(TALE 2014)

Wellington, New Zealand 8-10 December 2014

IEEE Catalog Number: CFP14TAL-POD ISBN:

978-1-4799-7673-7

litle	Page range
Cloud-Based Content Cooperation System to Assist Collaborative Learning Environment	1–5
Modelica Modeling Language as a Tool on Control Engineering Education: Simulation of a Two-Tank System	6–11
Benefits and Introduction to Python Programming for Freshmore Students Using Inexpensive Robots	12–17
Non-routine Mathematical Problems among In-Service and Pre-Service Mathematics Teachers	18–24
Aligning Assessments with Competencies using Keyphrase Extraction	25–32
Mapping Analysis of CS2013 by Supervised LDA and Isomap	33-40
A Design Project Based Approach to Teaching Undergraduate Instrumentation	41–44
Sensor Data Acquisition, Processing and Presentation in First Year Engineering Programmes	45–50
Training Laboratory: Using online resources to enhance the laboratory learning experience	51–54
Factors Influencing Student Learning in Portfolio Assessed Introductory Programming	55–62
Knowledge transfer model to optimize the use of virtual learning objects	63-68
Work in Progress: Simple software solution for accessing remote lab on mobile devices	69–72
Design and implementation of a module in Smart Systems - How to train engineering students in collaboration	73–78
Student Engagement and Learning using an Integrated Student-Lecturer Engagement Framework	79–85
The Knowledge and Practice of "New Academia" Among Lecturers: A Case Study in Universiti Teknologi Malaysia	86–92
Facilitating Access to Course Contents During War Situation with M-Learning and Cloud Computing Technologies	93–96
A Simulation Study to the Dually Adaptive Online IRT Testing System	97–102
Introducing Embedded Systems Development on a Robotics-Based Platform	103-108
Fit4PracSis: A competence-, business- and science-orientated education approach for freshman students in interdisciplinary degree programs	109–114
Developing a self-regulated oriented online programming teaching and learning system	115–120
Uptake of lecture capture technology by lecturers in engineering, management and nursing disciplines	121–126
A unique Orbital IC engine, illustrating advantages of Engineering to Academia relationships	127-130
An Educational Tool Design for the Course of Signal Processing Based on MATLAB GUI	131–134
On-Campus "Hands-on" Research Opportunities for International Exchange Undergraduate Students	135–140
A Reverse Engineering Approach to Teach Biology Students Mathematical Complexity in Ecology - Interdisciplinary teaching connects mathematical literacy	141–147
Novel Approach for Perception Analysis In a Learning Environment	148–154
Technology intervention in neurorehabilitation - A practical approach to teaching	PEDE

litte	Page range
Leadership Assignation for Knowledge Sharing Amongst Mara Technical Colleges Directors	159–165
A System for the Sharing and Reuse of Learning Objects	166–172
Development of e-learning based module for teaching practicals in electronics to science and engineering students in India	173–174
Redefining Data Provider: The REST Approach To Solve Indonesia Lecturer Administrative Problems.	175–178
Time Scheduling in a Peer-to-Peer Remote Access Laboratory for STEM Education	179–185
Physics problem solving: Selecting more successful and less successful problem solvers	186–191
Cyclic Improvement in the Implementation of Reflective Practice	192–197
Selectively Anonymous Rankings: Design, Analysis and Impact on Computer Science Students	198–205
Skills Frameworks for Industry and IT Education Alignment: A Pilot Study	206–213
Teaching Skills of Engineering Courses with Strong Mathematical Elements for Undergraduate Students	214–218
The Use of Echo360 generated materials and perceived student performance	219–223
Using Interactive Technology for Lectures in Higher Education Information Technology	224-230
Students' perception in the use of self-made YouTube videos in teaching Mathematics	231–235
Logical Interpretation about Problem Types and Solution Strategies of the Butterfly Model for the Automation of Contradiction-based Problem Solving	236-241
A Proposal for using Design Science in Small-Scale Postgraduate Research Projects in Information Technology	242-245
Using iPads/Tablets as a Teaching Tool: Strategies for an Electrical Engineering Classroom	246–251
Transformations to Issues in Teaching, Learning, and Assessing Methods in Databases Courses	252–256
Toward a Modern Curriculum for Computer Engineering	257–257
Facilitating the creative performance of mechanical engineering students: The moderating effect of creative experience	258–262
Building Technology Creativity Inspiration Model in mechanical engineering field	263-268
Software science: Module, Program, Forms of software, and Code-translation	269–276
The Usability Research of Learning Resource Design for MOOCs	277–282
Analog IC Test and Product Engineering Curriculum For Malaysia Microelectronics Industry	283–287
Feasibility study on evaluation of audience's concentration in the classroom with deep convolutional neural networks	288–292
QTiME – A new Paradigm for 21st Century Learning	293–300
Understanding career aspirations of Information Technology students at Deakin University	301–305
Exploring the Online Interactions in Social Software	306–312

litie	Page range
Hong Kong secondary education reform and its impact on social and cultural awareness	313–318
Full STEAM Ahead: A Manifesto for Integrating Arts Pedagogics into STEM Education	319–326
An Exploration of Intelligent Learning Systems	327–332
Simple Rules For Identifying Students On the Edge	333–340
From the Environment to the Classroom: A Sub-Saharan African Scenario	341–345
Analysis of moderation practices in a large STEM-focused faculty	346–350
Quantitative Analysis based Criteria for Evaluating Simple Class Diagrams made by Novices for Conceptual Modeling	ÞÐŒ
A Sustainable Approach to Attracting, Retaining and Supporting Women in Undergraduate Electrical Engineering	359-364
Science and Technology Learning Model Development to Encourage Thai High School Student to Learning in Engineering Career	365–370
Familiarity breeds understanding: Recommending explanatory analogies to learners	371–374
Requirements Engineering Education using Expert System and Role-Play Training	375–382
Investigation-in-progress on how to effectively use tablet terminals in science experiment classes performed by a student project team	383–386
Online Behaviour of Students in a New Blended Learning Course: An Experience Report	387–394
Integrating Computer Security into the Undergraduate Software Engineering Classes: Lessons Learned	395–397
Student Feedback & Systematic Evaluation of Teaching and its correlation to Learning Theories, Pedagogy & Teaching Skills	398-404
Some Considerations on Improving the Education Quality of Graduate Students	405-408
Flipping an Engineering Mathematics Classroom for a Large Undergraduate Class	409-412
Role and Competency of a Facilitator in Development of a Self-Learning skill of Operating Staffs in Thailand Industry: a case study of SCG Paper Company	413–418
A Study on Threshold Concepts in Teaching and Learning in TAFE-Industry Training	419–422
Implementing Outcomes-Based in Electronics Engineering of Batangas State University: Motivations, Processes, Challenges	423-428
Facilitating A Personalized Learning Environment Through Learning Analytics On Mobile Devices	429-432
Does Gender Matter for Collaborative Learning?	433-440
Investigation of the Utilisation of Social Networks in E-learning at Universities	441–446
Dually Adaptive Online IRT Testing System with Application to High-School Mathematics Testing Case	447–452
Individual Evaluation For Freshman In Small Size Group	453-456
Embedded Formative Assessment in the Undergraduate Engineering Classroom	457–461
Study of Motivational Constructs, Learning Orientations and Goals Affecting Engineering Students' Learning Process	462-467

Title	Page range
Effects of Abstract Thinking Level and Familiarity with Programming Languages on Computer Programming Ability in High Schools	468–473
Using Rubrics in IT: Experiences of Assessment and Feedback at Deakin University	474–479
A Curriculum Development Methodology for Professional Software Engineers and Its Evaluation	480–487
Utilizing Semantic Web Technologies and Data Mining Techniques to Analyse Students Learning and Predict Final Performance	488–494
iARBook: An Immersive Augmented Reality System for Education	495–498
Standard Setting in Students Assessment of Higher Education Institution in Malaysia	499–504
An Arduino Kit for Learning Mechatronics and its Scalability in Semester Projects	505-510
The Baroque Music's Influence on Learning Efficiency Based on the Research of Eye Movement	511–515
An Implementation of CDIO/Design Thinking in Mechatronics Projects	516–521
A New Approach in Organizing a Seminar Course for Master Students	522-527
Automatically Growing Dually Adaptive Online IRT Testing	528-533
Assessment of Level of Difficulty in Engineering Design Process for 1st year Undergraduate	534–538