2014 IEEE Asian Solid-State Circuits Conference

(A-SSCC 2014)

Kaohsiung, Japan 10-12 November 2014

IEEE Catalog Number: CFP14SSC-POD **ISBN:**

978-1-4799-4088-2

Session 01 **Plenary Talk** Plenary 1 Mobile Display Technologies: Past, Present, and Future Hiroyuki Ohshima, Japan Display Inc., Japan. Plenary 2 Internet of Things: Evolution towards a Hyper-Connected Society Alex Jinsung Choi, SK Telecom, South Korea. 5 **Industry Session 02 Communication Systems** Industry 2-1 A Reconfigurable Analog Baseband for Single-Chip, Saw-less, 2G/3G/4G Cellular Transceivers with Carrier Aggregation Jongwoo Lee, Byungki Han, Jae-Hyun Lim, Su-Seob Ahn, Jae-kwon Kim, Thomas Cho Industry 2-2 A Low-Power Single-Chip Transceiver for 169/300/400/900 MHz Band Wireless Sensor Networks Makoto Oba, Eiji Okada, Ayako Tachibana, Koji Takahashi, Masahiko Sagisaka Panasonic Corporation, Japan. 13 Industry 2-3 A 1.4 Mpixel CMOS Image Sensor with Multiple Row-Rescan Based Data Sampling for Optical Camera Communication Jun Deguchi, Toshiyuki Yamagishi, Hideaki Majima, Nau Ozaki, Kazuhiro Hiwada, Makoto Morimoto, Tatsuji Ashitani, Shouhei Kousai Toshiba Corporation, Japan. 17

Industry Session 03

Industrial Digital Subsystems

A 2.4 pJ Ferroelectric-Based Non-Volatile Flip-Flop with 10-Year Data Retention Capability
Hiromitsu Kimura ¹ , Takaaki Fuchikami ¹ , Kyoji Marumoto ¹ , Yoshikazu Fujimori ¹ , Shintaro Izumi ² ,
Hiroshi Kawaguchi ² , Masahiko Yoshimoto ²
¹ ROHM Co., Ltd., Japan.
² <i>Kobe University, Japan.</i> 21
40 nm Dual-port and Two-port SRAMs for Automotive MCU Applications under the Wide Temperature Range of -40 to 170°C with Test Screening Against Write Disturb Issues Yoshisato Yokoyama ¹ , Yuichiro Ishii ¹ , Koji Tanaka ¹ , Tatsuya Fukuda ¹ , Yoshiki Tsujihashi ¹ , Astushi Miyanishi ¹ , Shinobu Asayama ² , Keiichi Maekawa ² , Kazutoshi Shiba ² , Koji Nii ¹
² Renesas Semiconductor Manufacturing, Japan. 25

Industry 3-3	A UHS-II SD Card Controller with 240MB/s Write Throughput and 260MB/s Read Throughput
	Kenta Yasufuku ¹ , Naoto Oshiyama ¹ , Toshitada Saito ¹ , Yukimasa Miyamoto ¹ , Yutaka Nakamura ¹ , Ryota Terauchi ¹ ,
	Atsushi Kondo ¹ , Takuma Aoyama ¹ , Masafumi Takahashi ¹ , Yukihito Oowaki ¹ , Ryoichi Bandai ²
	¹ Toshiba Corporation, Japan.
	² Toshiba Microelectronics Corporation, Japan. 29

Energy-efficient Digital Circuits & Systems

4-1	A 0.43pJ/bit True Random Number Generator Ting-Kuei Kuan, Yu-Hsuan Chiang, Shen-Iuan Liu National Taiwan University, Taiwan.
4-2	A 4.5 to 13 Times Energy-Efficient Embedded Microprocessor with Mainly-Static/Partially-Dynamic Reconfigurable Array Accelerator Itaru Hida, Dahoo Kim, Tetsuya Asai, Masato Motomura <i>Hokkaido University, Japan.</i> 37
4-3	A Sub-Threshold to Super-Threshold Level Conversion Flip Flop for Sub/Near-Threshold Dual-Supply Operation Chao Wang ¹ , Jun Zhou ¹ , Xin Liu ¹ , Arasu Muthukumaraswamy Annamalai ¹ , Minkyu Je ² ¹ Institute of Microelectronics, Singapore, Singapore. ² Daegu Gyeongbuk Institute of Science & Technology, South Korea. 41
4-4	Wide-Supply-Range All-Digital Leakage Variation Sensor for On-chip Process and Temperature Monitoring A.K.M. Mahfuzul Islam, Jun Shiomi, Tohru Ishihara, Hidetoshi Onodera <i>Kyoto University, Japan.</i> 45
4-5	Ultra-Low Voltage Datapath Blocks in 28nm UTBB FD-SOI Hans Reyserhove, Nele Reynders, Wim Dehaene <i>KU Leuven, Belgium.</i> 49
4-6	A Body Bias Generator with Wide Supply-Range Down to Threshold Voltage for Within-Die Variability Compensation Norihiro Kamae, A.K.M. Mahfuzul Islam, Akira Tsuchiya, Hidetoshi Onodera <i>Kyoto University, Japan.</i> 53

Session 05

DC-DC Converters

5-1	A Monolithic Capacitor-Current-Controlled Hysteretic Buck Converter with Transient-Optimized Feedback
	Circuit
	Shih-Hsiung Chien, Ting-Hsuan Hung, Szu-Yu Huang, Tai-Haur Kuo
	National Cheng Kung University, Taiwan. 57
5-2	An 83% Peak Efficiency and 1.07W/mm ² Power Density Single Inductor 4-Output DC-DC Converter with Bang-Bang Zero th -Order Control
	Dongchul Park ^{1,2} , Tea-Hwang Kong ¹ , Sukhwan Choi ¹ , Gyu-Hyeong Cho ¹
	¹ KAIST, South Korea.
	² Samsung Electronics Co., Ltd., South Korea

5-3	CCM/GM Relative Skip Energy Control in Single-Inductor Multiple-Output DC-DC Converter for Wearable Decive Power Solution Yi-Ping Su ¹ , Chiun-He Lin ¹ , Te-Fu Yang ¹ , Ru-Yu Huang ¹ , Wei-Chung Chen ¹ , Ke-Horng Chen ¹ , Ying-Hsi Lin ² , Tsung-Yen Tsai ² , Chao-Cheng Lee ² ¹ National Chiao Tung University, Taiwan. ² Realtek Semiconductor Corp., Taiwan.
5-4	A Current-Mode Buck Converter with Bandwidth Reconfigurable for Enhanced Efficiency and Improved Load Transient Response Pai-Yi Wang ¹ , Li-Te Wu ² , Tai-Haur Kuo ¹ ¹ National Cheng Kung University, Taiwan. ² NeoEnergy Microelectronics, Inc., Taiwan.
5-5	A 20MS/s Buck/Boost Supply Modulator for Envelope Tracking Applications with Direct Digital Interface Shang-Hsien Yang ¹ , Chin-Long Wey ¹ , Ke-Horng Chen ¹ , Ying-Hsi Lin ² , Jing-Jia Chen ² , Tsung-Yen Tsai ² , Chao-Cheng Lee ² ¹ National Chiao Tung University, Taiwan. ² Realtek Semiconductor Corp., Taiwan. 73 Session 06
Hig	h-speed Data Converters
6-1	A 10-bit 320-MS/s Low-Cost SAR ADC for IEEE 802.11ac Applications in 20-nm CMOS Chun-Cheng Liu MediaTek Inc., Taiwan.
6-2	A 0.6V 6.4fJ/conversion-step 10-bit 150MS/s Subranging SAR ADC in 40nm CMOS Yao-Sheng Hu, Chi-Huai Shih, Hung-Yen Tai, Hung-Wei Chen, Hsin-Shu Chen National Taiwan University, Taiwan. 81

A 0.5-to-1 V 9-bit 15-to-90 MS/s Digitally Interpolated Pipelined-SAR ADC Using Dynamic Amplifier James Lin, Zule Xu, Masaya Miyahara, Akira Matsuzawa *Tokyo Institute of Technology, Japan.*

6-4	A 110mW 6 bit 36GS/s Interleaved SAR ADC for 100 GBE Occupying 0.048mm ² in 32nm SOI CMOS
	Lukas Kull ¹ , Jan Pliva ^{1,2} , Thomas Toifl ¹ , Martin Schmatz ¹ , Pier Andrea Francese ¹ , Christian Menolfi ¹ , Matthias Braendli ¹ ,
	Marcel Kossel ¹ , Thomas Morf ¹ , Toke Meyer Andersen ¹ , Yusuf Leblebici ³
	¹ IBM Research - Zurich, Switzerland.
	² TU Dresden, Germany.
	³ EPFL, Switzerland
6-5	A 12 bit 250 MS/s 28 mW +70 dB SFDR DAC in 0.11 μm CMOS Using Controllable RZ Window for Wireless
	SoC Integration
	Seonggeon Kim, Jaehyun Kang, Minjae Lee
	GIST, South Korea. 93

Wireline Transceivers

7-1	A 2 x 20-Gb/s, 1.2-pJ/bit, Time-Interleaved Optical Receiver in 40-nm CMOS Shih-Hao Huang, Zheng-Hao Hung, Wei-Zen Chen National Chiao-Tung University, Taiwan. 97
7-2	A 26.5 Gb/s Optical Receiver with All-Digital Clock and Data Recovery in 65nm CMOS Process Sang-Hyeok Chu ¹ , Woorham Bae ¹ , Gyu-Seob Jeong ¹ , Jiho Joo ² , Gyungock Kim ² , Deog-Kyoon Jeong ¹ ¹ Seoul National University, South Korea. ² Electronics and Telecommunications Research Institute, South Korea. 101
7-3	A 23mW/lane 1.2-6.8Gb/s Multi-Standard Transceiver in 28nm CMOS Seong-Ho Lee, Duke Tran, Tamer Ali, Burak Catli, Heng Zhang, Wei Zhang, Mohammed Abdul-Latif, Zhi Huang, Guansheng Li, Mahmoud Reza Ahmadi, Afshin Momtaz <i>Broadcom, United States.</i> 105
7-4	Fully-Integrated 40-Gb/s Pulse Pattern Generator and Bit-Error-Rate Tester Chipsets in 65-nm CMOS Technology Guan-Sing Chen ^{1,2} , Chin-Yang Wu ^{1,2} , Chen-Lun Lin ¹ , Hao-Wei Hung ¹ , Jri Lee ^{1,2} ¹ National Taiwan University, Taiwan. ² Atilia Technology, Taiwan.
7-5	A Power Management Unit Integrated ADSL/ADSL2+ CPE Analog Front-End with -93.5dB THD for DMT- Based Applications Yu-Kai Chou ¹ , Yue Feng ¹ , Yu-Hsin Lin ¹ , Cong Liu ¹ , Chen-Yen Ho ¹ , Bo Hu ¹ , Jun Zha ¹ , Steven Chuang ² ¹ Mediatek Inc., China. ² Econet Inc., Taiwan.

Session 08

Panel

What is a Good Way to Expand a Silicon Value to a Solution Value?

Session 09

Plenary Talk

) -	Semiconductor Innovation into the Next Decade Jack Sun, TSMC, Taiwan. 117
)	Energy Efficient Computing in Nanoscale CMOS: Challenges and Opportunities Vivek De, Intel, USA.

Memory Technology

10-1	A 16.8Gbps/channel Single-Ended Transceiver in 65nm CMOS for Sip Based DRAM Interface on Si-Carrier Channel Hyunbae Lee, Taeksang Song, Sangyeon Byeon, Kwanghun Lee, Inhwa Jung, Seongjin Kang, Ohkyu Kwon, Koeun Cheon,
	Donghwan Seol, Jongho Kang, Gunwoo Park, Yunsaing Kim SK hynix, South Korea.
10-2	0.339fJ/bit/search Energy-Efficient TCAM Macro Design in 40nm LP CMOS Po-Tsang Huang ¹ , Shu-Lin Lai ¹ , Ching-Te Chuang ¹ , Wei Hwang ¹ , Jason Huang ² , Angelo Hu ² , Paul Kan ² , Michael Jia ² , Kimi Lv ² , Bright Zhang ² ¹ National Chiao Tung University, Taiwan. ² Faraday Technology Corporation, Taiwan.
10-3	A Non-Volatile Look-Up Table Using ReRAM for Reconfigurable Logic Wen-Pin Lin ¹ , Shyh-Shyuan Sheu ² , Chia-Chen Kuo ¹ , Pei-Ling Tseng ¹ , Meng-Fan Chang ³ , Keng-Li Su ¹ , Chih-Sheng Lin ^{1,3} , Kan-Hsueh Tsai ¹ , Sih-Han Lee ¹ , Szu-Chieh Liu ¹ , Yu-Sheng Chen ¹ , Heng-Yuan Lee ¹ , Ching-Chih Hsu ¹ , Frederick T. Chen ¹ , Tzu-Kun Ku ¹ , Ming-Jinn Tsai ¹ , Ming-Jer Kao ¹ ¹ Industrial Technology Research Institute, Taiwan. ² National Taipei University, Taiwan. ³ National Tsing Hua University, Hsinchu, Taiwan. 133
10-4	A 6-bit Drift-Resilient Readout Scheme for Multi-Level Phase-Change Memory Aravinthan Athmanathan ¹ , Milos Stanisavljevic ² , Junho Cheon ³ , Seokjoon Kang ³ , Changyong Ahn ³ , Junghyuk Yoon ³ , Minchul Shin ³ , Taekseung Kim ³ , Nikolaos Papandreou ² , Haris Pozidis ² , Evangelos Eleftheriou ² ¹ IBM Research/EPFL, Switzerland. ² IBM Research, Switzerland. ³ SK, South Korea. 137
10-5	0.2 V 8T SRAM with Improved Bitline Sensing Using Column-based Data Randomization Anh-Tuan Do ¹ , Zhaochuan Lee ¹ , Bo Wang ¹ , Ik-Joon Chang ² , Tony Tae-Hyoung Kim ¹ ¹ Nanyang Technological University, Singapore. ² Kyunghee University, South Korea.
10-6	A Configurable 2-in-1 SRAM Compiler with Constant-Negative-Level Write Driver for Low Vmin in 16nm Fin- FET CMOS Ching-Wei Wu, Ming-Hung Chang, Chia-Cheng Chen, Robin Lee, Hung-Jen Liao, Jonathan Chang <i>Taiwan Semiconductor Manufacturing Company (TSMC), Taiwan.</i> 145
Sen	Session 11 sor Applications

11-1	A CMOS Thermistor-Embedded Co	ntinuous-Time Delta-Sigma Temperature Sensor with a Resolution of 0.01 °C
	Chan-Hsiang Weng, Chun-Kuan Wu,	Tsung-Hsien Lin
	National Taiwan University, Taiwan.	

11-2	An Area-Efficient Capacitively-Coupled Instrumentation Amplifier with a Duty-Cycled Gm-C DC Servo Loop in 0.18-µm CMOS Chih-Chan Tu, Feng-Wen Lee, Tsung-Hsien Lin <i>National Taiwan University, Taiwan.</i> 153
11-3	Highly Improved SNR Differential Sensing Method Using Parallel Operation Signaling for Touch Screen Application Sanghyun Heo, Hyunggun Ma, Jaejoon Kim, Franklin Bien UNIST, South Korea.
11-4	A 16.6µW 32.8MHz Monolithic CMOS Relaxation Oscillator Yat-Hei Lam, Seong-Jin Kim Institute of Microelectronics, Singapore. 161
11-5	An Ultra-Compact, Untrimmed CMOS Bandgap Reference with 3σ Inaccuracy of ±0.64% in 16nm FinFET Chin-Ho Chang, Jaw-Juinn Horng, Amit Kundu, Chih-Chiang Chang, Yung-Chow Peng <i>Taiwan Semiconductor Manufacturing Company (TSMC), Taiwan.</i> 165
mm	Session 12 -wave and THz
12-1	CMOS THz Transmissive Imaging System Tzu-Chao Yan, Chun-Hsing Li, Chih-Wei Lai, Wei-Cheng Chen, Tzu-Yuan Chao, Chien-Nan Kuo National Chiao Tung University, Taiwan. 169
12-2	 23Gbps 9.4pJ/bit 80/100GHz band CMOS Transceiver with on-board Antenna for Short-Range Communication Kensuke Nakajima¹, Akihiro Maruyama¹, Masato Kohtani¹, Tsuyoshi Sugiura¹, Eiichiro Otobe¹, Jaejin Lee², Shinhee Cho², Kyusub Kwak², Jeongseok Lee², Toshihiko Yoshimasu³, Minoru Fujishima⁴ ¹Samsung R&D Institute Japan, Japan. ²Samsung Electric Corp., South Korea. ³Waseda University, Japan. 173
12-3	A 3 Gb/s 64-QAM E-band Direct-Conversion Transmitter in 40-nm CMOS Dixian Zhao, Patrick Reynaert <i>KU Leuven, Belgium.</i> 177
12-4	A 0.015-mm ² 60-GHz Reconfigurable Wake-Up Receiver by Reusing Multi-Stage LNAs Rui Wu, Qinghong Bu, Wei Deng, Kenichi Okada, Akira Matsuzawa <i>Tokyo Institute of Technology, Japan.</i> 181
12-5	54 GHz CMOS LNAs with 3.6 dB NF and 28.2 dB Gain Using Transformer Feedback Gm-Boosting Technique Shita Guo ¹ , Tianzuo Xi ¹ , Ping Gui ¹ , Jing Zhang ² , Wooyeol Choi ² , Kenneth K. O ² , Yanli Fan ³ , Daquan Huang ³ , Richard Gu ³ , Mark Morgan ³ ¹ Southern Methodist University, United States. ² University of Texas at Dallas, United States. ³ Texas Instruments, United States. 185

Biomedical Circuits and Systems

13-1	A 0.5-V Sub-uW/Channel Neural Recording IC with Delta-Modulation-Based Spike Detection Seong-Jin Kim ¹ , Lei Liu ² , Lei Yao ¹ , Wang Ling Goh ² , Yuan Gao ¹ , Minkyu Je ³ ¹ Institute of Microelectronics, ASTAR, Singapore. ² Nanyang Technological University, Singapore.
	³ DGIST, South Korea. 189
13-2	A 10.4 mW Electrical Impedance Tomography SoC for Portable Real-Time Lung Ventilation Monitoring System Sunjoo Hong, Jaehyuk Lee, Joonsung Bae, Hoi-Jun Yoo <i>KAIST, South Korea.</i> 193
13-3	A Power Efficient Frequency Shaping Neural Recorder with Automatic Bandwidth Adjustment Jian Xu, Tong Wu, Zhi Yang National University of Singapore, Singapore. 197
13-4	A 20V-Compliance Implantable Neural Stimulator IC with Closed-Loop Power Control, Active Charge Balancing, and Electrode Impedance Check Lei Yao ¹ , Jianming Zhao ^{1,2} , Peng Li ¹ , Rui-Feng Xue ¹ , Yong Ping Xu ² , Minkyu Je ³ ¹ Institute of Microelectronics, Singapore. ² National University of Singapore, Singapore. ³ Daegu Gyeongbuk Institute of Science and Technology, South Korea
13-5	A 330uW, 64-Channel Neural Recording Sensor with Embedded Spike Feature Extraction and Autocalibration Alberto Rodríguez-Pérez ¹ , Manuel Delgado-Restituto ¹ , Angela Darie ¹ , Cristina Soto-Sánchez ² , Eduardo Fernández-Jover ² , Ángel Rodríguez-Vázquez ¹ ¹ <i>IMSE-CNM / University of Seville, Spain.</i> ² <i>CIBER-BBN / University Miguel Hernandez, Spain.</i> 205

Session 14

SoC and Signal Processing Techniques

14-1	A 27mW Reconfigurable Marker-less Logarithmic Camera Pose Estimation Engine for Mobile Augmented
	Reality Processor
	Injoon Hong ¹ , Gyeonghoon Kim ¹ , Youchang Kim ¹ , Donghyun Kim ¹ , Byeong-Gyu Nam ² , Hoi-Jun Yoo ¹
	¹ KAIST, South Korea.
	² Chungnam National University, South Korea. 209
14-2	A 4.9 mW Neural Network Task Scheduler for Congestion-minimized Network-on-Chip in Multi-core Systems Youchang Kim, Gyeonghoon Kim, Injoon Hong, Donghyun Kim, Hoi-Jun Yoo
	KAIST, South Korea. 213
14-3	An 87 × 49 Mutual Capacitance Touch Sensing IC Enabling 0.5 mm-diamater Stylus Signal Detection at 240 Hz-Reporting-Rate with Palm Rejection
	Shini-chi Yoshida, Mutsumi Hamaguchi, Takahiro Morishita, Shinji Shinjo, Akira Nagao, Masayuki Miyamoto
	Sharp Corporation, Japan. 217

14-4	A 2.5W Tablet Speaker Delivering 3.2W Pseudo High Power by Psychoacoustic Model Based Adaptive Power Management System Shin-Hao Chen ¹ , Shen-Yu Peng ¹ , Ke-Horng Chen ¹ , Shin-Chi Lai ² , Sheng Kang ³ , Kevin Cheng ³ , Ying-Hsi Lin ⁴ , Chen-Chih Huang ⁴ , and Chao-Cheng Lee ⁴ ¹ National Chiao Tung University, Taiwan.	
	³ Anpec Electronics Corporation. ⁴ Realtek Semiconductor Corporation, Taiwan.	221
14-5	An Intermittent-Driven Supply-Current Equalizer for 11x and 4x Power-Overhead Savings in CPA-Resistant 128bit AES Cryptographic Processor Noriyuki Miura, Daisuke Fujimoto, Rie Korenaga, Kohei Matsuda, Makoto Nagata <i>Kobe University, Japan.</i>	·225
14-6	A 1-100Mb/s 0.5-9.9mW LDPC Convolutional Code Decoder for Body Area Network Chih-Lung Chen, Sheng-Jhan Wu, Hsie-Chia Chang, Chen-Yi Lee National Chiao Tung University, Taiwan.	
An : 15-1	Session 15 alog Circuits and Systems A 1V Input, 3-to-6V Output, Integrated 58%-efficient Charge-pump with Hybrid Topology and Parasitic Energy Collection for 66% Area Reduction and 11% Efficiency Improvement Jen-Huan Tsai, Sheng-An Ko, Hui-Huan Wang, Chia-Wei Wang, Hsin Chen, Po-Chiun Huang National Tsing-Hua University, Taiwan, Taiwan.	
15-2		
15-3	A Programmable Discrete-Time Filter Employing Hardware-Efficient Two-Dimensional Implementation Method Jaeyoung Choi, M. Kumarasamy Raja, M. Annamalai Arasu Institute of Microelectronics, A*STAR, Singapore.	-241
15-4	A Low-Input-Swing AC-DC Voltage Multiplier Using Schottky Diodes	
	Ye-Sing Luo, Shen-Iuan Liu National Taiwan University, Taiwan.	·245

RF Systems

16-1	A 0.1-5GHz Flexible SDR Receiver in 65nm CMOS
	Xinwang Zhang, Yang Xu, Bingqiao Liu, Qian Yu, Siyang Han, Qiongbing Liu, Zehong Zhang, Yanqiang Gao,
	Zhihua Wang, Baoyong Chi
	Tsinghua University, China
16-2	A 1.44mm ² 4-Channel UWB Beamforming Receiver with Q-Compensation in 65nm CMOS
	Lei Wang, Yong Lian, Chun Huat Heng
	National University of Singapore, Singapore. 253

16-3	A Fully-Integrated Reconfigurable Dual-Band Transceiver for Short Range Wireless Communication in 180nm CMOS
	Xiaobao Yu, Meng Wei, Yun Yin, Ying Song, Siyang Han, Qiongbing Liu, Zongming Jin, Xiliang Liu, Zhihua Wang, Baoyong Chi
	Tsinghua University, China. 257
16-4	A 0.65V 1.2mW 2.4GHz/400MHz Dual-Mode Phase Modulator for Mobile Healthcare Applications Yang Li ¹ , Ni Xu ¹ , Yining Zhang ¹ , Woogeun Rhee ¹ , Sanghoon Kang ² , Zhihua Wang ¹ ¹ Tsinghua University, China. ² Samsung, South Korea.
16-5	An Ultra-Low-Power RF Transceiver with a 1.5-pJ/bit Maximally-Digital Impulse-Transmitter and an 89.5-uW Super-Regenerative RSSI
	Hiroyuki Ito ¹ , Yoshihiro Yoneda ¹ , Taiki Ibe ¹ , Taisuke Hamada ¹ , Noboru Ishihara ¹ , Kazuya Masu ¹ , Shoichi Masui ² , Youichi Momiyama ² ¹ Tokyo Institute of Technology, Japan.
	² Fujitsu Laboratories Ltd., Japan. 265
16-6	A 103 pJ/bit Multi-channel Reconfigurable GMSK/PSK/16-QAM Transmitter with Band-Shaping Xiayun Liu ¹ , Teng Kok Hin ¹ , Chun-Huat Heng ¹ , Yuan Gao ² , Wei-Da Toh ² , San-Jeow Cheng ² , Minkyu Je ²
	¹ National University of Singapore, Singapore. ² Institute of Microelectronics, ASTAR, Singapore
	Session 17
Equ	alizer and Clock Data Recovery
17-1	A 5-20 Gb/s Power Scalable Adaptive Linear Equalizer Using Edge Counting Yuan-Fu Lin ¹ , Chang-Cheng Huang ¹ , Jiunn-Yih Max Lee ² , Chih-Tien Chang ² , Shen-Iuan Liu ¹ ¹ National Taiwan University, Taiwan.
	² <i>MStar Semiconductor Inc, Taiwan.</i> 273
17-2	A 3.12 pJ/bit, 19-27 Gbps Receiver with 2 Tap-DFE Embedded Clock and Data Recovery Zheng-Hao Hong, Wei-Zen Chen
	National Chiao Tung University, Taiwan. 277
17-3	Chien-Kai Kao, Kuan-Lin Fu, and Shen-Iuan Liu
	National Taiwan University, Taiwan. 281
17-4	A 0.011 mm ² PVT-Robust Fully-Synthesizable CDR with a Data Rate of 10.05 Gb/s in 28nm FD SOI Aravind Tharayil Narayanan, Wei Deng, Dongsheng Yang, Rui Wu, Kenichi Okada, Akira Matsuzawa
	Tokyo Institute of Technology, Japan. 285
17-5	A 6-Gb/s Adaptive-Loop-Bandwidth Clock and Data Recovery (CDR) Circuit Li-Hung Chiueh, Tai-Cheng Lee
	National Taiwan University, Taiwan. 289

Circuit Techniques for Emerging Applications

18-1	A 3.3V 15.6b 6.1pJ/0.02%RH with 10ms Response Humidity Sensor for Respiratory Monitoring
	Kelvin Yi-Tse Lai, Yu-Tao Yang, Bang-Jing Chen, Chun-Jen Shen, Ming-Feng Shiu, Zih-Cheng He, Hsie-Chia Chang, Chen-Yi Lee
	National Chiao-Tung University, Taiwan. 293
18-2	A 5.2mW IEEE 802.15.6 HBC Standard Compatible Transceiver with Power Efficient Delay-Locked-Loop Based BPSK Demodulator
	Hyunwoo Cho, Hyungwoo Lee, Joonsung Bae, Hoi-Jun Yoo
	KAIST, South Korea. 297
18-3	A 0.4V 280-nW Frequency Reference-less Nearly All-Digital Hybrid Domain Temperature Sensor Wenfeng Zhao, Rui Pan, Yajun Ha, Zhi Yang
	National University of Singapore, Singapore. 301
18-4	A 135 μ W 0.46m Ω/\sqrt{Hz} Thoracic Impedance Variance Monitor with Square-Wave Current Modulation Chih-Chan Tu, Feng-Wen Lee, Dong-Feng Yeih [*] , and Tsung-Hsien Lin <i>National Taiwan University, Taiwan</i> .
	[*] Cardinal Tien Hospital, Taipei, Taiwan
18-5	A 10µA On-chip Electrochemical Impedance Spectroscopy System for Wearables/Implantables
	Jingren Gu, Huanfen Yao, Keping Wang, Babak Parviz, Brian Otis University of Washington, United States. 309
18-6	22.5 dB Open-Loop Gain, 31 kHz GBW Pseudo-CMOS Based Operational Amplifier with a-IGZO TFTs on a Flexible Film
	Koichi Ishida ¹ , Reza Shabanpour ¹ , Bahman Boroujeni ¹ , Tilo Meister ¹ , Luisa Petti ² , Niko Mnzenrieder ² , Giovanni Salvatore ² , Corrado Carta ¹ , Gerhard Tröster ² , Frank Ellinger ¹
	¹ Technische Universität Dresden, Germany.
	² Swiss Federal Institute of Technology Zurich, Switzerland

Session 19

Low Power ADCs

19-1	A 0.022mm ² 98.5dB SNDR Hybrid Audio Delta-Sigma Modulator with Digital ELD Compensation in 28nm CMOS
	Tze-Chien Wang, Yu-Hsin Lin, Chun-Cheng Liu
	Mediatek, Taiwan. 317
19-2	A 1V 59 fJ/Step 15 MHz BW 74 dB SNDR Continuous-Time ΔΣ Modulator with Digital ELD Compensation and Multi-Bit FIR Feedback Yi Zhang ¹ , Chia-Hung Chen ¹ , Tao He ¹ , Xin Meng ¹ , Nancy Qian ² , Ed Liu ² , Phillip Elliott ² , Gabor Temes ¹ ¹ Oregon State University, United States. ² Maxim Integrated, United States. 321
19-3	A 0.3V 10bit 7.3fJ/conversion-step SAR ADC in 0.18µm CMOS Cheng-En Hsieh, Shen-Iuan Liu National Taiwan University, Taiwan. 325

19-4	A 10b 100kS/s SAR ADC with Charge Recycling Switching Method
	Kai-Hsiang Chiang, Soon-Jyh Chang, Guan-Ying Huang, Ying-Zu Lin
	National Cheng Kung University, Taiwan. 329

RF	Building Blocks
20-1	RF Transconductor Linearization Technique Robust to Process, Voltage and Temperature Variations Harish Kundur Subramaniyan ¹ , Eric A.M. Klumperink ¹ , Venkatesh Srinivasan ² , Ali Kiaei ³ , Bram Nauta ¹ ¹ IC-Design Group, University of Twente, Netherlands. ² Texas Instruments, Dallas, Texas, United States. ³ Texas Instruments, Santa Clara, California, United States. 333
20-2	A Feedforward Noise and Distortion Cancellation Technique for CMOS Broadband LNA-Mixer Chi-Fu Li, Shih-Chieh Chou, Chang-Ming Lai, Cuei-Ling Hsieh, Jenny Yi-Chun Liu, Po-Chiun Huan National Tsing Hua University, Taiwan.
20-3	An Ultra-low-cost ESD-protected 0.65dB NF +10dBm OP1dB GNSS LNA in 0.18-µm SOI CMOS Fei Song, Sam Chun-Geik Tan, Osama Shanaa Mediatek Singapore Pte Ltd, Singapore. 341
20-4	A Frequency-Reconfigurable Multi-Standard 65nm CMOS Digital Transmitter with LTCC Interposers Nai-Chung Kuo ¹ , Bonjern Yang ¹ , Chaoying Wu ¹ , Lingkai Kong ¹ , Angie Wang ¹ , Michael Reiha ² , Elad Alon ¹ , Ali Niknejad ¹ , Borivoje Nikolic ¹ ¹ UC-Berkeley, United States. ² Nokia, United States.
20-5	A 44.9% PAE Digitally-Assisted Linear Power Amplifier in 40 nm CMOS Haoyu Qian, Jose Silva-Martinez <i>Texas A&M University, United States.</i> 349
20-6	A 0.1-1.5GHz Harmonic Rejection Receiver Front-End with Hybrid 8 Phase LO Generator, Phase Ambiguity Correction and Vector Gain Calibration Xinwang Zhang, Zhihua Wang, Baoyong Chi <i>Tsinghua University, China.</i> 353

Session 21

High-speed Wireline Building Blocks

21-1	A 50-Gb/s Differential Transimpedance Amplifier in 65nm CMOS Technology	
	Sang Gyun Kim ¹ , Seung Hwan Jung ² , Yun Seong Eo ² , Seung Hoon Kim ³ , Xiao Ying ³ , Hanbyul Choi ³ , Chaerin Hong ³ ,	
	Kyungmin Lee ³ , Sung Min Park ³	
	¹ Kwangwoon University, South Korea.	
	² Silicon R&D, South Korea.	
	³ Ewha Womans University, South Korea.	·357

21-2	A 3 MHz-to-1.8 GHz 94 μW-to-9.5 mW 0.0153-mm ² All-Digital Delay-Locked Loop in 65-nm CMOS Chun-Yuan Cheng ¹ , Jinn-Shyan Wang ² , Pei-Yuan Chou ² , Shiou-Ching Chen ² , Chi-Tien Sun ¹ , Yuan-Hua Chu ¹ , Tzu-Yi Yang ¹ ¹ Industrial Technology Research Institute, Taiwan. ² National Chung Cheng University, Taiwan.
21-3	A 0.52-V 5.7-GHz Low Noise Sub-Sampling PLL with Dynamic Threshold MOSFET
	Sho Ikeda, Sang_yeop Lee, Hiroyuki Ito, Noboru Ishihara, Kazuya Masu
	Tokyo Institute of Technology, Japan. 365
21-4	A Novel 2.4-to-3.6 GHz Wideband Subharmonically Injection-Locked PLL with Adaptively-Aligned Injection Timing
	Zhao Zhang, Liyuan Liu, Nanjian Wu
	Chinese Academy of Sciences, China
21-5	Asymmetric Frequency Locked Loop (AFLL) for Adaptive Clock Generation in a 28nm SPARC M6 Processor
	Yifan YangGong, Sebastian Turullols, Daniel Woo, Changku Huang, King Yen, Venkat Krishnaswamy,
	Kalon Holdbrook, Jinuk Luke Shin Oracle Inc., United States.
21-6	A DC-46Gb/s 2:1 Multiplexer and Source-Series Terminated Driver in 20nm CMOS Technology Jian Hong Jiang, Samir Parikh, Mark Lionbarger, Nikola Nedovic, Takuji Yamamoto
	Fujitsu Laboratories of America, United States. 377
•	
Author	Index
Comm	ittees 395