2015 10th System of Systems Engineering Conference

(SoSE 2015)

San Antonio, Texas, USA 17 – 20 May 2015

IEEE Catalog Number: ISBN: CFP15SOS-POD 978-1-4799-7612-6

Table of Content

Random Sampling in Collaborative and Distributed Mobile Sensor Networks utilizing Compressive Sensing for Scalar Field Mapping Minh T Nguyen; Keith A Teague	1–6
A Theory of Complexity Escalation and Collapse for System of Systems Joseph Bradley; Mahmoud Efatmaneshnik; Mohammad Rajabalinejad	7–11
Defending Mechanisms for Protecting Power Systems against Intelligent At- tacks Longfei Wei; Amir Moghadasi; Aditya Sundararajan; Arif Sarwat	12–17
A Systematic Mapping of the Research Literature on System-of-Systems En- gineering Jakob Axelsson	18-23
A Model Based Safety Architecture Framework for Dutch High Speed Train Lines Katja Schuitemaker; Jasper Gerard Braakhuis; Mohammad Rajabalinejad	24-29
Systems Engineering in Industry Internship and Academic Projects Kourosh Rahnamai	30–35
Direct versus Stigmergic Information Flow in Systems-of-Systems Hermann Kopetz; Bernhard Frömel; Oliver Höftberger	36-41
Factory Production Line as SoS; a Case Study in Airplane Engine Component Manufacturing Gerrit Muller; June Andersen	42-46
The OpenOrbiter CubeSat as a System-of-Systems (SoS) and How SoS En- gineering (SoSE) Aids CubeSat Design Sofiane Chaieb; Michael Wegerson; Jeremy Straub; Ronald Marsh; Benjamin Kading; David Whalen	47-52
A Model of Enterprise Systems Engineering Contributions to Acquisition Success Jill Drury; Gary Klein; Mark Pfaff; Craig Bonaceto	53–58
Electric Mobility and Charging: Systems of Systems and Infrastructure Sys-	59–64

tems G. Maarten Bonnema; Gerrit Muller; Lisette Schuddeboom

Using Systems Engineering for Improving Autonomous Robot Performances Stefan Marchlewitz; Jan-Peter Nicklas; Petra Winzer	65-70
Simulation method for multi-machine and multi-task production scheduling in steelmaking-continuous casting process Jianyu Long; Zhong Zheng; Xiaoqiang Gao; Kai Chen	71–76
Towards Security Software Engineering the Smart Grid as a System of Sys- tems Vanea Chiprianov; Laurent Gallon; Khouloud Salameh; Manuel Munier; Jamal El Hachem	77–82
Basic Study on Evaluation of Navigator's Mental Workload by Sticking Plaster-type Sensor Koji Murai; Yuji Hayashi; Kazusuke Maenaka; Kohei Higuchi	83–87
Uncertainty, elicitation of experts' opinion, and human failures: Challenges for RAM analysis of ERTMS SoS Mohamed Sallak; Walter Schon; Sebastien Destercke; Christophe Simon; Frederic Van- derhaegen; Denis Berdjag	88–93
Improved Hybrid Variable and Fixed Step Size Least Mean Square Adaptive Filter Algorithm with Application to Time Varying System Identification Farqad Yasin Farhan; Siddeeq Ameen	94–98
Conceptual Design for Fully Autonomous Aerial and Ground System for Precision Agriculture Matthew Joordens; Tom Brodie; Thomas Oberli; Phil Swinsburg	99–104
Tracking Animals to Determine Swarm Behavior Benjamin Champion; Matthew Joordens; Blake Allan	105–110
Underwater Swarm Robotics Review Benjamin Champion; Matthew Joordens	111–116
A System of Systems Analysis of a Multi-Probe SPM System Eyup Cinar; Ferat Sahin	117–121
A Model Based Approach to System of Systems Risk Management Andrew Kinder; Michael Henshaw; Carys Siemieniuch	122-127
A Novel System and Technique for Enhancing the Lifetime of an Air Breath- ing Micro PEM Fuel Cell Based Power Source Ramesh P.; Jithesh M.; Varun Devaraj	128–133
Differential Flatness of the Flux-decay Generator Model Kevin Wedeward; Lucas Uecker	146-151

A service oriented virtual environment for complex system analysis: Prelim- inary Report	152–157
Charles E. Dickerson; Stephen Clement; David Webster; David McKee; Jie Xu; David Battersby	
Leveraging Wireless Communication Systems for Aiding Inertial-Based Nav- igation Systems	158–163
Richard Rivera; Aly El-Osery; Stephen Bruder	
Adaptable Mission Analysis and Decision System Paul C. Hershey; Elizabeth Umberger; Roland Chang	164-169
Continuous improvement of technical systems using Design for X Christer Elverum; Henrik Vagle Dalsgaard; Torgeir Welo	176–181
Contribution to System of Systems Modeling Wissam Khalil; Belkacem Ould Bouamama; Rochdi Merzouki; Blaise Conrard; Ahmad Koubeissi	182–186
Cluster-Based Correlation of Severe Braking Events with Time and Location Guoyan Cao; John Michelini; Karolos Grigoriadis; Behrouz Ebrahimi; Matthew Franchek	187–192
Real-Time Neural Inverse Optimal Control for Position Trajectory Tracking of an Induction Motor Maria Elena Antonio - Toledo; Edgar N. Sanchez; Alexander Loukianov	193–198
UAF for System of Systems Modeling Matthew C Hause; Fatma Dandashi	199–204
Swarm Intelligence for the Control of a Group of Robots Sreerenjini Nair; Michael Frye; Erik Coronado; Yong Qin	205–207
On the Study of Human Reliability in Transportation Systems of Systems Subeer Rangra; Mohamed Sallak; Walter Schon; Frederic Vanderhaegen	208–213
Towards an Understanding of Emergence in Systems-of-Systems Hermann Kopetz; Oliver Höftberger; Bernhard Frömel; Francesco Brancati; Andrea Bon- davalli	214-219
Real-Time Direct Field-Oriented and Second Order Sliding Mode Controllers of Induction Motor for Electric Vehicles Applications Eduardo Quintero; Edgar N. Sanchez; Ramón Antonio Félix	220-225
Complex System Governance: Theory to Practice Challenges for System of Systems Engineering	226-231

Systems Engin Charles Keating

Intelligent Adaptive Cruise Control System Design and Implementation Islam Kilic; Ahmet Yazici; Omur Yıldız; Mustafa Ozcelikors; Atakan Ondogan	232-237
Systems Modeling and Intelligent Control of Meat Drying Process Hong Ma; Simon Yang; Wei Zhang	238–243
SmartPowerchair: A Pervasive System of Systems Paul Whittington; Huseyin Dogan	244-249
Real-time FPGA Decentralized Inverse Optimal Neural Control for a Shrimp Robot Gener Quintal; Edgar N. Sanchez; Alma Y. Alanis	250–255
Distributed Leader-Follower Formation Control for Multiple Quadrotors with Weighted Topology Zhicheng Hou; Isabelle Fantoni	256-261
Multi-agent System of Systems to Monitor Wildfires Mauricio Gomez; Yongho Kim; Maria Tolstykh; Michael Munizzi; Eric Matson	262-267
SLAM based Shape Adaptive Coverage Control using Autonomous Vehicles Junnan Song; Shalabh Gupta	268-273
A Study on Analysis of Characteristics of Ships Navigators' Look-out by Using OZT Jun Kayano	274–279
Bond Graph Modeling of a Class of System of Systems Pushpendra Kumar; Rochdi Merzouki; Belkacem Ould Bouamama; Ahmad Koubeissi	280-285
Real-Time Flocking of Multiple-Quadrotor System of Systems Osamah Saif; Isabelle Fantoni; Arturo Zavala-Rio	286-291
Dual Flexible 7 DoF Arm Robot Learns like a Child to Dance using Q- Learning Ferat Sahin; Sulabh Kumra	292–297
Omnidirectional Rule-Based Free Gait Utilizing Restrictedness <i>Ferat Sahin; Christopher Johnson</i>	298-303
Modeling and Dynamic Control for a Hexapod Robot Ferat Sahin; Brian Stevenson	304–310
Simultaneous Localization and Mapping using a Micro-Particle Swarm Op- timization Christopher Monfredo	310-315

An Update on the Framework for a Junior Level Design Course Aly El-Osery; Kevin Wedeward	316-321
Epoch Era Analysis in the Design of the Next Generation Offshore Subsea Construction Vessels Henrique Gaspar	322–327
Simulating SysML Models: Overview and Challenges Mara Nikolaidou; George Dimitrios Kapos; Anargyros Tsadimas; Vassilis Dalakas; Di- mosthenis Anagnostopoulos	328–333
Enabling Emergent Behavior in Systems-of-Systems Through Bigraph-based Modeling Dominik Wachholder; Christian Stary	334–339
A low cost velocity control of double sided LSRM by sliding mode control and PIC18F452 Wajdi Zaafrane; Mahir Dursun; Habib Rahaoulia	340-345
A Mission-Oriented Approach for Designing System-of-Systems Eduardo Silva; Thais Batista; Flavio Oquendo	346-351
Abandonment: A Natural Consequence of Autonomy and Belonging in Systems-of-Systems Alejandro Salado	352–357
Bond Graph Model-Based for Fault Tolerance Level Assessment of a Wireless Communication Link in a System of Systems Concept Ahmad Koubeissi; Mohammed Ayache; Rochdi Merzouki; Blaise Conrard	358–363
On the Impacts of Project Based Learning for Workplace Preparedness of Engineering Graduates Seda Senay	364–367
Distributed Super Twisting Controller for Multiple Quadrotors Luis F. Luque-Vega; Bernardino Castillo-Toledo; Alexander Loukianov; Jawhar Ghom- mam; Maarouf Saad; Luis Gonzalez-Jimenez	368–373
Smart Data-Harnessing for Financial Value in Short-Term Hire Electric Car Schemes Peter Cooper; Tom Crick; Theo Tryfonas	374–379
Behavioral Detection in the Maritime Domain James Scrofani; Murali Tummala; Donna Miller; Deborah Shifflett; John C. McEachen	380–385
Quaternion-based Trajectory Tracking Robust Control for a Quadrotor Carlos Augusto Arellano-Muro; Bernardino Castillo-Toledo; Alexander Loukianov; Luis F. Luque-Vega; Luis Gonzalez-Jimenez	386–391

Design of a Home Multi-Robot System for the Elderly and Disabled Patrick J Benavidez; Mohan Muppidi; Sos Agaian; Mo Jamshidi	392–397
A Fast Map-Reduce Algorithm for Burst Errors in Big Data Cloud Storage Brian T Kelley; Xue Qin; Mahdy Saedy	398-403
Software Interface Design for Home-Based Assistive Multi-Robot System Patrick J Benavidez; Mohan Muppidi; Berat Alper Erol; Sos Agaian; Mo Jamshidi	404-409
Cognitive Interference Avoidance in 4th Generation GPS Brian T Kelley; Gonzalo Delatorre; David Akopian	410-415
Keyboard Control Method for Virtual Reality Micro-robotic Cell Injection Training Syafizwan Faroque; Ben Horan; Matthew Joordens	416-421
SCV2: A Model-based Validation and Verification approach to System-of- Systems Engineering Rami Baddour; Alkiviadis Paspaliaris; Daniel Solis Herrera	422-427
Searching Baxter's URDF Robot Joint and Link Trees for Active Serial Chains Michael Mortimer; Ben Horan; Matthew Joordens	428-433
Performance Enhancing of Storage System for Point Cloud Geographic Data Marian Svalec; Lubos Takac; Michal Zbovsk	434–438
Noise Level Classification for EEG using Hidden Markov Models Sherif Haggag, Sh; Shady Mohamed; Asim Bhatti; Hussein Haggag; Saeid Nahavandi	439–444
Research directions in SOSE Vernon Ireland	445-450
Data-Centric Development of Architecture Models with the DM2 and MS- SDF Matthew Amissah; Holly Handley	451-456
A Conditional Value-at-Risk Approach to Risk Management in System-of- Systems Architectures Navindran Davendralingam; Dan DeLaurentis; Parth Shah	457-462
A Perspective on Decision-Making Research in System of Systems Context Dan DeLaurentis; Navindran Davendralingam; Michael Jacobs; Datu Agusdinata	463-468
SoS Capability Schedule Prediction	469–474

Jo Ann Lane; Adrian Pitman; Elizabeth Clark; Angela Tuffley

The State of Systems of Systems Engineering Knowledge Sources Judith S. Dahmann	475
Modeling an Organizational View of the SoS Towards Managing its Evolution Richard Turner; Alexey Tregubov; Alice E. Smith; Jeffrey Smith; Levent Yilmaz; Donghuang Li; Saicharan Chada	480-485
Low-Latency Software Defined Network for High Performance Clouds Paul Rad; Palden Lama; Rajendra V Boppana; Gilad Berman; Mo Jamshidi	486–491
Image Segmentation by Multi-Level Thresholding based on Fuzzy Entropy and Genetic Algorithm in Cloud Paul Rad; Mohan Muppidi; Sos Agaian; Mo Jamshidi	492–497
A Wrapper-based feature selection approach using Bees Algorithm for a wood defect classification system	498-503

Michael Packianather