2014 IEEE Photonics Conference

(IPC 2014)

San Diego, California, USA 12-16 October 2014

IEEE Catalog Number: CFP14LEO-POD **ISBN:**

978-1-4577-1502-0

TABLE OF CONTENTS

October 13, 2014

MA Biophotonics (BIO)

Advances in	Biophotonics	
MA1.1	Rethinking Microscopy	1
MA1.2	Vesicle Photonics in Biology with a Focus on Single Cell Analysis	3
MA1.3	Simultaneous spatial and temporal focusing for tissue ablation	5
Bioimaging a	and Tomography	
MA2.1	Optical Coherence Tomography: Technology and Applications	7
MA2.2	Optical coherence in all the right (and wrong) places: using and designing coherence for biomedical imaging	9
MA2.3	A Novel Electro-Optically Tuned Optical Coherence Tomography Technique for Dental Imaging	N/A
MA2.4	Low Aberration KTa1-xNbxO3 Varifocal Lens for Visible Wavelength Range Applications	N/A
Nanobiophot	tonics and Optofluidics	
MA3.1	Ultrasensitive Digital Detection of Nanoparticles: Viral Diagnostics and Multiplexed Protein and Nucleic Acid Assays	14
MA3.2	Spaser Powered Photothermal Cancer Therapy using Graphene and Carbon Nanotubes	16
MA3.3	Raman characterization of DNA-CTMA biopolymer and its application for ridge waveguide with PDMS clad	18
MA3.4	Optofluidic Laser Based Biodetection	N/A

MB Displays & Lighting (DISL)

Novel LEDs

MB1.1	InGaN-based Nanocoumn Emitters Suitable for Display Applications	20
MB1.2	Extending quantum efficiency roll-over threshold with compositionally graded InGaN/GaN LED	22
MB1.3	Phosphor modeling based on reabsorption of Stokes shifted light	24
MB1.4	Alternating Driving Scheme with Filter Circuitry for White Organic Light-Emitting Diode Lighting	26

MB Optical Interconnects (OI)

Waveguides and Devices for Optical Interconnects II

MB2.2	Surface-normal photonic Crystal Membrane Reflectors with Integrated In-Plane Couplers for Integrated Silicon Photonics	30
MB2.3	Electro-optic Polymer Modulator with Low-driving Voltage and High-bandwidth toward High-refractive Index Waveguide Plateform	32
MB2.4	Improvement in Crosstalk of 200-Port Bragg Reflector Waveguides Array-based Wavelength Selective Switch	34
MB2.5	Polarization independent optofluidic nematic liquid crystal channels	36

MB Displays & Lighting (DISL)

TFTs and Displays

MB3.1	Solution-deposited oxide TFTs and backplanes	38
MB3.2	Is Quantum-Dot LCD Ready for Prime Time?	40
MB3.3	Flexible AMOLED Display Using an Oxide-TFT Backplane and Inverted OLEDs	42

MC Optical Interconnects (OI)

Waveguides and and Devices for Optical Interconnects I

MC1.1	Adaptive coupling approach for single mode VCSELs with polymer waveguides	44
MC1.2	Polymer Waveguide Based Electro-Optical Assembly Technology for Computing Applications	46
MC1.3	45-degree Mirrors on Graded-Index Core Polymer Optical Waveguides for Low-loss Light Coupling	48
MC1.4	Photomask Free Fabrication of Single-Mode Polymer Optical Waveguide Using the Mosquito Method	50
MC1.5	An Approach to Optimize the Diffusion Process for Graded Index Waveguides Fabrication in Thin Glass Sheets	52

MC Photonic Integration and Packaging (PIP)

Designs for Integration

MC2.1	Photonic Molecules for Optical Signal Processing	54
MC2.2	Bandpass Bragg Grating Transmission Filters and Optical Add-Drop Multiplexers on Silicon-on-Insulator	56
MC2.3	Side lobe suppression in wavelength characteristics of the grating loaded in a Mach-Zehnder interferometer waveguide	58
MC2.4	Inductively coupled plasmas (ICP) etching of PZT thin films for fabricating optical waveguide with photoresist/aluminum bilayer masking	N/A
MC2.5	Silicon photonics for WDM nodes in UC San Diego's data-center network	N/A
Tranceivers	Integration	
MC3.1	Convergence of Photonics and Electronics Manufacturing	N/A
MC3.2	100 Gb/s Photonic Integrated Circuits with over 1 Billion Field Hours of Operation and Zero Field Failures	61

MC3.3	Improvements in the silicon photonics design flow: collaboration and standardization	63
MC3.4	Silicon Photonics Device Libraries for High-Speed Transceivers	65

MD Optical Networks and Systems (ONS)

PON and data networks

MD1.1	Optical Interconnection Networks for Data Centers	67
MD1.2	WDM-IDMA Solution for NG-PON2 Enabled by Coherent Technology and Colorless ONUs	69
MD1.3	Performance Upgrade of Low-Bandwidth RSOA Devices Using 4-PAM and Pre-equalization	71
MD1.4	Optical Physical-Layer Network Coding – another dimension to increase network capacity?	73
Optical rad	io and overlay technologies	
MD2.1	An Effect of Detuning Frequency in DSP-Assisted Offset-Frequency-Spaced Two-Tone Optical Coherent Detection for Radio-over-Fiber Signal	75
MD2.2	Experimental and Simulation Analysis of the W-band SC-FDMA Hybrid Optical- Wireless Transmission	77
MD2.3	Photonics Enabled Wireless Networks: Optical Wireless and Optical Backhaul	79
MD2.4	Data Overlay in Optical Networks through Level-Scalable Flexible Modulation and its Application in Multicast Overlay for WDM-PON	80
MD2.5	Modulation Format Conversion from BPSK to QPSK Using Delayed Interferometer and Pulse Shaping Filter	82
Networking	g	
MD3.1	Elastic Optical Networking and Routing and Spectrum Assignment	84

MD3.1	Elastic Optical Networking and Routing and Spectrum Assignment	84
MD3.2	OFDM for Short-Reach Optical Networks	86
MD3.3	Topology Independent Model for Estimating Total Cost of Flexible ROADMs in NGNs	87

ME Semiconductor Lasers (SL)

VCSEL 1

ME1.1	Design and Reliability of High speed VCSELs with emphasis on 850 nm	N/A
ME1.2	VCSELs for computer interconnects	89
ME1.3	240 Gbit/s VCSEL Array for Multicore Fiber Interconnects	91
ME1.4	Modulation Bandwidth Enhancement via Resonance Detuning in Coherently Coupled Vertical Cavity Laser Arrays	93
ME1.5	Polarization switching and bistability in a 1300 nm spin- VCSEL Subject to Circularly Polarized Optical Injection	95

ME2.1	Coherent Coupling in Vertical Cavity Laser Arrays	97
ME2.2	Room Temperature Plasmonic Nanolasers	99
ME2.3	Stokes parameters and hybridization of optical modes in long-wavelength vertical-cavity surface-emitting lasers (VCSELs)	100
ME2.4	High-Q current-injection InAs quantum-dot microdisk lasers operating at room temperature	102
SL Tutorial		
ME3.1	Plasmonic Nanowire Lasers for Sensors and Integrated Circuits	104
MF	Optical Micro/Nanao Resonators and Devices (OMND)	
Frequency C	ombs and Non Linear Effects in Microresonators	
MF1.1	Kerr optical frequency combs for ultra-stable microwave and lightwave signal generation	N/A
MF1.2	Broadband Mode-locked Kerr Combs Based on Soft Excitation of Microresonator Dark Solitons	106
MF1.3	Control of Kerr Optical Frequency Comb Generation with Temperature Dependent Group Velocity Dispersion	108
MF1.4	All-optical switching in a GaAs microdisk resonator	110
MF1.5	Dynamical Investigation of Kerr-Type Coupled Ring Resonators	N/A
Theory and	Applications of Microresonators	
MF2.1	The use of optical resonances in energy and thermal applications	N/A
MF2.2	Integrated Field-programmable 2×2 Optical Switch on a Multilayer Platform	114
MF2.3	Athermal Characteristics of TiO2-Clad Silicon Waveguides at $1.3 \mu m$	116
MF2.4	An optical delayline based on excitable microrings	118
MF2.5	Practice and Theory in Silicon-on-Insulator Slot Waveguide	N/A
Cavity Optor	mechanics and Optical Forces in Microcavities	
MF3.1	Optomechanical Gas	N/A
MF3.2	Resonant Optical Forces Associated with Whispering Gallery Modes in Microparticles	122
MF3.3	Nanophotonic Microfluidic Sensor and Manipulator	124
MF3.4	High-Q silica zipper cavity with strong opto-mechanical coupling for optical radiation pressure driven directional switching	126
MG	Optical Communications (OC)	

Visible Light & Other Systems

MG1.1	Visible Light Communications: improving data rate, link margin and field of view	128
MG1.2	Singular Layer Transmission for Continuous-Variable Quantum Key Distribution	130
	Demonstration of a Bi-directional Visible Light Communication with an overall Sum-ra	te of

MG1.3	110 Mb/s using LEDs as Emitter and Detector	132
MG1.4	Performance of Time-Bandwidth Engineering Systems	134
Modulation	& Detection I	
MG2.1	Optical Spectral Shaping and High Spectral Efficiency in Long Haul Systems	136
MG2.2	Fiber nonlinearity Mitigation in CO-OFDM Systems using Dual Compensators	138
MG2.3	Optical Phase Noise Suppression in CO-OFDM System with Sub-symbol Processing and Linear Interpolation	N/A
MG2.4	ROADM Cascade Performance in DD Multi-band OFDM Metro Networks Employing Virtual Carriers	142
MG2.5	Experimental demonstration of an OFDM receiver based on a silicon-nanophotonic discrete Fourier transform filter	144
Fiber Nonli	nearity & Modulation	
MG3.1	The Impact of Spectral Inversion Placement for Nonlinear Phase Noise Mitigation in Non-uniform Transmission Links	146
MG3.2	Performance Comparison of Autonomous Software-Defined Coherent Optical Receivers	148
MG3.3	OFDM symbol synchronization with reduced complexity based on virtual	N/A

MG3.4 Models to Predict the Nonlinear Noise Waveform and the Application in Nonlinear 152 Compensation

MH Nanophotonics (NANO)

subcarriers

Nano Tutorial

MH1.1	Optical Nanoantennas	154
Nanophoto	nic Devices I	
MH2.1	Nanophotonic Design for Broadband Light Management	156
MH2.2	Electrically injected nanoLED with enhanced spontaneous emission from a cavity backed optical slot antenna	158
MH2.3	Directional Control of Light-Emitting-Device Emission Via Sub-micron Dielectric Structures	160
MH2.4	Nonreciprocal Plasmonics	N/A
Plasmonic	Metamaterials I	
MH3.1	Plasmonic infrared biosensors	N/A
MH3.2	Nonreciprocity, Nonlinearity and Parity-Time Symmetry in Optical Metasurfaces and Metamaterials	162
MH3.3	A field-assisted method of producing wide-bandgap transparent conductive electrodes and its application to GaN-based vertical-type light-emitting diodes	N/A
MH3.4	Asymmetric light transmission by using 2D PT-symmetric photonic nanostructure	164

MH	Plenary	
Plenary I		
MI4.1	Hybrid Silicon Photonic Integrated Circuits	N/A
MI4.2	Single Molecule Imaging and Nanometry: Fluctuation and Function of Life	N/A
Octobe	r 14, 2014	
TuA	Photodetectors, Sensors, Systems and Imaging (PSSI)	
Advanceme	nts in Avalanche Photodiodes	
TuA1.1	Photon Counting Imagers Based on High-Fill-Factor Silicon Geiger-Mode Avalanche Photodiode Arrays	166
TuA1.2	Analytical Model for Impact Ionization in 3D Multiplication Regions	168
TuA1.3	Low Breakdown Voltage CMOS Compatible p-n Junction Avalanche Photodiode	170
TuA1.4	High-Speed High-Power-Tolerant Avalanche Photodiode for 100-Gb/s Applications	172
3D Imaging	Techniques	
TuA2.1	3D Computational Ghost Imaging	174
TuA2.2	New technologies and perspective for 3D-imaging	176
TuA2.3	Characterizing microdroplet evaporation using diffraction phase microscopy	178
TuA2.4	3-D Contouring by Self-Mix Interferometer in the Speckle-Pattern Regime	N/A
PSSI Tutori	al	
TuA3.1	Quantum Dot and Quantum Well Photonics	N/A
TuB	Optical Interconnects (OI)	
Systems an	d Architectures for Optical Interconnects	
TuB1.1	Scalable and High Performance HPC Architecture with Optical Interconnects	180
TuB1.2	Integration Technologies and Packaging for Efficient Si Photonics Links	N/A
TuB1.3	MMF Transmission at 1310nm Using Integrated Silicon Photonics Transceiver	N/A
TuB1.4	Lighting as an Opportunistic Platform for Converged Heterogeneous Networks	N/A
Integration	of Sources for Optical Interconnects	
TuB2.1	Enhanced Photoluminescence from Ge/SiGe Quantum Wells by Epitaxial Growth Induced Strain	184
TuB2.2	Optical antenna-coupled nano-LED for energy-efficient on-chip interconnect	N/A
TuB2.3	III-V on-silicon sources for optical interconnect applications	186

TuBOptical Networks and Systems (ONS)

Integration of Sources for Optical Interconnects

Heterogeneously Integrated Long Wavelength VCSEL based Transceivers for Data Center

TuB Optical Interconnects (OI)

Modulators and Dectors for Optical Interconnects

TuB3.1	Silicon Photonic Bragg Grating Modulators	190
TuB3.2	Linear Modulators in Photonic BiCMOS Technology	192
TuB3.3	A Low-voltage PAM-4 SOI Ring-based Modulator	194
TuB3.4	A Self-Equalizing Photo-Detector	196
TuB3.5	Large-Area InP Based Photodiode Operated at 850 nm Wavelengths with High Efficiency and High Speed for 40 Gbit/sec Transmission	198

TuC Microwave Photonics (MWP)

Advanced Microwave Photonics Components

TuC1.1	Ultra Wide Bandwidth Electro-optic Intensity Modulators with 0.46 V-cm Modulation Efficiency at 1550 nm	200
TuC1.2	A True Linear Intensity Modulator for pulsed light	202
TuC1.3	Array-antenna-electrode electro-optic modulator for millimeter-wave wireless signal discrimination	204
TuC1.4	Modeling nonlinearity in a partially depleted absorber photodetector and a modified uni-traveling carrier photodetector	206
TuC1.5	Widely Tunable Microwave Photonics Notch Filter based on a Waveguide Bragg Grating on Silicon	208
Photonic Mic	crowave Signal Processing	
TuC2.1	Microwave Photonic Signal Processing Based on Polarization Modulation	210
TuC2.2	Coherent Optical Pulse Shaping From Incoherent Light Sources	212
TuC2.3	Microwave Photonic Self-Interference Cancellation System Using a Slow and Fast Light Delay Line	214
TuC2.4	Photonic-assisted Endoscopic Analysis of W-band waveguide	216
TuC2.5	Photonic Time-Stretched Analog-to-Digital Converter with Suppression of Dispersion-induced Power Fading Based on Polarization Modulation	218
Integrated M	licrowave Photonics	
TuC3.1	Lithium niobate photonics on silicon substrates	220
TuC3.2	Photonic-Assisted Microwave Frequency Doubling based on Silicon Ring Modulator	N/A
TuC3.3	TriPleX [™] : The low loss passive photonics platform	224
TuC3.4	Monolithically integrated tuneable photonic source for the generation and modulation of millimetre-wave	226

TuD Special Symposium on High Power Diode Lasers and Systems

Special Symposium on High Power Diode Lasers and Systems I

TuD1.1	High-power diode lasers – a look towards the future	228
TuD1.2	Thin film filter wavelength-locked laser cavity for spectral beam combining of diode laser arrays	230
TuD1.3	Commercial high efficiency broad area diode lasers for industry	N/A
Special Sym	posium on High Power Diode Lasers and Systems II	
TuD2.1	Direct diode lasers for industrial sheet metal cutting and welding	232
TuD2.2	Near-infrared digital heating solutions with power VCSEL arrays	234
TuD2.3	High-Power Diode Laser Arrays for Large Scientific Lasers and Inertial Fusion	236
Special Sym	posium on High Power Diode Lasers and Systems III	
TuD3.1	Laser headlights for automobiles	N/A
TuD3.2	Mid-Infrared Diode Lasers Between 1800 nm and 2500 nm	N/A
TuD3.3	High Peak Power Pulse Generation from PBC lasers	238
TuE	Semiconductor Lasers (SL)	
DFB, DBR a	nd short pulses	
TuE1.1	Index-coupled Quantum-Dot DFB Lasers	240
TuE	Optical Communications (OC)	242
TuE1.2	Low Distortion 1550 nm GaInAsP DFB Lasers for Digital QAM and Analog Forward Path Applications	242
TuE1.2 TuE TuE1.3		242
TuE	Path Applications Semiconductor Lasers (SL) Mode-Locking and Frequency Mixing at THz Repetition Rates in a Sampled-	
TuE TuE1.3	Path Applications Semiconductor Lasers (SL) Mode-Locking and Frequency Mixing at THz Repetition Rates in a Sampled- Grating DBR Mode-Locked Laser	244
TuE TuE1.3 TuE1.4 TuE1.5	Path Applications Semiconductor Lasers (SL) Mode-Locking and Frequency Mixing at THz Repetition Rates in a Sampled- Grating DBR Mode-Locked Laser Extending the Repetition Rate of Passively Mode-Locked Quantum Dot Lasers	244 246
TuE TuE1.3 TuE1.4 TuE1.5	Path Applications Semiconductor Lasers (SL) Mode-Locking and Frequency Mixing at THz Repetition Rates in a Sampled- Grating DBR Mode-Locked Laser Extending the Repetition Rate of Passively Mode-Locked Quantum Dot Lasers Dispersion Optimization in a Semiconductor Optical Frequency Comb	244 246
TuE1.3 TuE1.4 TuE1.5 Short Pulse	Path Applications Semiconductor Lasers (SL) Mode-Locking and Frequency Mixing at THz Repetition Rates in a Sampled-Grating DBR Mode-Locked Laser Extending the Repetition Rate of Passively Mode-Locked Quantum Dot Lasers Dispersion Optimization in a Semiconductor Optical Frequency Comb s and Amplification	244 246 248
TuE TuE1.3 TuE1.4 TuE1.5 Short Pulse TuE2.1	Path Applications Semiconductor Lasers (SL) Mode-Locking and Frequency Mixing at THz Repetition Rates in a Sampled-Grating DBR Mode-Locked Laser Extending the Repetition Rate of Passively Mode-Locked Quantum Dot Lasers Dispersion Optimization in a Semiconductor Optical Frequency Comb s and Amplification Nonlinear optical response of quantum dot lasers	244 246 248 N/A
TuE TuE1.3 TuE1.4 TuE1.5 Short Pulse TuE2.1 TuE2.2	Path Applications Semiconductor Lasers (SL) Mode-Locking and Frequency Mixing at THz Repetition Rates in a Sampled- Grating DBR Mode-Locked Laser Extending the Repetition Rate of Passively Mode-Locked Quantum Dot Lasers Dispersion Optimization in a Semiconductor Optical Frequency Comb s and Amplification Nonlinear optical response of quantum dot lasers Analytical theory for a quantum dot gain levered mode locked laser Phase-Amplitude Coupling of Optically-Injected Nanostructured Semiconductor	244 246 248 N/A 250
TuE TuE1.3 TuE1.4 TuE1.5 Short Pulse TuE2.1 TuE2.2 TuE2.3 TuE2.3	Path Applications Semiconductor Lasers (SL) Mode-Locking and Frequency Mixing at THz Repetition Rates in a Sampled- Grating DBR Mode-Locked Laser Extending the Repetition Rate of Passively Mode-Locked Quantum Dot Lasers Dispersion Optimization in a Semiconductor Optical Frequency Comb s and Amplification Nonlinear optical response of quantum dot lasers Analytical theory for a quantum dot gain levered mode locked laser Phase-Amplitude Coupling of Optically-Injected Nanostructured Semiconductor Lasers	244 246 248 N/A 250 252
TuE TuE1.3 TuE1.4 TuE1.5 Short Pulse TuE2.1 TuE2.2 TuE2.3 TuE2.3	Path Applications Semiconductor Lasers (SL) Mode-Locking and Frequency Mixing at THz Repetition Rates in a Sampled- Grating DBR Mode-Locked Laser Extending the Repetition Rate of Passively Mode-Locked Quantum Dot Lasers Dispersion Optimization in a Semiconductor Optical Frequency Comb s and Amplification Nonlinear optical response of quantum dot lasers Analytical theory for a quantum dot gain levered mode locked laser Phase-Amplitude Coupling of Optically-Injected Nanostructured Semiconductor Lasers Finding threshold in a thresholdless laser	244 246 248 N/A 250 252
TuE TuE1.3 TuE1.4 TuE1.5 Short Pulse TuE2.1 TuE2.2 TuE2.3 TuE2.4 Si Photonic	Path Applications Semiconductor Lasers (SL) Mode-Locking and Frequency Mixing at THz Repetition Rates in a Sampled- Grating DBR Mode-Locked Laser Extending the Repetition Rate of Passively Mode-Locked Quantum Dot Lasers Dispersion Optimization in a Semiconductor Optical Frequency Comb s and Amplification Nonlinear optical response of quantum dot lasers Analytical theory for a quantum dot gain levered mode locked laser Phase-Amplitude Coupling of Optically-Injected Nanostructured Semiconductor Lasers Finding threshold in a thresholdless laser s, Polariton Lasers	244 246 248 N/A 250 252 254
TuE TuE1.3 TuE1.4 TuE1.5 Short Pulse TuE2.1 TuE2.2 TuE2.3 TuE2.4 Si Photonics TuE3.1	Path Applications Semiconductor Lasers (SL) Mode-Locking and Frequency Mixing at THz Repetition Rates in a Sampled- Grating DBR Mode-Locked Laser Extending the Repetition Rate of Passively Mode-Locked Quantum Dot Lasers Dispersion Optimization in a Semiconductor Optical Frequency Comb s and Amplification Nonlinear optical response of quantum dot lasers Analytical theory for a quantum dot gain levered mode locked laser Phase-Amplitude Coupling of Optically-Injected Nanostructured Semiconductor Lasers Finding threshold in a thresholdless laser s, Polariton Lasers Hybrid III-V Lasers on Silicon	244 246 248 N/A 250 252 254 256

Tue3.5Towards All Monolithic Stabilization of High-Speed Modelocked Semiconductor264Lasers

TuF Optical Networks and Systems (ONS)

Transmission and related effects

TuF1.1	DP-CS-DQPSK 32x112 Gbit/s Signal Transmission in a Transparent Core Optical Network	N/A
TuF1.2	Cascaded ROADM Tolerance of mQAM Optical Signals Employing Nyquist Shaping	268
TuF1.3	Digital and analog signal transmission technologies based on multi-level modulation and precise lightwave control	270
TuF1.4	Nonlinear Impact of Diverse Optical Routing in Uncompensated 120 Gb/s PM-QPSK Links	272

TuF Photonic Integration and Packaging (PIP)

III-V Integration

TuF2.1	InP Photonic Integrated Circuits for High Efficiency Optical Transceivers	274
TuF2.2	Monolithically Integrated InP-based 2.25 Tb/s Coherent Photonic Integrated Circuit Transmitter	276
TuF2.3	Power-enhancement broadband cascaded integration of electroabsorption modulator and semiconductor optical amplifier by local quantum well intermixing	278
TuF2.4	Dual-core Spot-size Converter with Tapered Cladding Layer Designed for High-efficiency Mode Coupling to InP-Based Deep-ridge Waveguide	280
TuF2.5	High-Performance InP Photonic Integrated Circuits	282

TuF Optical Micro/Nanao Resonators and Devices (OMND)

High Q-Factor Microcavities

TuF3.1	Ultrahigh-Q microcavities with highly directional emission	284
TuF3.2	Pump frequency noise coupling into a microcavity by thermo-optic locking	286
TuF3.3	Selective excitation of high radial order whispering gallery mode in metallic grating coupled microsphere	N/A
TuF3.4	Nanoparticle based plasmonic enhancement of high Q optical microresonators	290
TuF3.5	Thermal Nonlinearity Analysis of Toroidal Microcavities	292

TuG Optical Communications (OC)

100G and Emerging Transmission Technologies

TuG1.1	Impact of Clock-Phase Misalignment on optical Multiplexing for Time-Interleaved Carrier-Suppressed Return-to-Zero Signaling	294
TuG1.2	Uncooled MIMO DWDM using Pulse-Amplitude Modulation and Adaptive Crosstalk Cancellation	296
TuG1.3	Recent Progress in 100G Unrepeatered Transmission	298

TuG1.4	Phase-Conjugated Twin Signals Generation with Oppositely-Biased Paired IQ Modulators	300
High Capaci	ty Transmission Technology	
TuG2.1	Optical Frequency Combs for High-speed Transmission	N/A
TuG2.2	Electo-Optic Dual-Channel Coherent Signal Emulator	302
TuG2.3	Investigation of Interferometric In-Band OSNR Monitor for Monitoring Nyquist- Shaped 400G DP-QPSK Superchannels	304
TuG2.4	Capacity and Shaping in Coherent Fiber-Optic Links	306
All-Optical S	Signal Processing	
	Signal Processing	
TuG3.1	Tunable Optical Arbitrary Waveform Generation Based on Time-Delay to Intensity Mapping	308
-	Tunable Optical Arbitrary Waveform Generation Based on Time-Delay to Intensity	308 310
TuG3.1	Tunable Optical Arbitrary Waveform Generation Based on Time-Delay to Intensity Mapping	
TuG3.1 TuG3.2	Tunable Optical Arbitrary Waveform Generation Based on Time-Delay to Intensity Mapping Flexible DWDM Grid Manipulation Using Four Wave Mixing-based Time Lenses Wavelength Conversion of a 128 Gbit/s DP-QPSK Signal in a Silicon Polarization	310

TuH Nanophotonic (NANO)

Nanophotonic Devices II

TuH1.1	Novel Optical Antenna Designs of Comb Shaped Split Ring Architecture for NIR and MIR Enhanced Field Localization	318
TuH1.2	Metamaterials Strongly Coupled to Intersubband Transitions: Circuit Model and Second Order Nonlinear Processes	320
TuH1.3	Great light absorption enhancement in a Graphene metamaterial photodetector	N/A
TuH1.4	Employing Metamaterial for Enhanced THz Generation in Photomixers	324
TuH1.5	Plasmonics Enhanced Terahertz Radiation from Large Area Photoconductive Emitters	326

Plasmonic Metamaterials II

TuH2.1	Functional Metasurfaces	N/A
TuH2.2	Metamaterials, Toroids and Flying Donuts	N/A
TuH2.3	A New Robust Perfect Lens	328
TuH2.4	Electrically Tunable Directional SPP Propagation in Gold-nanoparticle-assisted Graphene Nanoribbons	330

Nanophotonic Devices III

TuH3.1	Optomechanics enabled modulators, oscillators, and sensors	N/A
TuH3.2	On-Chip Wavelength Switch Based on Thermally Tunable Discrete Four-Wave Mixing in a Silicon Waveguide	332

TuH3.3	Silicon Photonic Modulators Based on Epsilon-Near-Zero Indium Tin Oxide Materials	334
TuH3.4	Large-Area, High-Q SOI Ring Resonators	336
TuH	Special Symposium on Optomechanics	
TuH3.5	Moving boundary and photoelastic contributions to optomechanical coupling in GaAs microcavities	338
Tul	Plenary	
Tul Plenary II	Plenary	
	Plenary Exploiting Quantum Coherence for New Technologies: timing, navigation and sensors	N/A

October 15, 2014

Photodetectors, Sensors, Systems and Imaging (PSSI) WA

Emerging Ph	notodetector Technologies	
WA1.1	Spectral and Frequency Response and Signal to Noise Ratio of GeSn-based Heterojunction Phototransistors	N/A
WA1.2	Flexible Three-Color Silicon Membrane Photodetector Arrays	342
WA1.3	1/f Noise QWIP Infrared Focal Plane Arrays	344
WA1.4	Narrow-band Detector for Underwater Communication System	346
WA1.5	On-chip graphene optoelectronic devices for optical interconnects	348
Midwave Inf	rared Detectors	
WA2.1	Room Temperature High-Gain InAs/AlAsSb Avalanche Photodiode	350
WA2.2	Planar InAs p-i-n photodiodes fabricated using ion implantation	352
WA2.3	InAs APD with solid state photomultiplier characteristics	354
WA2.4	InAsBi photodiode operating in the MWIR	356
WA2.5	Enhanced responsivity by integration of interdigitated electrodes on Ge0.93Sn0.07 infrared photodetectors	358
Interferometric and Temporal Imaging		
WA3.1	In-situ measurement of wafer camber by a laser-feedback detector	360
WA3.2	Palm-Size Portable Apparatus of Wide-Field Fourier-Spectroscopic-Imaging in Mid Infrared Region	362
WA3.3	Incoherent-light temporal imaging	364

Novel temporal zone plate design with improved energy efficiency and noise WA3.4 366 performance

WA4.1	Performance improvements of photonic lantern based coherent receivers	368
WA4.2	High-Responsivity of InP-Based Photodiodes Integrated with 90o Hybrid by Low Excess Loss MMI Design over Wide Wavelength Range	370
WA4.3	Heterogeneous integration: optical receivers	372
WA4.4	Long-Gauge Distributed Sensor for Monitoring Vibration	374
WA4.5	Two-port Rotation Sensing by an All-depolarized Interferometric Fiber-optic Gyroscope	N/A

WB Non-Linear and Ultrafast Optics (NLUO)

Chaotic Photonics and Solitons

WB1.1	Complexity Driven Photonics	378
WB1.2	Frequency Comb Generation Threshold Reduction and Soliton Formation via Input Phase Modulation	380
WB1.3	Dynamics of Bragg grating solitons in grating-assisted couplers with dispersive reflectivity	382
WB1.4	Dynamical Evolution of Information and Energy in Causal Dispersive Media	384
WB1.5	Interactions of gap solitons in coupled Bragg gratings with cubic-quintic nonlinearity	386
Parametric Conversion and Fiber Laser		
WB2.1	New states of light by third order parametric down conversion processes	388
WB2.2	Low-voltage optical phase modulation by electric-field-induced phase transition of	390

	KTN bulk crystal	
WB2.3	High Power Nanosecond Pulsed Fiber Lasers and Applications	392
WB2.4	The First Demonstration of Phase and Amplitude Regenerative Multicasting by a	394

The Metamaterial and Isolators

Four-Mode Phase-Sensitive Process

WB3.1	Metamaterial Induced Terahertz Transparency and Absorption	396
WB3.2	A Non-Reciprocal Broadband Terahertz Isolator	N/A
WB3.3	Ultrastable THz Generation Based on Frequency Mixing of Output Beams from Coupled Optical Parametric Oscillators	398
WB3.4	Ultrashort laser pulse retrieval using single-shot VAMPIRE	400
Magneto-Plasmonics and Nonlinear Imaging		
WB4.1	Magnetooptical intensity effects in plasmonic crystals	402
WB4.2	High average power stimulated Raman scattering in crystals: Comparison of KGW and diamond	404
WB4.3	Sensitive saturable absorption response of large-size topological insulator and application in low-threshold solid-state pulsed laser	406

WB4.4 Image Restoration Based on Phase Conjugation in Second-Order Nonlinear Medium

WC Microwave Photonics (MWP)

Photonic Microwave Generation

	directly modulated semiconductor laser	
WC1.4	Radio transmission and BER performance of UWB pulse generation based on	N/A
WC1.3	Wireless Sub-THz Communication System with High Data Rate Enabled by RF Photonics and Active MMIC Technology	414
WC1.2	A Low Phase Noise Dual Loop Optoelectronic Oscillator as a Voltage Controlled Oscillator with Phase Locked Loop	412
WC1.1	APPLICATIONS OF OPTOELECTRONIC OSCILLATORS FOR HIGH SPEED CLOCK RECOVERY AND RF SIGNAL DISCRIMINATION	410

WC2.1 Photonic Advances in Time and Frequency Metrology: Frequency Combs 418

WC Photonic Materials and Metamaterials (PMM)

Photonic Materials and Circuits

WC3.1	Photonic graphene: from conical diffraction to topological insulator	N/A
WC3.2	Quantum photonic integrated circuits	420
WC3.3	Design and Fabrication of Guided Mode Resonance Filter for Blue Laser Diode Applications	421
WC3.4	Hybrid InGaN LEDs with capillary-bonded MQW color-converting membranes	423

Novel Photonic Materials

WC4.1	Vanadium dioxide for emerging photonics	N/A
WC4.2	Low-loss Aluminium Nitride Thin Film for Mid-Infrared Waveguiding	N/A
WC4.3	Chalcogenide planar waveguides for mid-infrared applications	427
WC4.4	Controlling in-plane propagation of guided waves using metasurfaces	N/A

WD Special Symposium on Optoelectronic Devices for Solar Energy Harvesting

Special Symposium: Optoelectronic Devices for Solar Energy Harvesting I

WD1.1	Routes to Ultrahigh Efficiency Photovoltaic and Photoelectrochemical Devices	429
WD1.2	The power of nanowires to revolutionize solar energy	431
WD1.3	Printed High-Efficiency Quadruple-Junction, Four-Terminal Solar Cells and Modules for Full Spectrum Utilization	433
WD1.4	Microcrystalline silicon solar cells with photonic crystals	435
WD1.5	Light Management in Tandem Solar Cell With Intermediate Plasmonic Electrode	N/A

Special Symposium: Optoelectronic Devices for Solar Energy Harvesting II			
WD2.1	Optics and Photonics for Solar Energy and Buildings at the Advanced Research Projects Agency - Energy (ARPA-E)	439	
WD2.2	Design Principles of Deployable Solar-Hydrogen Generators	441	
WD2.3	The Route Towards Low-Cost Solution-Processed High Voc Solar Cells	443	
WD2.4	Photon up-conversion and Molecular Solar Thermal Energy Storage: new Materials and Devices	445	

WD Semiconductor Lasers (SL)

Narrow linewidth and hot topics

WD3.1	Narrow-Linewidth Tunable External Cavity Laser for Coherent Communication	447		
WD3.2	Characterization of Linewidth of SGDBR Lasers	N/A		
WD3.3	Room Temperature Strong Coupling Effects and Polariton Lasing under Electrical Injection	451		
WD3.4	Suppression of Spatial Hole-Burning and Sub-Picosecond Pulses from Two-Section Quantum Cascade Lasers	453		
WD3.5	FDTD Spectral Characterization for a Partially Slotted, High-Order Laser	455		
GaN-based + High Power				
WD4.1	High power blue and green laser diodes and their applications	457		
WD4.2	New type of high power pulse semiconductor laser based on epitaxially-integrated AlGaAs/GaAs thyristor heterostructure	459		

WD4.3Cost-effective O-band high-power, low distortion CWDM analog lasers461

WE Optical Fiber Technology (OFT)

Optical Fiber Transmission

WE1.1	Multimode fiber transmission at 1310 nm for data center applications	N/A		
WE1.2	Prospects for efficient broadband optical amplification in the 1100-1500 nm wavelength region	463		
WE1.3	Distributed Raman amplification in phase coherent transfer of optical frequencies over long-haul and metro fiber links	465		
Optical Fiber Lasers and Amplifiers				
WE2.1	Crystal fibers based broadband emissions and lasers	467		
WE2.2	Noise-eating Amplifier for Repetitive Signals	469		
WE2.3	Fabrication and Characterization of Multi-Core Photonic Crystal Fibers	N/A		

WE2.4 Improvement of the experimental methods for the application of liquid to fibers 473 and liquid core fibers with quantum dots

Non-Silica	Based	Fiber	and	Components
Non Sinca	Dasca	TIDCI	anu	components

	fibers	
WE3.2	Novel Fiber for Low-loss Mid-infrared Transmission	477
WE3.3	Three-Wavelength Tm3+:ZBLAN Fiber Laser and its Applications in Water Detection	479
WE3.4	Engineering Metallo Dielectric Structures on Optical Fiber Tips by Self- Assembling Techniques	481
Fiber Nonlin	ear Effects and Applications	
WE4.1	A universal all-fiber Omnipolarizer	483
Fiber Nonlin	ear Effects and Applications	
WE4.2	Temporal Cavity Solitons in Fiber Resonators	N/A
WF	Special Symposium on Optomechanics	
Special Sym	posium on Optomechanics I	
WF1.1	Silicon Carbide Nano-Optomechanics	485
WF1.2	Carbon integrated optomechanical systems	487
WF1.3	TBD	N/A
Special Sym	posium on Optomechanics II	
WF2.1	TBD	N/A
WF2.2	Triply resonant cavity piezo-optomechanics at X-band	489
WF2.3	New directions in optomechnaics: microfluidic optomechanics and Brillouin Cooling	N/A
WF	Optical Micro/Nanao Resonators and Devices (OMND)	
Photonic Cry	ystal and Nanometallic Resonance Devices	
WF3.1	Quantum and nonlinear optical devices based on photonic crystal and nanometallic cavities	N/A
WF3.2	Experimental Demonstration of Adiabatic Light Transfer between Strongly Coupled Photonic Crystal Nanocavities	492
WF3.3	Fast carrier-based nonlinear dynamics in GaAs photonic crystal cavities at room temperature	494
WF3.4	Cavity-Resonator-Integrated Guided-Mode Resonance Filter with Several Grating Lines in Aperture	496
WF3.5	Use of Coupled Photonic Crystal Nanobeam Cavities for Temporal Integration of Optical Signals	N/A
Spectroscop	y of Micro/Nano Devices	
WF4.1	Resonant enhancement mechanisms in lab-on-chip Raman spectroscopy on a silicon nitride waveguide platform	500
WF4.2	Coherent Emission from Electrically-Injected InP/InGaAsP Rolled Up Quantum	502

Well Microtubes

WF4.3	Capillary-bonding of thin LEDs onto non-native substrates by transfer-printing	504
-------	--	-----

- WF4.4Room-temperature electroluminescence from Ge/Ge0.92Sn0.08/Ge double506heterostructure LED on Si
- WF4.5 Emission of quantum dots from waveguides with chiral spatially-modulated upper 508 part

WG High Power/Intensity Sources (HPIS)

Ultrashort High Intensity Laser

WG1.1	Multi-10-TW sub-5-fs Optical Parametric Synthesizer	510
WG1.2	Yb:YAG Thin Disk Mode-Locked Oscillator with High Pulse Energy for Intra-Cavity	512
	High Harmonic Generation	

WG High Power/Intensity Sources (HPIS)

High Power Lasers & Applications

WG2.1	2.0PW, 26.0fs High-contrast Ti:sapphire CPA Laser System	N/A
WG2.2	High power/high energy pulse generation and propagation	514
WG2.3	High-intensity VUV laser system with OFI Ar2* amplifier	515
WG2.4	Recent performance results and Progress of the SG-II upgrade Petawatt Laser Beamline	N/A

WG Optical Communications (OC)

OC Tutorial

WG3.1	Data-Aided Signal Processing for Coherent Optical Receivers	N/A
Spatial Divis	ion Multiplexing	
WG4.1	Efficient and mode selective spatial mode multiplexer based on multi-plane light conversion	518
WG4.2	Scalability of few-mode fibers for mode-division-multiplexed systems	520
WG4.3	Self-Homodyne Coherent Detection in Multi-Core Fiber Links	522

WH Optical Micro/Nanao Resonators and Devices (OMND)

Micro/Nano Lasers

WH1.1	Electrical control and power enhancement of microlasers by selective pumping	N/A
WH1.2	Electrically Pumped Metallo-dielectric Pedestal Nanolasers with High Thermal- conductivity Shield	524
WH1.3	A cw Room-Temperature Mid-IR Microlaser	526
WH1.4	Noise and Dynamics of Stimulated Brillouin Scattering Microresonator Laser Oscillators	528
WH1.5	Anisotropic Stimulated Emission from Aligned CdSe/CdS Dot-in-Rods	530

WH Nanophotonics (NANO)

Nanophoto	Nanophotonic Light Sources and Detectors				
WH2.1	Emission Enhancement in Nanowire-Nanoantenna System Fabricated by Nanomanipulation	532			
WH2.2	Low-cost, large-scale, ordered ZnO nanopillar arrays for light extraction efficiency enhancement in quantum dot light-emitting diodes	534			
WH2.3	Diode-pumped, mechanically-flexible organic lasers fully encapsulated with ultra-thin glass membranes	536			
WH2.4	Photonic-crystal-based InGaAs photodetector connected to load resistor for receiver-less light-to-voltage conversion on chip	538			
WH2.5	Low-threshold optical gain and lasing of colloidal nanoplatelets	540			
WH2.6	Optical Impedance Transformer for Transparent Conducting Electrodes	542			
Quantum N	lanophotonics				
WH3.1	On-demand optical properties of quantum emitters using plasmonic nanoantennas	544			
WH3.2	Quantum dot single photon sources: blinking and deterministic device fabrication	546			
WH3.3	Room temperature electrically injected In0.4Ga0.6N/GaN quantum-dot visible (?=620 nm) single photon source	548			
WH3.4	Thermally Engineered Photonic Crystal Membrane Reflectors Based on Transferred Nanomembranes on Diamond	550			
Nanophoto	nic Waveguides				
WH4.1	Focusing Sub-wavelength Grating Coupler	552			
WH4.2	Efficient method for Long Range Surface Plasmon (LRSPP) wave excitation with Si-based grating couplers	554			
WH4.3	Broadband One Way Propagation via Dielectric Waveguides with Unequal Effective Index	556			
WH4.4	Observation of 4.4 dB Brillouin gain in a silicon photonic wire	558			
WH4.5	A Low-loss, Compact, Broadband, Polarization Insensitive Edge Coupler for Silicon Photonics	560			
WH4.6	Silicon-on-insulator (SOI) nanowire hot carrier electroluminescence	562			

October 16, 2014

ThA Photodetectors, Sensors, Systems and Imaging (PSSI)

Novel Optical Technologies

ThA1.1	Centralised and portable "network forensics" using smartphone-based diagnostics:Case Study – the mapping of tap water pH across Sydney, Australia	564
ThA1.2	A novel measurement set up for optical characterization of CMOS photodiodes using immersion oil	566

ThA1.3	Scannable optofluidic slit	568
ThA1.4	Mid-Infrared Opto-nanofluidic Slot-Waveguide for Label-free On-Chip Chemical Sensing	N/A
ThA1.5	Optical cloaking	N/A

ThB Non-Linear and Ultrafast Optics (NLUO)

Graphene: Carrier Dynamics & Nonlinear Photonics

ThB1.1	Ultrafast carrier dynamics in graphene using intense terahertz pulses	572
ThB1.2	Spatiotemporal Pattern Recognition with Cascadable Graphene Excitable Lasers	573
ThB1.3	All-Optical Switching with Cascaded Two-Stage MZIs Using Saturable Absorption Accompanied by Refractive-Index Change in Graphene	575
ThB1.4	Resonant Excitable Switching with Graphene	577
ThB1.5	Optical nonlinearities of CVD fabricated graphene by z-scan technique	579

ThC Photonic Materials and Metamaterials (PMM)

Metamaterials and Photonic Crystals

ThC1.1	Transparent Sub-diffraction Optics: Nanoscale light confinement without metal	581
ThC1.2	Light Amplification in Metamaterials by Surface Plasmon Polariton Injection	583
ThC1.3	Dynamic Control of Narrowband Thermal Emission	585
ThC1.4	Compact rainbow trapping and demultiplexing by photonic crystal waveguides	587
ThC1.5	Measurement of Ce:YIG Temperature Dependence for Temperature Insensitive Silicon Waveguide Optical Isolator	589

ThD Semiconductor Lasers (SL)

Selection of best

ThD1.1	A Monolithic Electrically Injected InGaN/GaN Disk-in-Nanowire (?=533nm) Laser on (001) Silicon	591
ThD1.2	High power THz quantum cascade lasers based on novel materials and designs	593

ThE Optical Fiber Technology (OFT)

Novel Optical Fibers and Components

ThE1.1	Novel Brillouin- and Raman-Suppressing Optical Fibers	595
ThE1.2	Low-Index Liquid Core Photonic Crystal Fiber Design	597
ThE1.3	Lab-on-Fiber Technology for Advanced Plasmonic Nano-Optrodes	599
ThE1.4	Curvature Sensor Based on Long-Period Grating in Dual Concentric Core Fiber	N/A

ThF Optical Micro/Nanao Resonators and Devices (OMND)

Microcavity and Grating Devices

THF1.1 Interlayer Grating Coupler for Si/SiO2/SiN platform

ThF1.2	Resonant reflectors designed with zero-contrast gratings	605
ThF1.3	Compact and broad band directional coupler for sub-wavelength grating SOI components	607
ThF1.4	Control of In-plane Loss in Vertical Fabry Perot Cavities with a Grating Mirror	N/A
ThF1.5	The unperturbed structure in the coupled mode theory of waveguide gratings	611
ThF1.6	Microring Modulator Using Drop-Port Phase Interference	613

ThG Optical Communications (OC)

Modulation & Detection II

ThG1.1	A Hybrid DPSK-MPPM Technique for High Sensitivity Optical Transmission	615
ThG1.2	Enhancing Optical Multi-Pulse Pulse Position Modulation Using Hybrid QPSK-Modified MPPM	617
ThG1.3	Closed Form Expressions for SER and Capacity of Shot Noise Limited MIMO-FSO System Adopting MPPM over Gamma-Gamma Atmospheric Turbulence Channels	619
ThG1.4	Can Superluminal Propagation in a Noisy Dispersive Medium Reduce Signal Detection Latency?	621
ThG1.5	Electro-Optic Polymer/TiO2 Multilayer Slot Waveguide Modulators	623

ThH Nanophotonics (NANO)

Nanophotonic Devices IV

ThH1.1	TiO2 assisted sensitivity enhancement in photosensitive nanocrystal skins	625
ThH1.2	Advances in colloidal quantum dots distributed feedback lasers hybridized on glass membranes	627
ThH1.3	Second Harmonic Generation in Quantum Wells Enhanced via Coupling to Metamaterials	629
ThH1.4	Enhanced Sub-wavelength Focusing by Tilted and Modified Graded Index Medium	631
ThH1.5	Characteristics of emergent nano-structures formed on diamond by two-photon UV etching	633