, France		
PS2-7	Application of Dynamic Cell Resistance for Determination of State of Charge ") %% Mohammad Foad Samadi, Abbas Nazri and Mehrdad Saif		
	University of Windsor, Canada, Wayne State University, USA		
PS2-8	Autonomy Estimation for EV based on Road Planning Software $$) %		
	Daniela Chrenko ¹ , Alexandre Ravey ² , Robin Roche ² and David Bouquain ²		
	¹ University of Burgundy, France, ² University of Technology Belfort-Montbeliard, France		
PS2-9	A Hybrid Electric Vehicle with Minimal Energy Storage System […]) &\$		
	Masood Shahverdi, Michael Mazzola, Matthew Doude and Quintin Grice Mississippi State University, USA		
PS2-10	Hybrid-OD Matrix based Simulation Approach to Identify E-Charging Hotspots in Transport Network		
	Eiman Y. ElBanhawy ¹ , Ruth Dalton ¹ , Venky N, Shankar ² and Karim A. Abdel Warith ³		
	1 Northumbria University, United Kingdom, 2 The Penn State University, USA, 3 Purdue		
	University, USA		
PS2-11	Powertrain Energy Management for Hybrid Electric Scooter $$) ' &		
	Michael Guarisco, Alexandre Ravey, Beatrice Bouriot and David Bouquain University of Technology Belfort-Montbeliard, France		
PS2-12	A Multi-tiered Real-time Pricing Algorithm for Electric Vehicle Charging Stations $$) ' $$		
	Qin Yan, Ilaval Manickam, Mladen Kezunovic and Le Xie		
	Texas A&M University, USA		
PS2-13	Agent Based Modeling of E-Mobility (&		
	Eiman ElBanhawy ¹ , Ruth Dalton ¹ and Chimay Anumba ²		
	¹ Northumbria University, United Kingdom, ² Penn State University, USA		
PS2-14	A Robust Integrated Starter/Alternator Drive Adopting a Synchronous Reluctance		
	Machine for Automotive Applications (, Mattia Marandin, Emanuelo Fornacioro, Nicela Bianchi and Silverie Belognani		
	University of Padova, Italy		
PS2-15	Comparative Study of Series-Series and Series-Parallel Topology for Long Track EV		
	Charging Application […]))(
	Kunwar Aditya and Sheldon Williamson		
	Concordia University, Canada		
PS2-16	Feasibility Analysis of EV/PHEV Support for Grid-isolated Networks (International		
	Islanding)))- Ebrahim Saeidi ¹ Bebrad Asaei ² and Sheldon Williamson ¹		
	¹ Concordia University, Canada, ² University of Tehran, Iran		

PS2-17	Model Predictive Control of a Bidirectional AC-DC Converter for V2G and G2V Applications in Electric Vehicle Battery Charger ⁽¹⁾) * (
	¹ University of Malaya, Malaysia, ² Universiti Tenaga Nasional, Malaysia, ³ Tokyo Institute of Technology, Japan		
PS2-18	Efficiency Optimization for Bidirectional IPT system $$) +\$		
	Bac Xuan Nguyen 1 , Don Mahinda Vilathgamuwa 2 , Gilbert Foo 1 , Udaya Madawala 3 and Andrew Ong 1		
	¹ Nanyang Technological University, Singapore, ² Queensland University of Technology, Australia, ³ University of Auckland, New Zealand		
PS2-19	Comparative Study of Transformer Topologies for Distributed IPT Systems) +) Evangelos Lanaras, Venugopal Prasanth and Pavol Bauer Delft University of Technology, Netherlands		
PS2-20	Stochastic Optimization for Economic Operation of Plug-in Electric Vehicle Charging Stations at a Municipal Parking Deck Integrated with On-site Renewable Energy Generation […]) , '		
	Yi Guo, Jian Hu and Wencong Su University of Michigan-Dearborn, USA		
PS2-21	Improved Modeling of Lithium-Based Batteries using Temperature-Dependent Resistance and Overpotential $$, -		
	Larry Juang, Phillip Kollmeyer, Thomas Jahns and Robert Lorenz University of Wisconsin-Madison, USA		
PS2-22	Vehicle Charging Stations with Solar Canopy: A Realistic Case Study within a Smart Grid Environment $$) - +		
	Wei Tian, Yong Jiang, Mohammad Shahidehpour and Mahesh Krishnamurthy Illinois Institute of Technology, USA		
PS2-23	Analysis of Space-Time Behavior of Electric vehicle commuter, Experience the metropolitan and inter-cities scales *** \$' Eiman ElBanhawy		
	Northumbria University, United Kingdom		
PS2-24	State-of-Health based Load Sharing Strategy in Vehicle-To-Grid Systems *** *- Hussam Khasawneh and Mahesh Illindala The Ohio State University, USA		
PS2-25	Loss Optimization and Ultracapacitor Pack Sizing for Vehicles with Battery/Ultracapacitor Hybrid Energy Storage *** % Phillip Kollmeyer, Larry Juang and Thomas Jahns Univeristy of Wisconsin-Madison, USA		
PS2-26	Anticipative Charging of Plug-in Electric Vehicles and Its Impact on the Grid *** &' Mahdi Kefayati and Ross Baldick The University of Texas at Austin, USA		

PS2-27	External Short Circuit Fault Diagnosis for Lithium-Ion Batteries ^{***} &- Bing Xia ¹ , Chen Zheng ¹ , Mi Chris ¹ and Brian Robert ² ¹ University of Michigan-Dearborn, USA, ² Ford Motor Company, USA
PS2-28	A data-driven bias-correction based lithium-ion battery modeling approach for electric vehicles application *** * Gong Xianzhi, Xiong Rui and Mi Chris University of Michigan-Dearborn, USA
PS2-29	A Novel LLC Resonant Converter with Semi Bridgeless Active Rectifier *** (& Erdem Asa, Kerim Colak, Bojarski Mariusz and Czarkowski Dariusz New York University, USA
PS2-30	Testing of Smart Charging Controller for dynamic charging from solar panels […] * (, Bill Bakolas ¹ , Pavol Bauer ² , Dick Prins ¹ and Michael Coussement ¹ ¹ Cohere Energy Solutions, Netherlands, ² Delft University of Technology, Netherlands
	Short Courses:
S1	Linear Motor Drives and Applications in Rapid Transit Systems […] *) & Konrad Woronowicz and Alireza Safaee Bombardier
S2	Introduction to Electric Machine Design for Manufacturing ****+********************************
S3	Fundamentals of Power-train Design for All- and Hybrid-Electric Road Vehicles+, - Nigel Schofield

McMaster University, Hamilton, Ontario, Canada

- S4 **Thermal Analysis of Traction Motors**[…], , , David Staton Motor Design Ltd., Ellesmere, Shropshire, UK.
- S5 Inverter and Converter Design for Electromagnetic Compliance^{...}-), Neal Clements John Deere

Tutorials:

- T1 Affordable, Fuel Efficient Hybrids Utilizing 48-Vold Systems B#5 Bob Storc Magna (Retired)
- T2 In the Loop Understanding and Using Magnetic Material Properties *** Steve Constantinides Arnold Magnetic Technologies Corporation
- T3 Energy Management and Optimization ** Ilse Cervantes Hybrid Systems Laboratory IPICyT (Institute for Scientific and Technologycal Research of San Luis Potosi)