Energy & Fuels Preprints Presented at the 248th ACS National Meeting & Exhibition 2014

Division of Energy & Fuels, American Chemical Society Energy & Fuels Preprints Volume 59 #2

San Francisco, California, USA 10-14 August 2014

ISBN: 978-1-63266-923-0

Printed from e-media with permission by:

Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571

Some format issues inherent in the e-media version may also appear in this print version.

Copyright[©] (2014) by American Chemical Society Division of Energy and Fuels All rights reserved.

Printed by Curran Associates, Inc. (2014)

For permission requests, please contact American Chemical Society Division of Energy and Fuels at the address below.

American Chemical Society Division of Energy and Fuels c/o Dr. Elise B. Fox Savannah River National Lab Materials Science and Technology Aiken SC 29809

Phone: (803) 507-8560

Elise.fox@srnl.doe.gov

Additional copies of this publication are available from:

Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571 USA Phone: 845-758-0400 Fax: 845-758-2634 Email: curran@proceedings.com Web: www.proceedings.com

Table of Contents

Please Click on Symposia to View Related Papers

1. Hydrogen Generation and Hydrogen Based Global Economy

Role of interface between metal and support on steam reforming of toluene over Ni/LSAO-perovskite catalyst	1
Daiki Mukai, Kento Takise, Masaya Imori, Shuhei Ogo, Yukihiro Sugiura, Yasushi Sekine	
Theoretical and Experimental Understanding on Ethanol Steam Reforming for H ₂ Production Jia Zhang, Ziyi Zhong, XM. Cao, P. Hu, Michael Sullivan, Luwei Chen	3
Material investigation for hydrogen production and storage applications: Hydrogen solubility in transition metals predicted by density functional theory combined with thermodynamic principles Kyoungjin Lee, Mengyao Yuan, Antonio Baclig, Jennifer Wilcox	5
Catalytic methane steam reforming in an electric field at low temperature Ryo Manabe, Kazumasa Oshima, Yusuke Sasaki, Shuhei Ogo, Yasushi Sekine	8
B-N compounds for hydrogen storage: What's left to learn? R. Tom Baker	10
Manipulating photogenerated electrons and holes in semiconductors for solar hydrogen production Peng Zhang, Jinlong Gong	12
High-pressure storage of hydrogen fuel: Ammonia borane and its related compounds Yu Lin, Wendy Mao	14
RATIONALLY DESIGNED CuFe ₂ O ₄ – MESOPOROUS AI ₂ O ₃ COMPOSITE TOWARDS STABLE PERFORMANCE OF HIGH TEMPERATURE WATER-GAS SHIFT REACTION Chinnakonda Gopinath, Hyun-Seog Roh	15
Steam reforming of ethanol over Co/K/a-Al ₂ O ₃ catalyst Shuhei Ogo, Takuya Shimizu, Yusaku Nakazawa, Kei Mukawa, Daiki Mukai, Yasushi Sekine	17
Ethanol Steam Reforming over Cobalt Catalysts Supported on Nano-ceria: Oxidation/reduction Behavior of the Metal and the support Umit Ozkan, I. Ilgaz Soykal, Hyuntae Sohn, Jeffrey Miller	19
Oxidation resistance and effect of Pt addition to Ni/La _{0.7} Sr _{0.3} AlO _{3-δ} for catalytic steam reforming of toluene for hydrogen production Yukihiro Sugiura, Daiki Mukai, Masaya Imori, Takashi Hashimoto, Shuhei Ogo, Yasushi Sekine	20
Study about the effect of gadolinium doped ceria as support material for copper oxide to remove carbon monoxide in hydrogen rich stream	23

r	Novel approaches to carbon nitride photocatalysts for enhanced H ₂ evolution	25
	Dariya Dontsova, Christian Fettkenhauer, Markus Antonietti, Guylhaine Clavel	
C	Catalytic activation of liquid-phase chemical hydrides for hydrogen generation Qiang Xu	26
S	Sorbent enhanced methane reforming over a Ni-Ca-based, bi-functional catalyst Sorbent	27
	Marcin Broda, Agnieszka Kierzkowska, David Baudouin, Qasim Imtiaz, Christophe Copéret, Ch Müller	ristoph
F	Polymer Dye-Sensitizer for Photoelectrochemical Water Splitting Raman Vedarajan, Shoto Ikeda, Noriyoshi Matsumi	29
F	Pyrolysis of biomass in a bench-scale downer reactor combined with secondary lecomposition for production of hydrogen-rich gas	30
	longli Ding, Yongwei Wang, Songgeng Li, Wenli Song, Weigang Lin	
ŀ	Iydrogen production from landfill gas Sania de Lima, Raimundo Rabelo-Neto, Claudio Mahler, Adriana de Schueler, Fabio Noronha	32
) 	(-ray spectroscopy (XAS) studies of Fe-Cu based oxygen carriers for a chemical ooping based hydrogen production cycle	33
	Qasim Imtiaz, Nur Sena Yüzbasi, Agnieszka Kierzkowska, Paula Abdala, Wouter van Beek, Chr Müller	istoph
0	Desulfurization of H ₂ S using porous ZnO-based materials as sorbents Dat Tran, Charles Rong	35
ł	Iydrogen and Liquid Fuel Co-Generation via a Cyclic Redox Scheme Fanxing Li, Feng He	37
l t	Jse of catalysts to promote the activity of weak metal hydroxides in the alkaline hermal treatment of cellulose to H ₂	38
	Ah-Hyung Park, Maxim Stonor	
2.	Biofuels for Powering the World	
ł	Hydrogenation of lactic acid to propylene glycol over Mo modified Ru/C catalyst Yasuyuki Takeda, Tomohiro Shoji, Masazumi Tamura, Yoshinao Nakagawa, Keiichi Tomishige	40
C	Catalytic conversion of lignin to hydrocarbon fuels Xiaodong Tian, Yueyuan Ye, Yunquan Liu	42
ŀ	Iydrogeonolysis of squalane over novel metal catalysts Shin-ichi Oya, Daisuke Kanno, Hideo Watanabe, Masazumi Tamura, Yoshinao Nakagawa, Keiicl Tomishige	44 hi
I	mproved catalyst for fatty acid deoxygenation to hydrocarbon biofuels	46

Keyi Sun, Adria Wilson, Simon Thompson, H. Lamb

Kinetics of y-valerolactone formation during aqueous phase hydrogenation of levulinic acid over supported Ru Jesse Bond, Omar Abdelrahman	48
The Hydrodeoxygenation of Bioderived Furans into Alkanes: Process Development Amanda King, John Gordon, Andrew Sutton	49
Simultaneous Conversion of Biomass and CO ₂ to Co-produce Carboxylic Acids by Aqueous-phase Hydrogen Transfer Hongfei Lin	51
Performance of Solid Acid-Base Catalysts for Production of Acrolein by Gas-Phase Dehydration of Aqueous Glycerol Bo-Qing Xu	53
Hydrotreating of biomass pyrolysis oils in the presence of solvents Richard French, Luc Moens, James Stunkel, Kristiina Iisa	54
HYDORGENEOLYSIS OF C-O BONDS IN BIOMASS-BASED SUBSTRATES USING Ir-ReO _x /SiO ₂ CATALYSTS: ROLE OF Re SPECIES AND ACID COCATALSYTS Keiichi Tomishige	58
Oxidative Depolymerization and Stabilization of Lignin-Derived Bio-oils R. Tom Baker, Cedric Briens, Baburam Sedai, Jin Lin Zhou	60
Hydrodeoxygenation of fast pyrolysis oil using Ru/C catalyst-effects of solvents Shima Ahmadi, Ehsan Reyhanitash, Cheng Guo, Zhongshun Yuan, Guus Van Rossum, Sohrab F Chunbao (Chalres) Xu	62 Rohani,
Bio-Crude Upgrading Over Early Transition Metal Carbide And Nitride-Based Catalysts	64
Levi Thompson, Allison Franck, Sarah Paleg	
Lignin into arenes: A new platform for the production of liquid fuels by catalytic H-transfer reactions Roberto Rinaldi, Xingyu Wang	65
Aging process of biomass pyrolysis oil and its model compounds – a mechanistic study	67
Haoxi Ben, Mark Jarvis, Mark Nimlos, David Robichaud, Calvin Mukarakate, Steve Deutch	
Catalytic Requirements for the Deoxygenation of Aldehydes and Ketones on Solid Brønsted Acid Catalysts Ya-Huei (Cathy) Chin, Fan Lin	69
Role of pericyclic reactions in the pyrolysis of cellulose and hemicellulose Phillip Westmoreland, Vikram Seshadri, Patrick Fahey	71
Role of Bifunctional Catalysts in the Hydropyrolysis of Lignin Fernando Resende, Eranda Nikolla, Oliver Jan, Layan Savithra, Ryan Marchard, Luiz Carlos Ara Anjos	73 újo dos
Intermediate radicals from thermal degradation of p-coumaryl alcohol in the gas	75

Lavrent Khachatryan, Rubik Asatryan, Alexander Baev, Barry Dellinger

Effect of Pore-Structure on Production of Furans and Value Added Chemicals From Biomass	76
SRIDHAR BUDHI, CALVIN MUKARAKATE, MARK NIMLOS, BRIAN TREWYN	
Catalyst deactivation in ex situ and in situ catalytic fast pyrolysis of biomass Kristiina Iisa, Alexander Stanton, Mark Nimlos	78
Upgrading biomass pyrolysis products using five different catalysts; effect on product speciation and coking rates Calvin Mukarakate, Sridhar Budhi, Kristiina Iisa, Mark Nimlos, David Robichaud	80
Upgrading biomass-derived pyrolysis vapors on catalysts of varying acidity Matthew Yung, Calvin Mukarakate, Chaiwait Engtrakul, Anne Starace	81
Selective Hydrogenation of biomass Pyrolysis vapors Mark Nimlos, Calvin Mukarakate, David Robichaud, Rhodri Jenkins	82
Assessing the Suitability of Different Biomass Feedstocks for Processing via Gasification Matthew Boot-Handford, Nick Florin, Rafael Kandiyoti, Paul Fennell	84
Electrofermentation to Produce Fuels from Carbon Dioxide Daniel Derr, Rahul Mirani, Gregg Deluga, Nattaporn Lohitharn	90
Technical assessment for the production of cellulosic ethanol from sugarcane bagasse at high total solids and low enzyme loadings Luiz Ramos, Marcos Silveira, Priscila Neves, Luana Chiarello, Mateus Urio, Larissa da Silva	92
Homogeneous catalysts stabilized in ionic liquids for processing biomass and biomass-derived chemicals Girish Srinivas, Michael Mundschau, Jeffrey Martin, Steven Gebhard	94
Engineering of bacterial methyl ketone synthesis for biofuels: Recent advances Harry Beller, Ee-Been Goh, Edward Baidoo, Jay Keasling	97
Hydrocarbons produced from a sterol rich microbial lipid isolated from an oleaginous yeast cultured in non-sterile conditions Christopher Chuck, Fabio Santomauro, Jonathan Wagner, Rod Scott	98
Low Cost Ionic Liquids for Biorefining Jason Hallett, Agnieszka Brandt	102
Sequential phototrophic to heterotrophic algal cultivation strategy for high-productivity lipid production Hamid Rismani-Yazdi, Kristin Hampel, Chris Lane, F. C. Thomas Allnutt	104
Molecular-level interactions in the design of reversible and recyclable flocculants Kathryn Morrissey, Chunlin He, Rebeccah Chapman, Lucjan Żołnierowski, Mark Stoykovich	106

Design of liquid reaction media and extractant for efficient

107

5-hydroxymethylfurfural production from glucose

Z. Conrad Zhang, Tingyu Huang, Jinxia Zhou, Songyan Jia, Zhi Xia, Kairui Liu, Wenjuan Xu, Peifang Yan

Conversion of cellulosic biomass catalyzed by activated carbons Atsushi Fukuoka	108
Catalytic Transformations of Cellulose and Cellulose-derived Carbohydrates into Organic Acid Ye Wang, Yanliang Wang, Zhenchen Tang, Weiping Deng, Qinghong Zhang	110
Biomass Derived Small Oxygenates to Fuel Range Hydrocarbons over HZSM-5 Yong Wang, Karthikeyan Ramasamy	112
Ultra-Selective Cycloaddition of Dimethylfuran for Renewable p-Xylene with H-BEA Zeolite Wei Fan, Chun-Chih Chang, Paul Dauenhauer	114
On the promoting effects of salts upon acid-catalyzed hydrolysis of 1,4-β-glucans Heitor Fernando de Oliveira, Roberto Rinaldi	116
Upgrading Carbohydrates into Hydrocarbons For Fuels Applications John Gordon, Amanda King, Pete Silks, Andrew Sutton, Ruilian Wu	118
Direct catalytic conversion of cellulose to a liquid mixture of paraffins and naphthenes Beau Op de beeck, Michiel Dusselier, Jeroen Snelders, Christophe Courtin, Steffen Oswald, L Giebeler, Pierre Jacobs, Bert Sels	120 ars
Kinetic study on glucose transformation to ethylene glycol_Part I: retro-aldol condensation Junying Zhang, Baolin Hou, Hua Wang, Aiqin Wang, Mingyuan Zheng, Jifeng Pang, Tao Zhan	121 g
Performance of a Diesel Power Generator Fuelled by Diesel Oil-Ethanol Blends Alex de Oliveira, André Morais, João Januário, Osmano Valente, José Sodré	123
Raw biogas purification by supported liquid membranes Pavel Izák, Zuzana Sedláková, Lenka Morávková, Karel Friess	127
Compressed-liquid densities of two alternative turbine fuels Stephanie Outcalt, Raina Gough, Thomas Bruno	129
Unimolecular decomposition of common radical intermediates found in oxygenated fuels Enoch Dames, Shamel Merchant, William Green	131
Reduction of Carbon Dioxide Emissions from Automobile Engine Using Ethanol as Fuel	133
Comparative life cycle assessment of two C4 energy crops for power deperation	132
comparative me cycle assessment of two c+ energy crops for power generation	T 20

Xinhua Shen, Samarita Sarker, Ziaul Huque, Raghava Kommalapati

Impact of Fuel and Injection Timing on Partially-Premixed Charge Compression139Ignition (PCCI) Combustion Mode

Andre Boehman, Chenxi Sun, Dongil Kang, Stani Bohac

3. Carbon-Based Materials for Energy Conversion and Storage

Semiconducting Carbon Nanotube Aerogel Bulk Heterojunction Solar Cells Yumin Ye, Dominick Bindl, Robert Jacobberger, Meng-Yin Wu, Michael Arnold, Susmit Singha	142 Roy
Mechanochemically driven edge-selectively functionalized graphene nanoplatelets and their uses as electrocatalysts for energy conversion In-Yup Jeon, Jeong-Min Seo, Jong-Beom Baek	143
Investigation of silica supported fullerene catalysts for oxidative dehydrogenation of alkanes Ibrahim Ilgaz Soykal, Viviane Schwartz, Hui Wang, Chengdu Liang	145
Nitrogen and boron co-doped graphene as efficient catalyst for oxygen reduction reaction Yiyi She, Michael Leung	147
On the options for Hydrogen stroage Balasubramanian Viswanathan	148
BIOMASS-DERIVED POROUS CARBONACEOUS MATERIALS FOR BIOFUELS PRODUCTION Rick Arancon, Antonio Romero, Rafael Luque	150
In situ One-Step Synthesis of Hierarchical Nitrogen-Doped Porous Carbon for High Performance Supercapacitors Ju-Won Jeon, Satish Nune, Jodie Lutkenhaus	151
Interconnected Carbon Nanosheets Derived from Hemp for Ultrafast Supercapacitors with High Energy David Mitlin	152
Graphene and Related Materials for Energy Storage Rodney Ruoff	155
Solid-State Supercapacitor Based on Activated Carbon Cloths Exhibits Excellent Rate Capability Yat Li	156
Roll-to-Roll Synthesis of Vertically Aligned Carbon Nanotube Electrodes for Electrical Double Layer Capacitors Margarita Arcila-Velez, Jingyi Zhu, Anthony Childress, Mehmet Karakaya, Ramakrishna Podila, Apparao Rao, Mark Roberts	157 ′
Highly active iron and nitrogen doped carbon catalyst with hollow core mesoporous shell structure toward oxygen reduction reaction (ORR) Ming Zhou, Kwong Chan	159

Properties needed of carbon based anodes for use Sodium Ion Batteries. 161

Clement Bommier, Wei Luo, Xiulei Ji, Jenna Schardt, John Simonsen	
Carbon in Primary Lithium Air Batteries Jie Xiao	163
Carbonaceous materials as CO ₂ adsorbent: Design and simulation De-en Jiang	164
Colossal pseudocapacitance in a high functionality - high surface area carbon anode doubles the energy of an asymmetric supercapacitor David Mitlin	165
Advanced lithium-sulfur batteries from graphene-based architectures Quan-Hong Yang	167
Salt templating: Carbons with precise nanoporosity and their application as advanced supercapacitors Nina Fechler, Girum Tiruye, Rebeca Marcilla	168
Bi-functional electrocatalyst based on Cu-Fe alloy and highly crystalline carbon sheets for rechargeable Zn-air battery. Gyutae Nam, Jaephil Cho	169
Carbon composite non-precious metal catalysts for oxygen reduction in electrochemical energy conversion Piotr Zelenay, Hoon Chung, Edward Holby, Christopher Taylor, Gang Wu	170
Building energy- and size-scalable three-dimensional energy-storage architectures with carbon nanofoam paper Debra Rolison, Megan Sassin, Jeffrey Long, Jean Wallace, Christopher Chervin	172
Graphene Materials for High-Performance Supercapacitors: Two Dimensional or Three Dimensional? Yanwu Zhu	175
Nitrogen-doped carbon networks derived from polyaniline coated bacterial cellulose for high energy density supercapacitors Jun Yan, Tong Wei, Zhuangjun Fan	176
Functionalized carbon nanostructures for electric energy storage Y.Y. Shao, J. Liu, Y.H. Lin	178
Fabrication and Characterization of Platinum Coated with Solution Processed Graphene Yinghe Zhang	179
Synthesis of structured carbon particles in an electric field and its application Kei Mukawa, Naganobu Oyama, Hiroaki Ando, Takashi Sugiyama, Shuhei Ogo, Yasushi Sekino	181 e
Durable Pd@Pt core-shell Electrocatalyst for proton exchange membrane fuel cells (PEMFCs) zhigang Shao	183

	Porous carbon nanosheets with precisely tunable thickness for use in high rate and long cycle life supercapacitors Wen-Cui Li, Zhen-Yu Jin, Xiang-Qian Zhang	184
	High Efficent Reversible Hydrogen Storage-Evolution Process Based on Redox Ammonium Bicarbonate (or Carbamate)/Formate Equilibrium over Pd NPs Catalyst Ji Su, Lisha Yang, Xiaokun Yang, Mi Lu, Hongfei Lin	186
	Rational Nanostructured Carbon for Energy Conversion and Storage Liangbing Hu	187
	Design Principles to Exceed the DOE 2017 Standards for Delivery and Storage of H2 at Room Temperature Using nitrogen bases Covalent Organic Frameworks. Jose Mendoza-Cortes, William Goddard III, Hiroyasu Furukawa, Omar Yaghi	188
	Scalable Synthesis of 3D Heteroatom-doped Carbon Nanofibers from Bacterial Cellulose for Supercapacitors Li-Feng Chen, Shu-Hong Yu	189
2	4. Metal-Organic Frameworks for Sustainable Energy	
	High volumetric uptake in aluminum metal-organic frameworks Omar Yaghi	191
	MOF-based catalysts for lignin degradation Mark Allendorf, Ryan Davis, Parthasarathi Ramakrishnan, Kenneth Sale, Vitalie Stavila	193
	Metal-Organic Frameworks from Design Strategies to Applications Mohamed Eddaoudi	194
	Generating Highly Reactive and Highly Stable Catalysts by Combining Molecular and Material Chemistry Sid Das, Rebecca Hansen, Marina Popoya, Moumita Bhattacharya	195
	Demystifying Paths to MOF Commercialization Benjamin Hernandez	196
	MOFs for use in mixed matrix membranes, produced at scale Matthew Hill, Cher Hon Lau, Marta Rubio-Martinez, Ravichandar Babarao, Stefan Smith, Brac Ladewig, Anita Hill, Michael Batten, Kok-Seng Lim	197 dley
	Novel porous coordination polymers from a self-polymerizing phosphonium zwitterion and <i>bis</i> (phosphine) MCl ₂ complexes	199
	MOFs: Nanosized windows into Ångstrom space Christian Doonan, Christopher Sumby, Witold Bloch	201
	Adsorption-Based Heat Pumps: Energy Efficient Air-Conditioning with Microporous Metal-Organic Frameworks	203
	High proton conductivity of novel zinc oxalate metal-organic frameworks having	204

pyridinium Teppei Yamada, Takuya Nankawa	
Metal-organic frameworks: towards the application to clean energy Qiang Xu	205
Metal-Organic Frameworks and their Nanocomposites for Carbon Fixation and Photo Catalysis Bo Wang, Yifa Chen, Rui Li, Changwen Hu	206
Extended metal-carbohydrate frameworks Fraser Stoddart	207
Directional energy transfer and charge transport within light-harvesting metal- organic framework materials Joseph Hupp	208
FUNCTIONAL METAL-ORGANIC FRAMEWORKS: "THE OTHER FMOFs"/FMOFs 2.0 Mohammad A. Omary	209
Pore Engineering of Metal-Organic Frameworks for Hydrogen Storage and Carbon Capture Myunghyun Paik Suh	210
Porous Organic Materials for Electric Energy Storage and Power Supply Donglin Jiang, Fei Xu	211
Processing of metal-organic frameworks for air filtration applications Jared DeCoste, Gregory Peterson	213
Highly selective adsorption and separation of energy-related gases on soft metal-organic frameworks Ryotaro Matsuda, Hiroshi Sato, Susumu Kitagawa	214
Direct Synthesis of Isostructural Zirconium-Based Metal-Organic Frameworks as Methane Sorbents Hong-Cai Zhou, Xuan Wang	215
Molecular modeling of metal-organic frameworks for CO ₂ capture Randall Snurr	216
Metal-organic frameworks as cathode materials for Li-O ₂ battery Qiaowei Li, Doufeng Wu, Yong-gang Wang	217
How accurate are MOF crystal structures? Insight from DFT calculations David Sholl, Dalar Nazarian, Jeff Camp	218
Metal-organic frameworks for on-board storage of hydrogen and natural gas Eric Bloch, Jarad Mason, Matthew Kapelewski, Kenji Sumida, Miguel Gonzalez, Mercedes Tay Gygi, Wendy Queen, Jinxing Ye, Jeffrey Long	219 lor, David
Thermodynamic Assessment of the Ethylene - Bond Interactions with Open Metal	220

Sites of MOF Materials.

Jacek Jagiello

Efficient light gas separations with MOFs via predictive modeling and tuned synthesis Tina Nenoff	221	
5. 3rd International Symposium on Graphene for Energy and Fuel		
Insights into molecular transport through graphene and graphene-oxide membranes from simulation De-en Jiang	222	
Hybrid Device Employing 3D Arrays of MnO in Carbon Nanosheets Bridges Battery - Supercapacitor Divide David Mitlin	y 223	
Thermal and surface properties of graphene laminates for solar energy applications Giovanni Fanchini, Sabastine Ezugwu, M. Shafiq Ahmed, Arash Akbari-Sharbaf, Reg Baul- Sharifi	226 d, Faranak	
Self-Assembled 3D Graphene Oxide Electrodes for Lithium-Ion Batteries Tianyuan Liu, Reza Kavian, Seung Woo Lee	227	
Illuminating Graphene Andrea Ferrari	229	
Integration of carbon nanomaterials into heterostructure devices Mark Hersam	230	
Graphene in Li-O ₂ and Li-CF _x Batteries Jie Xiao	231	
Synthesis of porous carbon nanofibers for high-performance rechargeable lithium-sulfur batteries An-Hui Lu, Xiang-Qian Zhang, Qiang Sun, Wen-Cui Li, Bin He	232	
Shape-control of 3D Graphene for Energy Application Liang Chang, Wei Wei, Yun Hang Hu	234	
Graphene based materials for capacitive energy storage Majid Beidaghi, Yury Gogotsi	235	
3D characterization of graphene oxide membranes using electron tomography Ilke Arslan, Toby Sanders, Yongsoon Shin, Leonard Fifield, Birgit Schwenzer, Dongsheng Ram Devanathan, David Gotthold	236 Li, Wei Liu,	
Graphene Supercapacitors: Charging Up the Future Maher El-Kady, Jee Youn Hwang, Lisa Wang, Mengping Lee, Yuanlong Shao, Mir Mousavi, Ko, Richard Kaner	237 , Jang Myoun	
Chemical Functionalization of Graphene for Electrochemical Energy Storage	238	

Co-doped graphene metal-free electrocatalysts for key energy conversion processes Shi Zhang Qiao, Yao Zheng, Yan Jiao	241
Mesoporous copper-doped cobalt oxide for high-performance supercapacitors Mir F. Mousavi, Richard B. Kaner, Afshin Pendashteh, Mohammad S. Rahmanifar	243
Graphene-Nickel Cobaltite Nanocomposite Asymmetrical Supercapacitor with Commercial Level Mass Loading David Mitlin	244
Graphene wrapping for lithium-sulfur batteries Chongwu Zhou, Jiepeng Rong, Mingyuan Ge, Xin Fang	246
Chemically Integrated Graphene/Inorganic Hybrid 2-D Materials for Flexible Energy Storage Devices Guihua Yu	247
Graphene and graphene-based materials: Synthesis and electrochemical energy applications Yuyan Shao	248
Interface induced 2D or 3D graphene assembly for energy storage Quan-Hong Yang	249
Sodium niobate nanotubes – Graphene and Sodium niobate nanorods – Graphene binder free nanocomposite flexible paper electrode for supercapacitors Wijayantha Perera, Kenneth Balkus	250
High-throughtput production of graphene using supercritical fluid for energy applications Takaaki Tomai, Nobuto Oka, Naoki Tamura, Itaru Honma	253
How stable is graphene oxide for Photocatalytic Applications? Reactivity towards hydroxyl radicals James Radich, Prashant Kamat	254
6. 1st United States-China Symposium on Energy	
Graphene-metal oxide hybrid materials with high capacitance Zonghuai Liu, Liping Kang, Zhibing Lei	255
Rechargeable lithium sulfur batteries with novel sulfur-based cathode materials Jinbao Zhao, Bo Liu, Xuxiang Wang, Xue Li, Jing Wang, Chunmei Shi	257
Achieving low overpotentials in metal-air batteries Yiying Wu	258
Porous carbon-modified hybrid anodes for lithium ion batteries Fei Han, Wen-Cui Li, Cheng Lei, Bin He, Qiang Sun, An-Hui Lu	259
Energy storage materials of Vanadate System Kongjun Zhu	261

Graphene-based electrode material design and preparation process for rechargeable battery application	262
Zi-Feng Ma, Dezhi Yang, Tao Yuan, Yu-Shi He, Xiao-Zhen Liao	
Coal to Liquid Conversion via Dimethyl Ether Chang-jun Liu, Xintong Zhou	263
Low-carbon energy solution in China Yuhan SUN, Zhiyong Tang	264
Mesopore structure controlled conversion and products selectivity in the design of heavy oil catalytic cracking catalyst Baojian Shen, Shuo Mi, Dongdong Guo, Zhenxing Qin, Shenyong Ren, Qiaoxia Guo, Hongjua Baojie Wang, Honghai Liu, Xionghou Gao	265 In Zhao,
Hierarchical porestructure enhanced hydrocarbon catalytic cracking activity of ZSM-5 catalyst	267
Xiaohui Li, Deheng Yang, Shenyong Ren, Qiaoxia Guo, Baojian Shen	
Bringing New Efficiencies in Petroleum Refining Processes: In Silico Investigation on the Potential of Novel Porous Materials for Olefin and Paraffin Sepa Loredana Valenzano, Gemechis Degaga, Kapil Adhikari	269 aration
Synthesis of ethanolvia hydrogenation of acetic ester on Cu/SiO ₂ : Enhanced activity andstability with plasma treatment Yuan Liu, Jihong Cheng, Shetian Liu, Wei Di, Shuxun Tian, Qi Sun	270
Bifunctional Catalysts for Hydrogen and Oxygen Chemistry Douglas Grotjahn	271
Investigating Photo-driven Heterogeneous Catalytic Reactions for Energy Storage with Transient Spectroscopy Tanja Cuk, Matthias Waegele, Hoang Doan, Kevin Pollack, Xihan Chen, David Herlihy	272
Nanomaterials design for energy conversion and storage Yi Cui	273
Illuminating trap states of nanocrystalline titanium dioxide and their role in dye-sensitized solar energy conversion Fritz Knorr, Riley Rex, Jeanne McHale	274
Triboelectric Nanogenerator – a new energy technology using organic materials Zhong Lin Wang	276
Research on the multicomponent catalytic liquefaction technology of corn stalk features	277
Effect of Co-doping with Trivalent Cations on the Dopant Local Structure, Optical Properties, and Exciton Dynamics in Cu(I)-doped ZnSe Quantum Dots Jin Zhang, Sheraz Gul, Jason Cooper	278

Polymer Materials for Energy Generation and Storage

Zhenan B	ao
----------	----

Monodisperse Nanocrystals Crafted by Capitalizing on Amphiphilic Nonlinear Block Copolymers as Nanoreactors for Energy Zhiqun Lin, Xinchang Pang, Congshan Wan, Mengye Wang	282
Graphene-Semiconductor Composites for Photocatalytic and Photoelectrochemical Production of Fuels Nianqiang Wu, Fanke Meng	283
Catalytic conversion of glycerol and crude glycerol (by-product from bio-diesel industry) to oxygenated fuel additive with A continuous-flow process Malaya Nanda, Zhongshun Yuan, Wensheng Qin, Hassan Ghaziaskar, Marc-Andre Poirier, Chur (Charles) Xua	284 nbao
SOLVENT ISOTOPE EFFECT ON TRANSFER HYDROGENATION OF H ₂ O with GLYCERINE UNDER ALKALINE HYDROTHERMAL CONDITIONS Zheng Shen, Wenjie Dong, Minyan Gu, Yalei Zhang, Fangming Jin	286
Developing near infrared semiconductor quantum dots and plasmonic nanostructures for solar cell applications Dongling Ma	289
Rational Nanostructure Designs for Energy Storage and Conversion Liangbing Hu	290
Role of nitrogen in catalysis and supporting nanoparticles on graphene Jianguo Wang, Xinde Wang, Xing Zhong	291
Nanocarbon Based Electrocatalysts for PEM Fuel Cells Yuehe Lin	293
Carbon Nanomaterials as Metal-free Catalysts for Energy Conversion Liming Dai	294
Semiconductor Nanowires for Energy Conversion Peidong Yang	295
Effect of carbon source and hydrogen source for formic acid formation under hydrothermal conditions with Mn Lingyun Lyu, Guodong Yao, Fangmin Jin, Jia Duo, Zhibao Huo	296
Chemical Looping Technology Liang-Shih Fan	298
Bifunctional Silver (I) Catalysis for CO ₂ Upgrading Liang-Nian He, Qing-Wen Song	299
Catalytic CO ₂ Activation and Hydrogenation Based on First Principles Computational Analysis Qingfeng Ge	301
A novel approach to CO ₂ electroreduction based on 3D-Cu/Sn nanostructured	302

oxides related catalysts with high selectivity and stability Jinli Qiao, Yuyu Liu, Jiujunn Zhang	
Photocatalytic CO ₂ Reduction with Water for Solar Fuel Production Using MgO-Modified TiO2 Nanomaterials Lianjun Liu, Ying Li	304
Rapid and highly effective conversion of biomass and CO ₂ into chemicals and fuels under hydrothermal conditions Fangming Jin, Zhibao Huo, Guodong Yao	305
Understanding Shape effect in catalysis: a case study of ceria nanoshapes as catalyst and catalyst support Zili Wu, Amanda Mann, Meijun Li, Steven Overbury	307
In-situ studies on the water gas shift reaction: From planar to powder catalysts Dario Stacchiola	308
Kinetics and mechanisms of C-C forming and C-O cleavage reactions of interests in bio-oil upgrading Daniel Resasco	309
A Commercial Demonstration of biorefinery of lipids Coproduction of Biodiesel and 1,3-propanediol Dehua Liu	310
Fundamental understanding of nanocatalytic materials for environmental protection and clean energy production Xianqin Wang	311
One-step synthesis of supported Pt-based electrocatalysts Xiulan Hu, Jianbo Zhang, Junjun Shi, Xiaodong Shen	312
Synthesis of highly photo-stable CuInS ₂ /ZnS core shell quantum dots Liang Li	314
Three-dimensional Self-supported Electrocatalysts For Highly Efficient water splitting Shi Zhang Qiao, Sheng Chen	315
Recent progress in understanding the photocatalytic properties of bismuth vanadate	317
Gyeong Hwang, Kyoung Kweon	210
photoelectrochemical water splitting activity Shaohua Shen	318
Understanding Semiconductor Water Interface for Improved Solar Water Splitting Dunwei Wang	319
Oxide Heteronanostructures for Solar Water-Splitting	320

Lionel Vayssieres	
Oxygen-Deficient Metal Oxide Nanostructured Electrodes for Solar Hydrogen Generation Yat Li	321
An Ultimately Simple Synthetic Method for Spherical Mesoporous (Metal) Oxide Nanoparticles Using Supercritical Alcohols Pengyu Wang, Kazuya Kobiro	322
Hydrothermal Production of Aviation Fuels from Fatty Acid Esters and Microalgae Lipids Jie Fu, Cuiyue Yang, Jianghua Wu, Zhaoyin Hou, Xiuyang Lu	324
Surface Modified Spherical Activated Carbon Beads for Industrial CO ₂ Capture Applications Nannan Sun, Chenggong Sun, Hao Liu, Jingjing Liu, Trevor Drage, Colin Snape, Kaixi Li, Wei	326 Wei
Effects of Ce on Catalytic CO ₂ Reforming of CH ₄ over 5%Ni/ZSM-5 Mingchen Tang, Long Xu, Maohong Fan	327
Multifunctional Polymer Gels for Advanced Energy and Environmental Applications Guihua Yu	329
Bio-mimetic functional hierarchical materials inspired from nature species Di Zhang, Wang Zhang, Jiajun Gu, Shenming Zhu, Huilan Su, Qinglei Liu	330
Charge transfer dynamics in multifunctional colloidal nanorod-metal tip heterostructures: H2 generation and plasmon induced photochemistry Tianquan Lian	331
Cobalt-imbedded zeolite catalyst for direct synthesis of gasoline via Fischer- Tropsch synthesis Yi Zhang	332
Development of Hydrogenation Catalysts in Coal-derived Syngas to Ethanol Conversion Processes	334
What can pK _a and NBO charges of the ligands tell us about the water and thermal stability of Metal Organic Frameworks? Min Fang, Ping Lu, Yong Wu, Hong Kang, Haiyan Wei, Hongke Liu	336
Technology development and deployment of clean coal conversion to fuels and chemicals in China Yizhuo Han	339
A potential technology with low energy cost in Ni smelting based on direct reduction of NiO to Ni with glucose under hydrothermal conditions Guodong Yao, Zhibao Huo, Fangming Jin	340
Hydrothermal conversion of carbon dioxide into methanol over copper	342

Zhibao Huo, Jun Fu, Guodong Yao, Xu Zeng, Fangming Jin

Particle size and crystal structure effects on pyrolysis behavior of iron sulfides in 344 Argonne Premium Coals and a Maya petroleum vacuum resid asphaltene as examined with S-XANES

Trudy Bolin

Preparation of Higher Alcohol Synthesis Catalysts from Molybdenum Cluster Precursors	347
Haiquan Su, Yulong Zhang, Na Wang, Xiaoman Wang	
7. Advances in High Throughput Catalyst Development and Sc	reening
Exploration of the Role of Synthesis on Catalytic Performance of Cobalt-based Catalysts Guided by Factorial Designs Jason Hattrick-Simpers, Cun Wen, Jochen Lauterbach	348
Impact of High Throughput Experimentation on Homogeneous Polyolefin Catalyst Research David Devore, Roxanne Jenkins	350
Scanning Impedance Probe for High-Throughput Electrochemical Characterization of Solid State Electrodes	351
Robert Usiskin, Shingo Maruyama, Chris Kucharczyk, Ichiro Takeuchi, Sossina Haile, Xiao	hang Zhang
Catalytic reactivity and electronic structure across continuous Cu_xPd_{1-x} and $Cu_xAu_yPd_{1-x-y}$ composition space	352
James Miller, Gamze Gumuslu, Chunrong Yin, Andrew Gellman	
High Throughput Screening of Model Supported Heterogeneous Catalysts using Thermography Brian Hayden, Jovine Emmanuel	353
What we've learned from testing >250,000 Cells: New cell evaluation methods and data mining techniques Steven Kave, David Brecht, Gang Cheng	355
Oxidation of Al _x Fe _y Ni _{1-x-y} alloys across composition space Andrew Gellman, Mathew Payne, James Miller	356
8. 2nd International Symposium on Mesoporous Zeolites	
Mesoporous zeolites: an industrial view Carlo Perego, Roberto Millini	357
Enhancement of Catalytic Activity and Control of Reaction Pathway for Hydrocarbon Reforming over Mesoporous Zeolites Supporting Metal Nanoparticles Kyungsu Na, Nathan Musselwhite, Xiaojun Cai, Selim Alayoglu, Gabor Somorjai	358
Cost Reduction In The Production Of Mesostructured Zeolite For Fluid Catalytic	361

Cracking

Barry Speronello

T Z	extural Characterization of Catalytically Active Hierarchically Structured eolites via Gas Adsorption	363
	Katie Cychosz, Eric Li, Javier Garcia-Martinez, Matthias Thommes	
U C	nderstanding Mesoporosity in Y Zeolite and its Application in Fluid Catalytic racking	364
	Shankhamala Kundu, Dieter Wallenstein, Wu-Cheng Cheng	
I	ntegrated Nanocatalysts with Mesoporous Silica Supports Hua Chun Zeng	366
S	tabilization of ZnO in mesoporous ZSM-5 for methane dehydroaromatization Yungchieh Lai, Götz Veser	367
I	nfluence of the Si/Al ratio on H-ZSM-5 lattice and reaction site characteristics Susanne Opalka, Edward Schreiner, Raul Lobo, Rhonda Willigan, Tianli Zhu, Meredith Colket	369
M	l esoporous Zeolites by Fluoride Route Valentin Valtchev, Zhengxing Qin	371
S ti	ynchronous adsorption of SO2, NO and CO ₂ using modified zeolite assistant by ne microwave irradiation Yinghui Han, Maohong Fan, Armistead Russell, Shuangchen Ma	373
S	ynthesis of ultra-large pore zeolites Fei-Jian Chen, Hong-Bin Du	376
D a	esign of hierarchical micro-mesoporous materials for different catalytic pplications using surfactant-mediated zeolite recrystallization Irina Ivanova	378
9. Ca	Carbon dioxide Management: Recent Advances in Carbon diox pture, Conversion, Utilization and Storage	cide
S	ilicones for CO ₂ Capture and EOR	380
	Robert Perry, Michael O[apos]Brien, Mark Doherty, Benjamin Wood, Tiffany Westendorf, Robe Eric Beckman, Jason Lee, Stephen Cummings, Aman Dhuwe	ert Enick,
S	olid solution MOFs for CO ₂ separation and regeneration with low energy onsumption Satoshi Horike, Susumu Kitagawa	382
M C	letal coordination in salophen-linked covalent organic polymers for enhanced O ₂ capture	383
	Jeehye Byun, Damien Thirion, Cafer Yavuz	
М	etal-organic frameworks designed for carbon dioxide capture from flue gas Joseph Hupp	386

Identifying zeolite frameworks for enhanced CO2 capture and separation387applications

Jeffrey Rimer, Radha Motkuri

Evaluating Transformational Solvent Systems For Post-Combustion CO ₂ Separations	388
David Heldebrant, Roger Rousseau, Vassiliki-Alexandra Glezakou, Phillip Koech, Feng Zheng, Bearden, Charles Freeman	Mark
Carbon dioxide sorption in metal organic polyhedras at high pressure and high temperature Edson Perez, John Ferraris, Kenneth Balkus, Jr. Juga Musselman	390
Synthesis and Characterization of Multifunctional Porous Diazaborole-Linked Polymers Zafer Kahveci, Hani El-Kaderi	392
Direct air capture with amine functionalized porous polymer networks Hong-Cai Zhou, Weigang Lu	393
The strategies for improving carbon dioxide chemisorption by functionalized ionic liquids Sheng Dai	394
Ionic liquids for carbon capture De-en Jiang	395
Co-polymerization assisted synthesis of mesoporous carbonaceous adsorbents for efficient CO₂ capture Xiang Zhu, Tian Jin, Jun Hu, Honglai Liu, Sheng Dai	396
Critical Role of the Solvent in Promoting CO ₂ Capture by Alkanolamines: A Theoretical Perspective. Dhivya Manogaran, Eunsu Paek, Haley Stowe, Gyeong Hwang	397
Novel liquid-like nanoparticle organic hybrid materials for CO ₂ captrue and conversion Ah-Hyung Park, Camille Petit	399
Nanoporous Materials for Electrocatalytic CO ₂ Reduction Feng Jiao	401
Effects of Oxygen Incorporation into CO ₂ -derived Carbon Networks on Oxygen Reduction Reaction Jae Lee, Ayeong Byeon, Joonho Park, Yousung Jung	402
Electronchemical Reduction of CO ₂ to Fuels using Supported Transition Metal Clusters: Comparison with Gas-phase Reactions Cong Liu, Peter Zapol, Larry Curtiss	403
Constructing Hybrid Photocatalysts for Efficient CO ₂ -to-Fuel Conversion Tong Jin, Chao Liu, Michael Louis, Gonghu Li	405
Monodisperse Au Nanoparticles for Selective Electrocatalytic Reduction of Carbon Dioxide	407

Shouheng Sun

Electroreduction of carbon dioxide on indium-based nanoparticles James White, Andrew Bocarsly	408
Visible Light Driven Reduction of CO ₂ by Water on M0dified Sr ₃ Ti ₂ O ₇ Balasubramanian Viswanathan	410
Ensemble Effects in Cu-alloy Catalysts for CO ₂ Reduction Tim Mueller	413
Photoelectrochemical reduction of CO ₂ on hybrid organic/inorganic photocathodes Csaba Janáky, Attila Kormányos, Hursán Dorottya, Krishnan Rajeshwar	415
The Role of Aqueous Phase Hydrogenation on CO ₂ Capture and Conversion Hongfei Lin	416
DFT Studies on Facet Dependence of CO ₂ Electroreduction Path and Selectivity Xiaowa Nie, Wenjia Luo, Michael Janik, Aravind Asthagiri	418
Hydrogenation CO ₂ to formic acid over Ru supported on carbon nanotubes Na Liu, Xin He, An Zhou	420
Electrically promoted catalytic methane oxidative coupling with carbon dioxide over La-perovskite oxide catalysts Tomohiro Yabe, Kei Sugiura, Kazumasa Oshima, Shuhei Ogo, Yasushi Sekine	421
Vanadium-Potassium-Alumina catalyst: A way of promoting CO ₂ and coke reaction in the presence of O ₂ during the FCC catalyst regeneration Thiago da Silva, Rafael dos Santos, Nuno Batalha, Marcelo Pereira	423
Control of Physical Aging in Super Glassy Polymer Membranes Without Permeability Loss Matthew Hill, Cher Hon Lau, Phuc Tien Nguyen, Aaron Thornton, Kristina Konstas, Cara Dohe Roger Mulder, Laure Bourgeois, Amelia Liu, David Sprouster, James Sullivan, Timothy Bastov Hill, Douglas Gin, Richard Noble	426 erty, v, Anita
Rational design of oxide catalysts for carbon dioxide activation and hydrogenation Cynthia Lo, Zhuo Cheng	428
Mixed-Oxides for Carbonaceous Fuel Conversion with Integrated CO ₂ Capture via Chemical Looping with Oxygen Uncoupling (CLOU) Fanxing Li, Nathan Galinsky, Arya Shafiefarhood	430
Artificial Photosynthesis Using Double Layered Hydroxides Kentaro Teramura, Shoji Iguchi, Hirotaka Ishii, Saburo Hosokawa, Tsunehiro Tanaka	432
Mechanism for Diffusion of CO ₂ in Silica-Supported Amine Sorbents David Mebane, Kuijun Li	433
Thermosensitive Polyethylenimine for High Efficient Carbon Dioxide Release	435

Johannes Kainz, Bernhard Rieger

	A polymeric membrane system for efficient CO ₂ separation Sung Gap Im, Youngmin Yoo, Kwanyong Pak, Ji Yeon Kim	437
	Assessment of CO ₂ BOLs-PSAR for CO ₂ Capture from Flue Gas based on Bench-Scale Testing Results David Heldebrant, Paul Mathias, Feng Zheng, Mukund Bhakta, Mark Bearden, Charles Freema Zwoster, Phillip Koech, Philip Jessop	439 an, Andy
	Fixation of CO₂ with concrete sludge Akihiro Yamasaki, Miyuki Noguchi, Motoki Inoue, Atsushi Iizuka, Miyuki Takahashi	441
	Potential impact of combustion contaminants in saline formation Yee Soong, Bret Howard, Sheila Hedges, Robert Dilmore	442
	CO₂ Release from Capture Solutions Using Nano-particles for Direct Solar- to-Thermal Conversion: Releasing CO₂ and lowering the specific heat penalty Aaron Esser-Kahn, Du Nguyen, Samantha Goetz	444
	Ab initio Predictions of Carbon Dioxide Capture and Gas Separations using Metal- Organic Frameworks Yousung Jung, Joonho Park, Heejin Kim	446
	Theoretical Synthesis of Mixed Solid Sorbents for CO ₂ Capture Applications Yuhua Duan, Dan Sorescu, David Luebke, Bryan Morreale, Xianfeng Wang, Bingyun Li, Kelin Xiaohong Li, David King	447 ng Zhang,
	Absorption characteristics of CO ₂ based on 1-(4-butylamino)-3-methyl imidazolium chloride ionic liquids Yi Zhao, Lijuan Yang, Wei Sun, Huining Xiao, Qiangwei Li	450
	Small associative thickeners for supercritical CO ₂ Robert Enick, Jason Lee, Eric Beckman, Stephen Cummings, Robert Perry, Michael O[apos]B Mark Doherty	460 rien,
	Capture of CO ₂ by [NH ₂ p-mim]Br Ionic Liquid Qiangwei Li, Yi Zhao, Lidong Wang, Lijuan Yang	462
	Identifying molecular mechanisms for CO ₂ capture by aqueous amines using first principles-based atomistic modeling Haley Stowe, Eunsu Paek, Dhivya Manogaran, Gyeong Hwang	464
1 t	LO. Batteries and Fuel Cell Technologies: Challenges and Solutie cowards Global Stewardship	ons
	In Situ Formed Si Nanoparticle Network with Micron-Sized Si Particles for Lithium-Ion Battery Anodes	466
	Mingyon Wy, Won Yyon, Cong Joo Dark, Vincent Battaglia, Coo Liy	

Mingyan Wu, Wen Yuan, Sang-Jae Park, Vincent Battaglia, Gao Liu

Advanced Biner Design in High Capacity Silicon Anodes of Lithium Ion Batteries 468

You Kyeong Jeong, Tae-woo Kwon, Ali Coskun, Jang Wook Choi	
Sum frequency generation in tandem with cyclic-voltammetry: Unveiling the solid electrolyte interface chemistry on Si anodes and Au cathodes Yonatan Horowitz, Fei-Fei Shi, Phil Ross, Gabor Somorojai	469
Temperature effect of electrochemical performance in Li-ion battery with silicon anodes Wen Yuan, Hui Zhao, Vincent Battaglia, Gao Liu	470
Three dimensional Si/SiOx-C nanocomposite as anode materials for lithium-ion battery	471
In situ characterization of Li transport in LixSny anodes with neutrons Anne Co, Danny Liu, Jinghui Wang, Marcello Canova, Lei Cao	473
Si Nanotubes ALD Coated with TiO ₂ , TiN or Al ₂ O ₃ as High Performance Lithium Ion Battery Anodes David Mitlin	475
Insights into Electrochemical Properties of Amorphous TiO ₂ for Application in High Power Lithium-ion Batteries Haitao Fang, Bingmei Feng, Dongsheng Guan, Huixin Wang, Xue Sun	477
Structure and Conductivity of Liquid Crystals having Carbonate Units for the Use as Electrolytes in Lithium-Ion Batteries Andreas Eisele, Konstantinos Kyriakos, Christine Papadakis, Bernhard Rieger	480
Advances in Electrolytes for Lithium Ion Batteries: A Mechanistic Understanding Brett Lucht, Mengqing Xu, Cao Cuong Nguyen	482
Graphene supported mesoporous single crystals silicon on Cu foam as stable lithium-ion battery anode materials Hao Jiang, Chunzhong Li, Shilong Jing	483
Surface Reconstruction and Chemical Evolution of Stoichiometric Layered Cathode Materials for Lithium-Ion Batteries Feng Lin, Isaac Markus, Dennis Nordlund, Tsu-Chien Weng, Mark Asta, Huolin Xin, Marca Do	484
In-situ ATR-FTIR investigation of the solid electrolyte interface (SEI) on single- crystal Si anodes for Li ion batteries Feifei Shi, Kyriakos Komvopoulos, Philip Ross, Gabor Somorjai	486
Use of complimentary methods to evaluate energy storage interfaces Eric Dufek, Lucia Petkovic, Harry Rollins, John Klaehn	487
Investigations of Solid Electrolyte Interphase Formation on High-Capacity Li-ion Battery Anodes Zhenzhen Yang, Michael Thackeray, Lynn Trahey	488
Challenges in Development of High-Fidelity, Physics-Based, Lithium-Ion Battery	490

Models

Rajeswari Chandrasekaran, Chulheung Bae, Yeonkyeong Seong, Theodore Miller A high-performance aromatic carbonyl-based organic cathode for sodium-ion 492 **batteries** Wei Luo, Xiulei Ji Electrode-electrolyte solution interactions between TiO₂ nanotube electrode and 493 nonaqueous electrolytes for sodium-ion batteries Hui (Claire) Xiong, Richard Cutler, Riley Parrish, Ganesh Kamath, Subramanian Sankaranarayanan **Sodium Secondary Batteries with Amide Ionic Liquids** 495 Toshiyuki Nohira, Rika Hagiwara, Kazuhiko Matsumoto, Changsheng Ding, Chen Chih-Yao, Takayuki Yamamoto, Koma Numata, Atsushi Fukunaga, Shoichiro Sakai, Koji Nitta High-capacity anode materials for sodium ion batteries 496 Youngjin Kim, Yong Il Kim, Seung Mo Oh, Kyu Tae Lee The Emergence of Na-ion Battery Technologies 498 Christopher Johnson, Sanja Tepavcevic, Hui Xiong, Tijana Rajh Anodes for Sodium Ion Batteries based on Tin - Germanium - Antimony Alloys 500 David Mitlin Positive impacts of defects and amorphous nature of electrodes for Li-ion and 502 **Na-ion batteries** Guozhong Cao Imidazole Containing Hyperbranched Perfluorinated Polymer Blends Towards 503 **Anhydrous Proton Exchange Membranes** Matthew Quast, Aaron Argall, Anja Mueller Thin film catalysts for PEMFCs 505 Vladimir Matolin, Roman Fiala, Michal Vaclavu, Iva Matolinova 506 Sustainability assessment of regenerative hydrogen fuel cells for energy storage Matthew Pellow, Christopher Emmott, Sally Benson The origin and mechanism of Pt/C cathode catalyst degradation in polymer 509 electrolyte fuel cell by anode gas exchange cycles studied by in situ time-resolved XAFS Kotaro Higashi, Gabor Samjeske, Shinobu Takao, Shin-ichi Nagamatsu, Kensaku Nagasawa, Oki Sekizawa, Takuma Kaneko, Tomoya Uruga, Yasuhiro Iwasawa Enabling fuel versatility in polymer electrolyte fuel cells with state of the art 510 anion exchange membranes and/or novel molecular catalysts Andrew Herring, Vinh Nguyen, Quanning Li, Rajeswari Janarthanan, Lauren Greenlee, Madhura Joglekar, Brian Trewyn Low Platinum Loaded Graphene Based Electrode Layers for PEM Fuel Cell 512 Lale Işıkel Şanlı, Begüm Yarar, Vildan Bayram, Selmiye Alkan Gürsel Modified Proton Exchange Membranes for Fuel Cells Operating at Elevated 514 **Temperature and Low Humidity**

Sangaraju Shanmugam

Dissimilar oxide interfaces to accelerate oxygen reduction kinetics Bilge Yildiz, Yan Chen, Nikolai Tsvetkov	516
Nanostructured or fine grained doped ceria ceramics Mojka Otonicar, Noemí Walsöe de Reca	517
Supercapacitor based on metallic nanowires as electrodes for power integrated circuits Daniel Choi	518
High-Performance Lithium-Sulfur Battery: From Molecular Understanding to Nanomaterials Design Weiyang Li, Zhi Wei Seh, Guangyuan Zheng, Qianfan Zhang, Hongbin Yao, Yi Cui, Yuan Yang	519
The Quest for Batteries with a Sulfur Cathode: Will Nano-membranes Impact their Viability Claudiu Bucur, John Muldoon	521
Iron embedded Carbon fiber derived by Silk fibroin and Ketjenblack composite Electrocatalyst for Cable-type flexible Zinc-air battery Joohyuk Park, Jaephil Cho	522
Quantifying rechargeability limitations in Li-O ₂ batteries Bryan McCloskey	523
IMPROVING THE PERFORMANCE OF LITHIUM-SULFUR BATTERIES USING CONDUCTIVE POLYMER AND MICROMETRIC SULFUR POWDER Zhihui Wang, Yulin Chen, Vincent Battaglia, Gao Liu	524
Nanomaterials design for batteries Yi Cui	526
Pyrolysis of cellulose under ammonia leads to nitrogen-doped nanoporous carbon generated through methane formation Xiulei Ji, wei luo	527
Insights into nanoscale phase stability and charging mechanisms in alkali-O ₂ batteries from first principles calculations Shyue Ping Ong, ShinYoung Kang, Yifei Mo, Gerbrand Ceder	529
All-solid-state lithium batteries using Ti-based cathode materials and sulfide solid electrolyte Yoon Seok Jung, Bum Ryong Shin, Young Jin Nam, Jin Wook Kim	532
Polymer-based batteries: From organic radical batteries (ORBs) to redox flow batteries (RFBs) Ulrich Schubert, Tobias Janoschka, Bernhard Haeupler, Thomas Jaehnert, Andreas Wild, Dani Schmidt, Rene Burges, Martin Hager	534 el
Nanostructured V2O5/Sn Mg-ion Full Batteries Sanja Tepavcevic, Tijana Rajh, Dehua Zhou, Christopher Johnson	536
How to Develop Ultra-Long Life Energy Storage	538

Ping Liu

Tailoring Lithium-Intercalation Host Structure for Rechargeable Magnesium Ion Cathodes	539
Yan Yao, Yanliang Liang, Yifei Li, Hyun Deog Yoo	
11. Challenges and Opportunities in Petroleum Oil Production, Refining and Utilization	
Crystal microbalance investigation of the corrosion of common alloying elements in oil with naphthenic acid Brian Patrick, Rajashree Chakravarti, Thomas Devine	540
Development of a new catalytic method to substantially reduce high temperature naphthenic corrosion in the refinery Rajashree Chakravarti, Brian Patrick, Thomas Devine	542
Generation of H ₂ S by Crude Fractions at High Temperature Peng Jin, Gheorghe Bota, Srdjan Nesic, Fernando Farelas, Winston Robbins	544
Evaluation of Scales Protective Properties in Naphthenic Acid Challenges Gheorghe Bota	546
Modeling of internal corrosion of pipelines in oil/gas production Frank Cheng	548
Effect of Machine Hammer Peening Surface Treatment on Pitting Corrosion Behavior of Oil-Grade Alloy 718 Ting Chen	549
CORROSION INHIBITION IN HIGHLY AGGRESSIVE SOLUTIONS G. Burstein, B. Daymond, V. Choda	553
In-situ studies of crude oil stability and direct visualization of asphaltenes aggregation processes via some spectroscopy techniques	554
Anton Gabrienko	Larichev,
ASPHALTENE DEPOSITION AND REMOVAL Seyma Aslan, Abbas Firoozabadi	555
Upgrading oilsands bitumen: Solvent deasphalting and visbreaking sequence Ashley Zachariah, Arno de Klerk	556
Oxidative ring-opening over metal oxides Natalia Montoya Sánchez, Arno de Klerk	558
Inorganics Driven High Temperature Fouling of Metal Surfaces in Oil Refining David Mitlin	562
Asphaltene Solubility and Fouling	564

Estrella Rogel, Cesar Ovalles, Michael Moir

	Reduction of Crude Overhead Corrosion Through Changes in Unit Operating Philosophy Brandon Payne, Collin Cross	567
5	Aggregation of Model Asphaltene in Heptol Investigatedby Molecular Dynamics Studies Cuiying Jian, Tian Tang	570
(Oxidation of naphthenic-aromatic compounds in bitumen Muhammad Siddiquee, Arno de Klerk	572
9	Study of Phase Behavior for Some Sugar-based Surfactants and Their Applications in Enhanced Oil Recovery by Chemical Flooding Yongfu Wu, Frances Fournier, Susanna Toivonen, Scott Rosencrance	575
•	Viscosity of hydrocarbons at high temperatures and pressures Robert Enick, Hseen Baled, Peter Koronaios, Randy Miles, Ma Luo, Ward Burgess, Yee Soong, Gamwo, Deepak Tapriyal, Mark McHugh, Yue Wu, Babatunde Bamgbade	579 Isaac
(Coal liquefaction liquid quality: Impact of temperature and iron pyrite Ioan-Tudor Apan, Arno De Klerk	581
1	Ionic Liquids as Viscosity Modifiers for Heavy Oils Deepa Subramanian, Kathleen Wu, Abbas Firoozabadi	583
9	Analysis of pyrolysis products of latex gloves by gas chromatography mass spectrometry (GC-MS) Nasrollah Hamidi, Sujan Shrestha, Marketa Marcanikova, Sihon Chang, Louis Whitesides, Rul Massoudi	584 nullah
I	DFT Analysis of Steric Interactions in Models of Unstable Petroleum Constituents Peter Seidl	586
l	Fractionation by solvent blends and caracterization by NMR of asphaltenes from colombian crude oils Fernanda Silva, Lina Navarro, Peter Seidl, Maria José Guimarães, Kátia Leal	587
ľ	FUNCTIONALIZED CARBON NANOTUBES FOR ADSORPTIVE DESULFURIZATION OF MODEL FUEL OILS Mohammad Siddiqui, Tawfik Saleh, Basheer Chabasha	589
12 H	2. 10th International Symposium on Hydrotreating and ydrocracking Technologies	
(Opportunities and challenges in hydrotreating sour fuel gas Henrik Mortensen	591
9	State of the art testing of refining catalysts Sascha Vukojevic, Alfred Haas, Jochen Berg, Florian Huber, Marius Kirchmann, Tilman Sauer	593
l	Effect of 1,2-Cyclohexanediamine-N,N, N', N'-Tetraacetic Acid as complexing agent in a Hydrodesulfurization NiWS/Al ₂ O ₃ catalyst	594

Carlos Santolalla-Vargas, Victor Suarez-Toriello, Jorge Chavarria, Jose de los Reyes, Barbara Pawelec, Jose Luis Fierro

Unsupported NiMoS catalysts prepared from emulsions formed by ultrasonic irradiation	596
Luis Lippolis, Héctor Guzmán, Carmelo Boívar, Pedro Pereira-Almao, Carlos Scott	
Asphaltenes Hydroprocessing Fernanda Isquierdo, Carlos Scott, Gerardo Vitale, Pedro Almao	599
NiWS hydrocracking catalysts: Imaging WS ₂ slabs 2D morphology and improving their sulfidation via a new method.	601
Thibault Alphanz, Diane Bijou, Maria Girleanu, Audrey Bonduelle-Skrzypczak, Christèle Lege Pascal Raybaud, Christophe Coperet, Anne-Sophie Gay, Ovidiu Ersen	ens,
Hydrocracking of 1-methylnaphthalene catalyzed by zeolite-alumina composite supported NiMo catalysts	604
Atsushi Ishihara	
13. Production, Distribution and Utilization of Dimethyl Ether a Transportation Fuel	is a
Process design for the KOGAS' one-step synthesis of DME	606
Taekyong Song, Wonjun Cho, Young-soon Baek, Okbae Kwon, Hyenchan Lee, Yong-gi Mo	
Kinetic study of low and intermediate temperature oxidation of dimethyl ether Brian Brumfield, Naoki Kurimoto, Xueliang Yang, Pascal Dievart, Joseph Lefkowitz, Gerard V Yiguang Ju, Tomoya Wada	608 Vysocki,
Numerical simulation of high pressure dimethyl ether (dme) injection under diesel engine conditions	611
Khanh Cung, Seong-Young Lee, Jaclyn Johnson, Sreenath Gupta, Gregory Siuchta	
Nanoparticle emissions from dimethyl ether combustion in a compression ignition engine	613
William Northrop, Kathleen Vignali, David Kittelson	
Emissionsand Performance Benchmarking of a Prototype Dimethyl Ether-Fueled Heavy-DutyTruck James Szybist, Samuel McLaughlin, Suresh Iver	614
ADVANCED FUEL Theo Fleisch	010
High Efficiency Combustion with DME and Propane Fumigation into Diesel Engine Intake Air Bhaskar Prabhakar, Andre Boehman	617
An Investigation of Injection and Combustion of Dimethylether Using High Pressure Injection System	619

Masaaki Kato, Takamasa Yokota, Jost Weber, Mitsuru Konno, Ernst Winklhofer, Karl Wieser, Herwig

Ofner, Denis Gill	
DME Combustion in Heavy Duty Diesel Engines Ingemar Denbratt, Henrik Salsing	621
Small-scale Production to Develop Regional Markets: Launching DME Fuel in North America Elliot Hicks	623
14. Applications of X-Ray and Neutron Scattering Techniques i Energy Technologies	in
Development and application of Al EXAFS to characterize Al T-sites in zeolite: effect of hot liquid water treatment on the HBEA zeolite framework Aleksei Vjunov, John Fulton, Donald Camaioni, Miroslaw Derewinski, Johannes Lercher	625
Investigation of supported catalysts for C-H bond activation by X-ray spectroscopic techniques Andrew Getsoian, Bo Hu, Neil Schweitzer, Guanghui Zhang, Ujjal Das, Peter Stair, Adam H HackSung Kim, Jeffrey Miller	627 lock,
Bond strains and reactivity of supported metal nanocatalysts Anatoly Frenkel	629
Dehydration effect on pore size, porosity, specific surface area and fractal parameters of shale rocks: USAXS study Sungwon Lee, Robert Klingler, Jan Ilavsky, Randall Winans, Timothy Fischer, Douglas McC Marcus Wigand	632 arty,
In Situ X-ray Studies of Subnanometer and Nanometer Size Cluster-Based Catalysts Stefan Vajda	634
In Situ X-ray Scattering Studies of High Temperature and Pressure Catalysis for High Performance Scram Jet Engines Kamila Wiaderek, Sungsik Lee, Sungwon Lee, Mrunmayi Kumbhalkar, James Dumesic, Ran Winans	636 Idall
Study of PFSA ionomers using x-ray scattering techniques Ahmet Kusoglu, Adam Weber	638
Using insitu SAXS to elucidate phase separated morphology and dynamics in next generation ionomers for polymer membrane based electrochemical energy co devices Andrew Herring, Ashley Maes, Yuan Liu, Soenke Seifert, Feilong Liu, Daniel Knauss, E. Co Ertem	639 onversion ughlin, S.
Potential Dependent Structures at Pt(111) Electrode/Electrolyte Interfaces Studied by in situ Surface X-ray Scattering Toshihiro Kondo, Takuya Masuda, Nana Aoki, Kohei Uosaki	641
Visualizing water in non-precious metal catalyst-based polymer electrolyte fuel	642

cells using neutron imaging

Rangachary Mukundan, Dusan Spernjak, Gang Wu, Daniel Hussey, David Jacobson, Andrew Steinbach, Rodney Borup, Piotr Zelenay	
X-ray and Neutron Studies of the Structure, Dynamics, and Transport Properties of Polyelectrolytes for Energy Applications Kirt Page, Christopher Soles, Christopher Stafford	645
X-ray scattering and absorption studies of polymer electrolyte fuel cell cathode electrocatalysts	646
Nancy Karluki, Deboran Myers, James Gilbert	
In Situ Small-Angle Neutron Scattering Studies of Battery Electrodes Craig Bridges, Xiao-Guang Sun, Jinkui Zhao, M. Parans Paranthaman, Sheng Dai, William Hell	648 er
Applications of synchrotron x-ray and neutron techniques in battery material research	649
Tang Ken, Dachin Adun, Zonghar Chen	
Multiscale Neutron and X-Ray Tomographic Studies on High Capacity Lithium Battery Chemistries	650
Jagjit Nanda, Hassina Bilheux, Yijin Liu, Joy Andrews, Sreekanth Pannala, Kenneth Herwig	
Tetragonal vs. cubic phase stability in Al – free Ta doped Li₇La₃Zr₂O₁₂ Garnet Li Ion Solid Electrolyte Travis Thompson, Jeff Wolfenstine, Jan Allen, Michelle Johannes, Ashfia Huq, Jeff Sakamoto	652
From atoms to electrodes: Mesoscale effects in electrochemical conversion Olaf Borkiewicz, Kamila Wiaderek, Nathalie Pereira, Glenn Amatucci, Peter Chupas, Karena Ch	654 apman
Monitoring mobile ions: X-ray and neutron diffraction studies of emerging battery materials Peter Khalifah, Jue Liu, Xiao-Qing Yang, Ashfia Huq, Pamela Whitfield, Mikhail Feygenson, Joe Neuefeind, Jianming Bai	656 erg
Unveiling molecular level detail of CO ₂ adsorption in several extensive families	657
Wendy Queen, Craig Brown, Matthew Hudson, Eric Bloch, Jeffrey Long, Jarad Mason, Miguel Gonzalez, Jason Lee	
Neutron scattering studies of adsorbates in metal-organic frameworks Craig Brown	659
In Situ X-ray Scattering and Microscopy of Energy Materials Processing and Operation Michael Toney	661
Neutron radiography of fluid flow for energy research Lawrence Anovitz, Phillip Bingham, Yarom Polsky, Justin Carmichael, Hassina Bilheux, David Jacobson, Daniel Hussey, Lawrence Anovitz, Phillip Bingham, Yarom Polsky, Justin Carmichael Hassina Bilheux, David Jacobson, Daniel Hussey, Lawrence Anovitz, Phill	663 ′
Combined Neutron and High-Resolution Electron Microscopy Study of Particle Fracture in Lithium Manganospinel LiMn ₂ O ₄	664

Bart Bartlett, Xiaoguang Hao

X-ray Nano-imaging Application on Energy Materials Jun Wang	667
15. Applications of Theoretical Chemistry for Energy and Fuel Production	
Hydrogen trapping potential of titanium functionalized Mg-BN-framework Madhu Samolia, T. J. Kumar	668
Predictions of rate constants for hydrogen abstraction reactions by resonantly- stabilized free radicals Kun Wang, Stephanie Villano, Anthony Dean	669
Oxidation of Chlorobenzene using Au-, Au/Pd- and Pd-ZSM-5 Zeolite Catalysts: A DFT Study Bundet Boekfa, Masahiro Ehara, Hidehiro Sakurai, Thana Maihom, Jumras Limtrakul	671
Frontier orbital interpretation of gas release pathways in lignin thermolysis Preetinder Virk, Michael Klein	675
Modeling of 2-Bromotrifluoropropene Flame Inhibition Donald Burgess, Jeffrey Manion, Valerie Babushok, Gregory Linteris	678
DFT study of the mixed aldol condensation reaction catalyzed by acidic Zeolites HZSM-5 and HY Angela Migues, S. Vaitheeswaran, Scott Auerbach	680
A layered Manganese oxide as a bifuntional material for capturing sunlight and catalyzing water splitting: Theory and Simulation Jose Mendoza-Cortes, William Goddard III	681
Interface controlled growth of Ceria Nanoarrays on Anatase Titania Powder Hyun You Kim, Ping Liu, Mark Hybertsen	682
Effect of Surface Defects on Electronic and Optical Properties of Silicon Quantum Dots	684
Excited States, Spectroscopy, and Energy Conversion in Organic Semiconductors from First Principles Jeffrey Neaton	685
Ferroelectric oxides for visible-light photovoltaics and engineering of shift current Fenggong Wang, Fan Zheng, Ilya Grinberg, Hiroyuki Takenaka, Andrew Rappe	686
Near-infrared Light Driven Photocatalytic Water Splitting Jinlong Yang	688
Multiscale QM/MM simulation of catalytic reactions and redox processes for solar fuels	689

Weitao	Yang
--------	------

The Harvard Clean Energy Project – a virtual high-throughput search framework for new organic solar cell materials	690
Johannes Hachmann, Edward Pyzer-Knapp, Alan Aspuru-Guzik	
Vertical and Lateral Phase Segregations of Organic Solar Cells from Device-Level Coarse-Grained Molecular Simulations Chun-Wei Pao	691
Neural network potentials for large-scale molecular dynamics simulations of condensed systems Jörg Behler	693
DFT+U calculations of rare earth CeO₂ for catalysis and energy production Xueqing Gong, Jie Zhang, Ya-Ling Song, Xin-Ping Wu, Fendy Chen, Peijun Hu, Guanzhong Lu	695
Novel materials for alkane dehydrogenation: A systematic study on Pt based, subnanometer-sized alloy cluster catalysts Andreas Hauser, Martin Head-Gordon, Alexis Bell	696
The catalytic capacity of a Cr-phthalocyanine porous sheet Qiang Sun	698
Computational Study of Aqueous Phase Phenol Hydrogenation over Metal Catalysts Yeohoon Yoon, Roger Rousseau, Robert Weber, Johannes Lercher, Donghai Mei	699
DFT studies of biomass conversion catalyzed by acidic zeolites Subramanian Vaitheeswaran	702
A Key Player for Designing Novel Energy-Related Materials: Multi-Scale Simulation Based on First-Principles and Reactive Force Field Sang Soo Han	710
Mechanisms for heterogeneous and homogeneous reduction of carbon dioxide from first principles Emily Carter	712
Electronic energy level alignment at the water interface of a model oxide and nitride photoelectrode Michiel Sprik, Andrew Meng, Jun Cheng	713
First-Principles Modeling Approach Towards Quinone-Derivatives for Li ion battery: Effect of Molecular Architecture on Electrochemical Properties Ki Chul Kim, Seung Woo Lee, Seung Soon Jang	714
First principles descriptors for identifying molecular co-catalysts that facilitate efficient electroreductions for renewable energy John Keith	715
Kinetic Theory for Stability of Supported Metal Particles Under Reaction Conditions	717

Graphene supported clusters for hydrogen storage and electrocatalysis Qingfeng Ge	718
Computational Study of Silicon Nanocrystals for Energy and Optoelectronic Applications JUN-WEI Luo	719
Stochastic GW: Formulation and application to nanoclusters Christopher Arntsen, Daniel Neuhauser, Yi Gao, Eran Rabani, Roi Baer, Cyrus Karshenas	721
Ab initio calculations of charge transports in nanosystems Lin-Wang Wang	722
Multi-scale simulations of functional materials Youyong Li	723
Theoretical study of the effect of the length of silicon nanowires on the band gap Walid Hassan, Amit Verma, Reza Nekovei, Mahmoud Khader, M. Anantram	724
Calculating electron-phonon couplings to evaluate the charge and thermoelectric transports in organic and carbon materials Zhigang Shuai	726
Design, Synthesis, and Characterization of Organic Sensitizers with Cascade Energy Levels for Long-Lived Charge Separated States Lichang Wang, Xueqin Zhou, Dongzhi Liu, Wei Li, Tianyang Wang, Krishanthi Weerasinghe	728
Computational design of 3 rd generation electron donating polymers for organic photovoltaic solar cells Yongwoo Shin, Jaikai Liu, Xi Lin	729
Electronically non-adiabatic dynamics in singlet fission: a quasi-classical trajectory simulation Guohua Tao	730
Exciton Dynamics in Disordered Molecular Environments Adam Willard	731
Excited State Dynamics in Light Harvesting Materials John Parkhill	732
Discovery of nanoporous materials for energy applications Maciej Haranczyk, Richard Martin, Cory Simon, Berend Smit	734
TOWARD RAPID PREDICTIONS OF GAS ADSORPTION AND DIFFUSIVITY IN NANOPOROUS MATERIALS Jianzhong Wu	735
Molecular simulations of ternary alkane-water-surfactant mixtures with two or three liquid phases	736

J. Ilja Siepmann, David Harwood, Angel Cortes-Morales, Cornelis Peters, Peng Bai

Unified charge transfer associated strain destabilization mechanism of hydrogen clusters around bcc metal vacancies Xing-Qiu Chen Chen, Weiwei Xing	738
Computational screening of metal-organic frameworks for hydrogen and natural gas storage	740
Sensitivity of Chemical Pathways in Reactive Networks Rex Skodje, Michael Davis, Zeb Kramer, Weixue Li, Shirong Bai, Xiang Kui Gu	741
First-principles Study of NO Oxidation Kinetics on Low Index LaCoO ₃ Perovskite Surfaces Xiao Liu, Zhengzheng Chen, Yanwei Wen, Rong Chen, Bin Shan	742
New approach to detailed kinetic modeling for hydrocarbon pyrolysis from fundamental quantum-chemical principles Mikhail Ryazantsev, Adeel Jamal, Keiji Morokuma	744
16. Energy and Fuels Storch Award in Fuel Science: Symposiun Honor of Professor S. Ted Oyama	ו in
Can nickel phosphides become viable hydroprocessing catalysts? Stuart Soled, Sal Miseo, Joseph Baumgartner, Javier Guzman, Trudy Bolin, Randall Meyer	745
Combined in situ XAFS and FTIR study of Ni phosphide catalysts Kyoko Bando, Takahiro Wada, Satoru Takakusagi, Shigeo Oyama, Kiyotaka Asakura	746
Kinetic and Spectroscopic Studies of Catalytic Mechanisms: Hydrodeoxygenation of Biomass Feedstocks on Transition Metal Phosphides Ted Oyama, Ayako Iino, Jeun Shin, Phuong Bui, Ara Cho, Atsushi Takagaki, Ryuji Kikuchi, K Bando	747 Syoko
Low temperature steam reforming of ethanol over PtNi/CeO ₂ -nanocube catalyst Tamara Moraes, Raimundo Rabelo-Neto, Mauro Ribeiro, Lisiane Mattos, Marios Kourtelesis, Ladas, Xenophan Verykios, Fabio Noronha	749 Spyros
CO-free hydrogen production using low temperature ethanol steam reforming Armando Borgna, Catherine Choong, Yonghua Du, Martin Schreyer, Luwei Chen	750
Distinctive coordination chemistry of chromium chlorides responsible for the superior catalytic performance in glucose conversion in ionic liquids Huixiang Li, Tingyu Huang, Wenjuan Xu, Zhanwei Xu, Z. Conrad Zhang	752
17. Advances in Analytical Methods for Petroleum Upstream Applications	
Ambient Analysis of Nitrogen compounds in Petroleum Oil using Desorption Atmospheric Pressure Chemical Ionization Fred Jjunju, Simon Maher, Anyin Li, Hsu-Chen Hsu, Stephen Taylor, R. Graham Cooks	753

Thermal Crackability of Oils and Their Derived Fractions

Lante Carbognani, Estrella Rogel, Josune Carbognani, Cesar Ovalles, Francisco Lopez-Linare Pererira-Alamo	es, Pedro
APGC/MS for characterization of the Macondo wellhead crude oil and the oil spill Vladislav Lobodin, Ryan Rodgers, Alan Marshall	760
Method for Rapid Evaluation of Additives to Prevent Asphaltene Precipitation at Reservoir Temperatures Cesar Ovalles, Estrella Rogel, Harris Morazan, Michael Moir	762
Crude Oils Analysis by ICP-OES and ICP-MS via direct dilution Francisco Lopez-Linares, Jenny Nelson, Laura Nannini, David Leong, Lidia Berhane	765
 ¹H AND ¹³C NMR characterization of oil shale crude at various process stages of distillate fuel production J Bays, David King, James Franz, Thomas Gallant, Molly O[apos]Hagan, John Linehan, James James Bunger 	767 es Patten,
Comparing Asphaltenes: Deposit versus Crude Oil Estrella Rogel, Michael Roye, Toni Miao	769
Optimization of Mass Range, Dynamic Range, Signal-to-Noise Ratio, Mass Resolution, and Mass Accuracy for Characterization of Petroleum by FT-ICR Mass Spectrometry Alan Marshall, Greg Blakney, Tong Chen, Yu Chen, Christopher Hendrickson, Nathan Kaiser, McIntosh, Amy McKenna, John Quinn, Ryan Rodgers, Chad Weisbrod	772 Daniel
Investigation of the hydrolyzed polyacrylamide/metal complexes gel chemistry through NMR Teresa Lehmann, Vladimir Alvarado, Elena Topchiy	774
Advances in Gas Chromatography for Sulfur Analysis in Petroleum Upstream, Downstream and Petrochemical Applications Carl Rechsteiner, John Crandall, Ned Roques	776
Analytical methods for various in-field measurements of methane and arsenic in hydraulic fracturing operations Jack Driscoll, Jennifer Maclachlan	777
18. Fischer-Tropsch Chemistry and Catalysis	
Fischer-Tropsch Synthesis: Activity and selectivity of χ-Fe₅C₂ and θ-Fe₃C carbides Muthu Kumaran Gnanamani, Dennis Sparks, Robert Keogh, Burtron Davis, Hussein Hamdeh, Shafer, Gary Jacobs	779 , Wilson
Principles of olefin selectivity in Fischer-Tropsch synthesis on iron- and cobalt catalysts Hans Schulz	781

Novel utilization of mesostructured cellular silica foams as support of cobalt783catalysts in Fischer-Tropsch synthesis783

Lian	g Wei, Yuhua Zhang, Yanxi Zhao, Chengchao Liu, Jinlin Li, Jingping Hong	
Effect fixed- Nona	t of tube diameter on the radial temperature gradient of a pilot-scale -bed reactor for iron-based Fischer-Tropsch synthesis am Park, Jeong-Rang Kim, Yeonshick Yoo, Jinsuk Lee, Myung-June Park	788
Effect cataly Junk	t of ZnAl ₂ O ₄ morphologies on the catalytic performance of Co-based ysts in Fischer-Tropsch Synthesis kun Yan, Ming Wu, Jingping Hong, Yuhua Zhang, Jinlin Li	791
Influe Co-M\ Vahi	ence of promoters on physico-chemical properties and performance of WCNTs catalyst for Fischer-Tropsch Synthesis id Vosoughi, Ajay Dalai, Nicholas Abatzoglou	795
Fische transi Maur Jaco	er Tropsch synthesis: Enhanced selectivity to n-alcohols and olefins over ition metal oxide doped ceria supporte cobalt catalysts ro Ribeiro, Muthu Gnanamani, Israel Azevedo, Raimundo Rabelo-Neto, Ramana Pendyala, obs, Burtron Davis, Fabio Noronha	797 Gary
Facto Rafa	ors influencing the design of a Fixed Bed Fischer-Tropsch Reactor ael Espinoza	800
CO Ac Wei-	c tivation on HCP and FCC Cobalt Catalysts -Xue Li, Jinxun Liu, Haiyan Su	801
Evide Gerc	ance of highly active Co oxide catalyst for the Fisher-Tropsch Synthesis ome Melaet, Walter Ralston, Gabor Somorjai, Selim Alayoglu	803
CoMn SAR	carbon supported catalysts for Fischer Tropsch synthesis WAT IQBAL, Stuart Taylor, Graham Hutchings, Thomas Davies, Khalid Karim	804
Surfa M Oz	ce Reactivity of Iron and Iron Carbides in CO Hydrogenation zbek, J Niemantsverdriet	806
Comm Step Davi	nercializing an advanced Fischer-Tropsch synthesis technology ohen LeViness, Heinz Robota, Soumitra Deshmukh, Amanda Miller, Thomas Yuschak, Matth is	809 new
Effect iron F Wen	ts of halogenated acids and hydrogen cyanide in syngas on a precipitated Fischer-Tropsch synthesis catalyst nping Ma, Gary Jacobs, Dennis Sparks, Burtron Davis	813
Impa Jia Y Ronr	ct of sulfur on a Co/Mn based catalyst for syngas conversion to olefins Yang, John Walmsley, Bjorn Enger, Torbjorn Gjervan, Svatopluk Chytil, Rune Myrstad, Mag ning, De Chen, Asad Khan, Khalid Karim	816 nus
Fische Suppo Usch Burt	er-Tropsch Synthesis: High Oxygenate Selectivity of Hydrothermal Carbon orted Cobalt Catalysts hi Graham, Gary Jacobs, Muthu Gnanamani, Stephen Lipka, Wilson Shafer, Christopher Sw cron Davis	818 vartz,
Invers synth	se and normal isotope effects during iron catalyzed Fischer-Tropsch lesis	821

Buchang Shi, Yunxin Liao	
Small-scale gas-to-liquids using Fischer–Tropsch synthesis: Opportunity or myth? Arno de Klerk	823
	~~-
Fischer-Tropsh mechanism: Studies of a Co/Ce _{0.75} Si _{0.25} catalyst using ¹³ C ¹⁸ O Debanjan Chakrabarti, Muthu Gnanamani, Wilson Shafer, Dennis Sparks, Vinay Prasad, Arno Klerk, Burtron Davis, Mauro Ribeiro	825 De
Fischer-Tropsch synthesis over high-loading Co-based catalysts in a microreactor Anders Holmen, Jia Yang, Sara Eiras, Rune Myrstad, Peter Pfeifer, Hilde Venvik	828
Effects of surfactants on the performance of Co nano-particles for Fishcher- Tropsch synthesis FENG GUO, Botao Teng	831
3-D characterization of Fischer-Tropsch catalysts before and after reduction Ilke Arslan, Sanchita Dey, John Roehling, Joost Batenburg, Burtron Davis	832
Characterization of nano-scale Pt promoted yttria-stabilized zirconia catalysts for hydrogen production applications Michela Martinelli, Gary Jacobs, Luca Lietti, Carlo Visconti, Shelley Hopps, Burtron Davis	833
Assessing the impact of promoter spatial distribution in Mn-promoted Co FTS catalysts using novel STEM-EDS quantitative methods Gregory Johnson, Sebastian Werner, Alexis Bell	835
Improving the accessibility of Fischer-Tropsch catalyst layers by insertion of transport pores Henning Becker, Robert Güttel, Thomas Turek	837
Conversion of Syngas to Higher Alcohols: Influence of bentonite clay as a binder and its variable loading in KCoRhMoS ₂ /MWCNT catalysts formulation Philip Boahene, Ramaswami Sammynaiken, Ajay Dalai	841
The effects of intracrystalline diffusion and aromatization of hexane at various pressures using isotopic labeling Wilson Shafer, Gary Jacobs, Gabriela Alvez, Ryan Snell, Xianghong Hao, Burtron Davis	842
19. Mesoporous and Nanostructured Hybrid Materials: Symposi Honor of Prof. Thomas J. Pinnavaia	um in
Enhancing the stability of copper chromite catalysts for the selective hydrogenation of furfural using ALD overcoating	844

Christopher Marshall, Hongbo Zhang, A. Jeremy Kropf, Guanghui Zhang, Jeffery Elam, Jeffery Miller, Fred Sollberger, Fabio Ribeiro, Eric Stach, James Dumesic

Mesoporous catalytic materials for biomass valorization to fuels and chemicals846Konstantinos Triantafyllidis

20. Advances in Chemistry of Energy and Fuels

Hydrogenation of furfural to butanol and pentanols for renewable gasoline blendstocks Kristi Fjare, Yun Bao	848
Characteristics of Zn, Cu and As in fast pyrolysis residues of different particle size of sewage sludge Hongmei Jin, Zhizhou Chang, Renato Arazo, Sergio Capareda	850
Effects of HCI on the oxidation of CH ₄ over CeO ₂ Li-Li Yin, Xue-Qing Gong	856
Ambient hydrolysis deposition of TiO ₂ in nanoporous carbon and the converted TiN-carbon capacitive electrode Xingfeng Wang, Vadivukarasi Raju, Wei Luo, Bao Wang, William Stickle, Xiulei Ji	857
Reactivity of hydrogen controlled by oxygen vacancies at CeO ₂ (111) Xin-Ping Wu, Xue-Qing Gong	858
Scalable fabrication of high surface area graphene from GO by magnesiothermic reaction Zhenyu Xing, Bao Wang, Xiulei (David) Ji	859
Renewable fuel additives from depolymerized lignin Heather Parker, Christopher Chuck, Matthew Jones, Joshua Spellman	860
Capture of CO ₂ by 1-butyl-3-methylimidazole glycine ionic liquid under normal pressure Qiangwei Li, Yi Zhao, Lidong Wang, Lijuan Yang	864
Control of plasmonic nanoparticle dispersion in bulk heterojunction organic solar cells and consequences on active layer nanostructure Dennis Butcher, Lawrence Drummy, Hilmar Koerner, Frank Scheltens, David McComb, Robert Wadams, Laura Fabris, Christopher Bailey, Christopher Tabor, Michael Durstock	866
Analysis of Mercury Content in Petroleum Products Basheer Chanbasha	868
Effect of Dipole Moment on Dye-Sensitized Solar Cells Boyang Chu, Hong Wang, Ka-Ho Lee, Tingbin Yang, Zilong Wang, Zhenyang Lin, Yongye Lian Jianwei Sun, Shihe Yang	874 g,
Multiple ambient hydrolysis deposition of tin oxide into nanoporous carbon as a stable anode for Lithium-ion batteries Vadivukarasi Raju, Xingfeng Wang, Wei Luo, Xiulei Ji	878
Photoinduced charge transfer in the organic photovoltaic solar cells Yongwoo Shin, Xi Lin	880
Tuning the structure and gas sorption properties of metal-organic frameworks for hydrogen and methane storage Farshid Ramezanipour, Jeffrey Long, Miguel Gonzalez	881

Influence of surface modified with methanol under ultraviolet radiation on flotability of the macerals in Shenfu coal Zhao Wei, Zhou Anning	882
Towards a Cost efficient Production of Fuels from lignocellulosic Biomass using Ionic Liquids	883
Florence Gschwend, Jason Hallett, Paul Fennell	
Synthesis of Cobalt Disulfide on Reduced Graphene Oxide for Hydrogen Evolution Reaction	884
Dong Ah Ko, Hasmukh Patel, Cafer Yavuz	886
Iron fluoride hydrate/graphene nanocomposites as cathode materials for sodium secondary battery applications Ghulam Ali, Ji Young Kim, Kyung Yoon Chung	888
Electrochemical Performance of Ni-rich Layered Oxide LiNi _{0.8} Co _{0.15} Al _{0.05} O ₂ Cathode Material by Surface Modification using Organic Compound for Lithium Secon Batteries	889 Idary
Dong Hyun Kim, Ji Young Kim, Kyung Yoon Kyung Yoon	
A Study on Cr-based anode material of sodium batteries SE YOUNG KIM, Kyung Yoon Chung	890
Engineering of Templated Protein Assembly for Elucidation of High-Performance Oxygen Reduction Reaction: Surfactant-Free Gold-Platinum Bimetallic Nanoclusters SWNT-Protein Assembly Yong-Tae Kim, Ji Hun Kim, Yong Ho Kim	891 on
Measuring Thermal Transport Properties of rGO Thin Film A-Rang Jang, Dongwoo Kang, Hyeon Suk Shin	892
Comparative study of rutile SnO ₂ (110) and TiO ₂ (110) for formic acid adsorption and decomposition Miru Tang, Qingfeng Ge	894
Non Syn-Gas Catalytic Route to Methanol Production Fenglin Liao, Cheng-Tar Wu, Edman Tsang	895
Electron Transportation Mechanism of Conductive Polymer Binder for Si anode in Lithium Battery	896
Guo Ai, Wen Yuan, Yulin Chen, Hui Zhao, Sang Park, Gao Liu	
Effect of oxygen on acetic acid steam reforming Vissanu Meeyoo, Thirasak Rirksomboon, Nat Phongpreuksathatb, Atsadang Traiangwongb	898
Materials modelling for energy and fuels: From photovoltaics to photocatalysis Taizo Shibuya, Kenji Yasuoka, Susanne Mirbt, Biplab Sanyal, Lee Burton, Jonathan Skelton, A Walsh	900 ron

Enhanced Sulfur Tolerance of the Samarium (Sm)-doped Cerium oxide (CeO ₂): A First-Principles Study	901
Dong-Hee Lim, Sangheon Lee, Hee Su Kim, Sung Pil Yoon, Jonghee Han, Suk Woo Nam, Cha Yoon, Hyung Chul Ham	ng Won
Cobalt doped TiO ₂ anatase (100) surface photoelectrochemical cell: Computational spin restricted analysis of surface ingrained vs. above surface models Stephanie Jensen, Dmitri Kilin	903 5
Role of Solvation on Electron Dynamics of Titanium Hydroxide Dayton Vogel, Dmitri Kilin	904
Size-dependent chemistry in gasoline direct injection (GDI) particulate matter Samuel Lewis, John Storey	905
Hierarchy benefits the SCR-DeNOx activity of V₂O₅/TiO₂ mixed oxide catalysts Erisa Saraci, Robert Arndt, Jens Kullmann, Dirk Enke, Roger Gläser	906
Modified Sn surfaces for the electrochemical reduction of CO ₂ Jeremy Feaster, Etosha Cave, Toru Hatsukade, David Abram, Kendra Kuhl, Chris Hahn, Thoma Jaramillo	908 as
High voltage energy storage systems using facile patterning approach Inho Nam, Gil-Pyo Kim, Soomin Park, Joeng Woo Han, Seongjun Bae, Sungju Yu, Ha Nee Um Young Lee, Yong Hwa Kim, jongheop Yi	909 nh, Su
Plasmon-enhanced solar energy conversion to chemical and electrical energy Sungju Yu, Yong Kim, Su Young Lee, Hyeon Don Song, Ha Nee Umh, Jongheop Yi	910
Production of valuable chemicals (1,3-butadiene) from biomass-based resources alternative to the petroleum Jayeon Baek, Tae Yong Kim, Inho Nam, Soomin Park, Sungju Yu, Seongjun Bae, Su Young Le	911 ee, Ha
Characteristic of bismuth-antimony-tellurium thermoelectric materials via ultrasonic spray pyrolysis Hye Young Koo, Gook Hyun Ha, Kyung Tae Kim	912
Study on processing of metal foam via slurry coating Dahee Park, Eun-Mi Jung, Jung-Yeul Yun	913
Structures and Energetics of Carbon Dioxide Hydration over Copper Alkoxide Functionalization in Metal-Organic Frameworks: A DFT Study Chadchalerm Raksakoon, Thana Maihom, Bundet Boekfa, Jumras Limtrakul	914
Comparison of CeO ₂ /C supported Pt or Au catalysts activities towards ethylene glycol oxidation Virginija Kepeniene, Jurate Vaiciuniene, Rokas Kondrotas, Vidas Pakstas, Loreta Tamasauskai	917 te
Tamasiunaite, Eugenijus Norkus Probability of trivalent molybdenum (d ³) spin crossover in hexagonal phase	918

NaYF₄ nanocrystals

Ge Yao, Mary Berry, P. May, Dmitri Kilin

Flexible Wwre-like all-carbon supercapacitors based on porous core-shell carbon fibers	920
Weijia Zhou, Xiaojun Liu, Kai Zhou, Shaowei Chen	
Charge-tunable polyampholytes for the enhanced flocculation of cellular biomass Kathryn Morrissey, Chunlin He, Rebeccah Chapman, Lucjan Żołnierowski, Shana Bender, Willia Prevatt, Mark Stoykovich	922 am
Excited state non-adiabatic dynamics simulation of Ru cluster interfacing anatase TiO ₂ (101) Surface and liquid water	923
Shuping Huang, Talgat M. Inerbaev, Dmitri S. Kilin	
Kinetic study and pyrolysis of lignite coal Mehran Heydari, Moshfiqur Rahman, Rajender Gupta	925
Ink-Jet Printing of Efficient Organic Solar Cells Navid Attarzadeh, Reza Foudazi, Abbas Ghassemi	928
ACTIVATED CARBON/NANOPARTICLES FOR ADSORPTIVE DESULFURIZATION OF MODEL FUEL OIL	929

Khalid Alhooshani