2016 IEEE International Conference on Teaching, Assessment, and Learning for Engineering (TALE 2016)

Bangkok, Thailand 7-9 December 2016

IEEE Catalog Number: ISBN:

CFP16TAL-POD 978-1-5090-5599-9

Copyright © 2016 by the Institute of Electrical and Electronics Engineers, Inc All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

***This publication is a representation of what appears in the IEEE Digital Libraries. Some format issues inherent in the e-media version may also appear in this print version.

 IEEE Catalog Number:
 CFP16TAL-POD

 ISBN (Print-On-Demand):
 978-1-5090-5599-9

 ISBN (Online):
 978-1-5090-5598-2

ISSN: 2374-0191

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400

Fax: (845) 758-2633 E-mail: curran@proceed

E-mail: curran@proceedings.com Web: www.proceedings.com

2016 IEEE International Conference on Teaching, Assessment and Learning for Engineering (TALE)

Table of Contents

Title Table of Correction	Page range
Bringing The Outside World In: Using Mixed Panel Assessment Of Oral Presentations With Electrical and Electronic Engineering Students	1–8
Designing an effective Virtual Field Trip for e-Learning	9–13
On the Design of an Educational Game for a Data Structures Course	14–17
Multi-Disciplinary Collaborative Innovation Capacity Training Scheme	18–25
The relationships between ICT use and life quality among children with social phobia	26–31
Enhancing Practice And Achievement In Introductory Programming Using An ADRI Editor	32-39
Two Dimensional Assessment Technique for CBL	40-43
Short-term Exchange Programs for Engineering Research Education	44–49
Teaching and Learning Computational Thinking through Solving Problems in Artificial Intelligence: on Designing Introductory Engineering and Computing	50-54
A Multimedia Learning Environment for Information Theory	55–61
Enhancing Learning Object Recommendation Using Multi-Criteria Recommendation Systems	62-64
A project-problem based learning approach for appreciating ancient cultural heritage through technologies: Realizing mystical buildings in Dunhuang Mural	65–69
Equal learning rights for the new generation — A study on the innovation of interactive live webcasting by the Small School Alliance	70–76
Facilitating Student and Staff Engagement Across Multiple Offshore Campuses for Transnational Education using an Immersive Video Augmented Software	77–81
Integration of Virtual Simulation Experimental Teaching System and Massive Open Online Courses: Reseach and Exploration in NJUPT	82–85
Web and Mobile based Facial Recognition Security System using Eigenfaces Algorithm	86–92
Successive Build Up Lab for Learning Mechatronics	93–100
Visualization of Extra Curriculum Education for Promoting Active Learning	101–108
Analyzing Academic Discussion Forum Data with Topic Detection and Data Visualization	109–115
Face Authentication for e-Learning Using Time Series Information	116–121
Development and Evaluation of a Self-Learning Support System for Patent Act Suited to the Current State of Intellectual Property Education in Engineering	122–127
A Framework to Search Better Series of Lecture Improvement	128–130
Designing a Multilanguage Blended Learning System for Thai agricultural Science Students	131–138
Teaching Software Defined Networking: It's not just coding	139–144
Automated Marking of Printed Multiple Choice Answer Sheets	145–149
Item Bank to Estimate the Answer of Class Evaluation Questionnaire	150–153
Enhancing Competencies of Less-able Students to Achieve Learning Outcomes: Learner Aware Tool Support through Business Intelligence	154-160

2016 IEEE International Conference on Teaching, Assessment and Learning for Engineering (TALE)

Table of Contents

Title Table of Contents	Page range
Understanding Knowledge Areas in Curriculum through Text Mining from Course Materials	161–168
Analysing the Impact of Poor Teaching on Student Performance	169–175
The promotion of the Active Learning -DIY and student PBL at Hirose Campus-	176–180
Benefits for Emedding Student Research Training Projects in an Engineering Introductory Seminar Course	181–184
Developing a Telecommunication Engineering Pipeline of Communication Networks	185–189
Getting More than Grades out of Supplemental Instructions: Examining the effect of coaching styles on undegraduate students' entrepreneurial intentions and	190–193
Teaching and Learning Queueing Theory Concepts using Tangible User Interfaces	194–201
A Prototype Project with a New Workspace for Mechanics of Machinery	202-209
Bridging the digital divide for e-learning students through adaptive VLEs	210–217
Metamorphic Testing: A New Student Engagement Approach for a New Software Testing Paradigm	218–225
Investigating Effects of Automated Feedback on EFL Students' Reflective Learning Skills	226–230
Requirements Engineering Education using Role-Play Training	231–238
The Use of an Arduino Pocket Lab to Increase Motivation in Electrical Engineering Students for Programming	239–243
Introducing the Case Grammar Concept to Object-Oriented Movie Context Description	244–248
Analysis of Active Learning Suitability of Subjects in Information and Electronics for Computing Education	249–255
	N/A
Mobile Authentication for Software Engineering: A case study of research and development student projects	260–264
Scale Out Teaching, Scale Up Learning: Professional Development For E-Teaching/Learning	265–270
The Practical Program For Bringing Out Generic Skills Of The First Year Students	271–277
Development of Generic Competencies and its Association with Secondary Public Examination Performance: A Tertiary STEM Freshmen's Perspective	278–283
Open Educational Resources (OERs) and Technology Enhanced Learning (TEL) in Vocational and Professional Education and Training (VPET)	284–288
Video Recommender System using textual data: Its Application on LMS and Serendipity Evaluation	289–295
STEM Conversations in Social Media: Implications on STEM Education	296–302
Facebook and Information Security Education: What Can We Know from Social Network Analyses on Hong Kong Engineering Students?	303–307
An Adaptive Model of Teaching Computer Literacy in the Context of Multicultural Instruction	308–310
A Model and Evaluation Method of Learning Motivation in the Education and Training of Professional Engineers	311–318
The Development of STEM based Instructional Tools for Transmission Line Engineering Course.	319–322

2016 IEEE International Conference on Teaching, Assessment and Learning for Engineering (TALE)

Table of Contents

Title Table of Correction	Page range
Senior Students as Peer-Teachers in Laboratory Classes: Impacts and Insights	323–327
The Development of MIASCE Learning Model based on Creative Problem Solving Process for Electromagnetic Wave Education	328–331
The Information Management with Ontology together with N-Gram technology for the Deployment in the Stakeholders Communication using Re	eal-time 332–337
Does Lecture Capturing Improve Learning? A Data Driven Exploratory Study on the Effectiveness of Lecture Capture on Learning in a Foundat	tion IT Course 338–344
A Preliminary Study on the Utilization and Effectiveness of a Flipped Classroom in Thailand	345–352
E-learning in mass education	353–360
A Cheer-and-Challenge-Approach in Teaching Mechanics to Demotivated Freshmen	361–366
An Extended Perspective on Cybersecurity Education	367–369
A Model of e-Learning Value Creation Based on Triple-Factor	370–373
Cellular Automata as Basis for Programming Exercises in a MOOC on Testdriven Development	374–380
The Development of MISDOP Instructional Package for Antenna Engineering Course	381–384
Knowledge Engineering Management System on Cloud Technology for Externship Students	385–388
Embedded Experts for Undergraduate Engineering Faculty Professional Development	389–391
Case Study of Evaluation of Experimental Skills	392–397
Teaching Professional Practice and Career Development to Graduate Students	398–402
Power-Electronics Learning through experiment and simulation: DC-DC converters	403–408
Leveraging Videos and Forums for Small-class Learning Experience in a MOOC Environment	409–411
Using Augmented Reality to learn the Enumeration strategies	412–418
Comparative Assessment Method between Neural Network & Rubric	419–424
Integrating Interactive Historical Vignettes into Learning of Computer Science Concepts	425–429
Three Essential Elements of Curriculum Design for Developing Competent Food Engineering Graduate Students (for Problem-solving in Food I	Industry) via 430-435
Teaching Sustainable Energy Course Through Real World Case Studies, Projects and Simulations	436–440
Using Flipped Classroom Approach to Teach Computer Programming	441–444
An Interview Study On Student Motivation In Group-Based Engineering Design Projects	445–452
Objective Analysis of Marker Bias in Higher Education	453-457