## 2015 12th International Conference on Remote Engineering and Virtual Instrumentation

(REV 2015)

Bangkok, Thailand **25-27 February 2015** 



**IEEE Catalog Number:** 

CFP1549T-POD **ISBN**: 978-1-4799-7840-3

## Table of Contents

| Title                                                                    | Table of Contents                                                                        | Page range |
|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------|
| Introductory Laboratories in Semiconductor Devices using the Digiler     | ut Analog Discovery                                                                      | 1–6        |
| Supporting Access to STEM Subjects in Higher Education for Studen        | ts with Disabilities using Remote Laboratories                                           | 7–13       |
| The use of telecommunication technologies in education network           |                                                                                          | 14–17      |
| DC Motor Control in a 3D Real-Time Virtual Laboratory Environment        |                                                                                          | 18–23      |
| The Bibliographic Reference Collection GRC2014 for the Online Laboration | pratory Research Community                                                               | 24–31      |
| From RGB led laboratory to servomotor control with websockets and        | IoT as educational tool                                                                  | 32–36      |
| Safety in Interactive Hybrid Online Labs                                 |                                                                                          | 37-42      |
| Towards Massive Open Online Laboratories: an Experience about El         | ectromagnetic Crowdsensing                                                               | 43–51      |
| Iterative Pattern for Remote Laboratories Embedding in Educational I     | Process                                                                                  | 52-55      |
| A Remote Solar Photovoltaic Laboratory based on the iLabs Shared         | Architecture (ISA)                                                                       | 56-62      |
| Real-Time ECG Acquisition Under Incorrect Electrode Positions            |                                                                                          | 63–68      |
| Development and Application of Remote Laboratory for Embedded S          | ystems Design                                                                            | 69–73      |
| Designing Remote Labs for Broad Adoption                                 |                                                                                          | 74–80      |
| Google Cloud and Analysis of Realtime Process Data                       |                                                                                          | 81–85      |
| Real-time and turn-based biology online experimentation                  |                                                                                          | 86–89      |
| A New Implementation of the iLab Service Broker                          |                                                                                          | 90–93      |
| Design and Operational Reliability for a Peer-to-Peer Distributed Ren    | note Access Laboratory                                                                   | 94–99      |
| Low-cost Multi-Channel Analog Sampler and Signal Generator for Re        | mote Laboratories                                                                        | 100-104    |
| INCLINE – the remote experimental kit for research based teaching in     | the class                                                                                | 105–108    |
| REMLABNET II - open remote laboratory management system for un           | iversity and secondary schools research based teaching                                   | 109-112    |
| Powerful Technologies Together for Engineering Education (PTT for        | EE)                                                                                      | 113–117    |
| Teaching and learning globally connected - Using live online classes     | for preparing international engineering students for transnational collaboration and for | 118–126    |
| Virtual and Remote triggered Industrial Automation Labs: Collaboration   | on case study                                                                            | 127-130    |
| Students' Performance Evaluation in Online Education System Vs Tra       | aditional Education System                                                               | 131–135    |
| Development of an Online Renewable Energy Laboratory                     |                                                                                          | 136-139    |
| Leveraging motivation of learners to practice: a remote laboratory dec   | dicated to system and network administration                                             | 140-142    |
| A Collaborative Multi-Videoconferencing Platform for Online Optical M    | Microscopy                                                                               | 143-151    |
| Online Use of OpenModelica via Web Service                               |                                                                                          | 152-156    |
| Integration of Remote and Virtual Laboratories in the Educational Pro    | cess                                                                                     | 157–162    |
| Weblab of a Control Experiment in a Newborn Baby Incubator               |                                                                                          | 163–171    |
| A Low-cost Remote Laboratory of Field Programmable Gate Arrays           |                                                                                          | 172–176    |
| VISIR - Microcontroller Extensions (MCE)                                 |                                                                                          | 177–179    |
| The Challenge of Specimen Handling in Remote Laboratories (for en        | gineering education)                                                                     | 180-185    |
| Developing Virtual Lab to support the Computer Science Education in      | Moodle                                                                                   | 186–191    |
| Surfing Virtual Environment in the Galápagos Islands                     |                                                                                          | 192–198    |
| Smart Device Specifications for remote labs                              |                                                                                          | 199–208    |
| Node.js Based Remote Control of Thermo-optical Plant                     |                                                                                          | 209–213    |
| Develop a Scheduler and Federated Authentication for Remote Labo         | ratory Access                                                                            | 214–219    |
| Converting a remote laboratory back end from Remote Panels in Lab        | VIEW to HTML5                                                                            | 220-222    |
| wCloud: automatic generation of WebLab-Deusto deployments in the         | Cloud                                                                                    | 223-229    |
| An HTML Client for the Blackbody Radiation Lab                           |                                                                                          | 230-234    |
| Opportunities and Challenges in Virtual Reality for Remote and Virtual   | al Laboratories                                                                          | 235–237    |
| A Distinctive Approach to Enhance the Utility of Laboratories in Indian  | n Academia                                                                               | 238–241    |
| An Innovative Educational Concept of Teleworking in the High Precis      | ion Metrology Laboratory to Develop a Model of Implementation in the Advanced            | 242-248    |