2016 IEEE Global Conference on Signal and Information Processing (GlobalSIP 2016)

Washington, DC, USA 7-9 December 2016

Pages 1-712

IEEE Catalog Number: ISBN: CFP16GLS-POD 978-1-5090-4546-4

Copyright © 2016 by the Institute of Electrical and Electronics Engineers, Inc All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

IEEE Catalog Number:	CFP16GLS-POD
ISBN (Print-On-Demand):	978-1-5090-4546-4
ISBN (Online):	978-1-5090-4545-7

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com

TABLE OF CONTENTS

GS-1: GENERAL SYMPOSIUM: OPTICAL AND VISIBLE LIGHT COMMUNICATIONS

Amr M. Abdelhady, Osama Amin, Anas Chaaban, Mohamed-Slim Alouini, King Abdullah University of Science and Technology, Saudi Arabia

Kaixiong Zhou, Chen Gong, Qian Gao, Zhengyuan Xu, University of Science and Technology of China, China

GS-1.3: OPTICAL WIRELESS SCATTERING COMMUNICATION SYSTEM WITH A11 NON-IDEAL PHOTON-COUNTING RECEIVER

Difan Zou, Chen Gong, Zhengyuan Xu, University of Science and Technology of China, China

Guangtao Zheng, Qian Gao, Cheng Gong, Zhengyuan Xu, University of Science and Technology of China, China

GS-2: GENERAL SYMPOSIUM: STATISTICAL SIGNAL PROCESSING AND ESTIMATION

GS-2.1: MAXIMUM-LIKELIHOOD CHANNEL ESTIMATION IN PRESENCE OF20 IMPULSIVE NOISE FOR PLC SYSTEMS

Deep Shrestha, Xavier Mestre, Miquel Payaro, Centre Tecnològic de Telecomunicacions de Catalunya (CTTC), Spain

GS-2.2: ON THE SUM OF GAMMA-GAMMA VARIATES WITH APPLICATION TO THE25 FAST OUTAGE PROBABILITY EVALUATION OVER FADING CHANNELS

Chaouki Ben Issaid, Nadhir Ben Rached, Abla Kammoun, Mohamed-Slim Alouini, Raul Tempone, King Abdullah University of Science and Technology, Saudi Arabia

Anna Barnacka, Harvard University, United States

GS-3: GENERAL SYMPOSIUM: SPEECH PROCESSING

GS-3.1: A QUANTITATIVE ANALYSIS OF HANDS-FREE SPEECH ENHANCEMENT40 USING REAL AUTOMOBILE DATA

Sam Tabaja, Sai-Prithvi Gadde, Nabih Jaber, Philip Olivier, Lawrence Technological University, United States; Mahdi Ali, Rakan Chabaan, Scott Bone, Hyundai America Technical Center Incorporated, United States

GS-3.2: DETECTION OF SPOKEN WORDS IN NOISE: COMPARISON OF HUMAN45 PERFORMANCE TO MAXIMUM LIKELIHOOD DETECTION

Mohsen Zareian Jahromi, Jan Østergaard, Jesper Jensen, Aalborg university, Denmark

Muhammad Rizwan, David V. Anderson, Georgia Institute of Technology, United States

Muhammad Rizwan, Brandon T. Carroll, David V. Anderson, Georgia Institute of Technology, United States; Wayne Daley, Simeon Harbert, Douglas F. Britton, Georgia Tech Research Institute, United States; Mark W. Jackwood, University of Georgia, Athens, United States

GS-3.5: A LANDMARK-BASED APPROACH TO AUTOMATIC VOICE ONSET TIME60 ESTIMATION IN STOP-VOWEL SEQUENCES

Stephan R. Kuberski, Stephen J. Tobin, Adamantios I. Gafos, University of Potsdam, Germany

GS-P1: GENERAL SYMPOSIUM POSTER: SOURCE SEPARATION AND DECONVOLUTION

Mingjian Zhang, Hunan Police Academy, China; Xiaohua Li, State University of New York at Binghamton, United States

GS-P1.2: PROJECTIONS ONTO THE EPIGRAPH SET OF THE FILTERED VARIATION70 FUNCTION BASED DECONVOLUTION ALGORITHM

Mohammad Tofighi, The Pennsylvania State University, United States; A. Enis Cetin, Bilkent University, Turkey

GS-P1.3: ROBUST REGULARIZED LEAST-SQUARES BEAMFORMING APPROACH TO75 SIGNAL ESTIMATION

Mohamed Suliman, Tarig Ballal, Tareq Y. Al-Naffouri, King Abdullah University of Science and Technology, Saudi Arabia

GS-P1.4: ROBUST PCA: LOW RANK MATRIX ESTIMATION WITH HARD OR SOFT80 THRESHOLDING-BASED OUTLIER REJECTION

Brian Moore, Raj Rao Nadakuditi, University of Michigan, United States

GS-P2: GENERAL SYMPOSIUM POSTER: SIGNAL DECOMPOSITION

GS-P2.1: CONSTRUCTION OF COMPLEMENTARY SETS OF SEQUENCES WITH85 LOW APERIODIC CORRELATION AND COMPLEMENTARY CORRELATION

Israel Alejandro Arriaga-Trejo, CONACYT-Autonomous University of Zacatecas, Mexico

Narges Norouzi, Parham Aarabi, University of Toronto, Canada; Taylor Dear, Sally Carver, Schwartz/Reisman Emergency Medicine Institute, Mount Sinai Hospital, Canada; Simon Bromberg, University of Toronto, Canada; Mel Kahan, Department of Family and Community Medicine, Women's College Hospital, Canada; Sara Gray, Emergency Medicine and Critical Care, St. Michael's Hospital, Canada; Bjug Borgundvaag, Schwartz/Reisman Emergency Medicine Institute, Mount Sinai Hospital, Canada

GS-P2.3: OPTIMAL EXPERIMENTAL DESIGN IN CANONICAL EXPANSIONS WITH94 APPLICATIONS TO SIGNAL COMPRESSION

Roozbeh Dehghannasiri, Xiaoning Qian, Edward Dougherty, Texas A&M University, United States

GS-P3: GENERAL SYMPOSIUM POSTER: DETECTION AND TRACKING

GS-P3.3: FACE SPOOFING ATTACK DETECTION BASED ON THE BEHAVIOR OF119 NOISES

Hoai Phuong Nguyen, Université de Reims Champagne-Ardenne, France; Florent Retraint, Université de Technologie de Troyes, France; Frédéric Morain-Nicolier, Agnès Delahaies, Université de Reims Champagne-Ardenne, France

GS-P3.4: ROBUST ONLINE MULTI-OBJECT TRACKING BASED ON KCF TRACKERS124 AND REASSIGNMENT

Huiling Wu, Weihai Li, the University of Science and Technology of China, China

GS-P3.5: SIMULTANEOUS DISTRIBUTED BEAMFORMING AND NULLFORMING129 WITH ADAPTIVE POSITIONING

Shahab Farazi, Kim Chinkidjakarn, D. Richard Brown III, Worcester Polytechnic Institute, United States

GS-P4: GENERAL SYMPOSIUM POSTER: SIGNAL PROCESSING FOR COMMUNICATIONS

Guosheng Yang, Jun Wang, Guangrong Yue, Shaoqian Li, University of Electronic Science and Technology of China, China

Guosheng Yang, Jun Wang, Guangrong Yue, Shaoqian Li, University of Electronic Science and Technology of China, China

GS-P4.3: DETECTION DIVERSITY OF SPATIO-TEMPORAL DATA USING PITMAN'S143 EFFICIENCY FOR LOW SNR REGIMES

Prashant Khanduri, Syracuse University, United States; Vinod Sharma, Indian Institute of Science, India; Pramod K. Varshney, Syracuse University, United States

CSDL-1: COMPRESSED SENSING, DEEP LEARNING I

CSDL-1.1: COMPRESSIVE CODING VIA RANDOM REPLICATE MIRROR......148

Dung Tran, Luoluo Liu, Trac Tran, Johns Hopkins University, United States; Sang Chin, Boston University, United States; Jeffrey Korn, Eric Hoke, Draper laboratory, United States

Qiuwei Li, Gongguo Tang, Colorado School of Mines, United States

CSDL-1.3: ITERATIVE ULTRASONIC IMAGE RECONSTRUCTION BY QUADTREE157 MESHES USING TARGET SPARSITY

Yuanwei Jin, University of Maryland Eastern Shore, United States; Chengdong Dong, Shanghai University of Finance and Economics, China; Enyue Lu, Salisbury University, United States

CSDL-1.4: COUPLED DICTIONARY LEARNING FOR MULTIMODAL IMAGE162 SUPER-RESOLUTION

Pingfan Song, Joao Mota, University College London, United Kingdom; Nikos Deligiannis, Vrije Universiteit Brussel, Belgium; Miguel Rodrigues, University College London, United Kingdom

CSDL-2: COMPRESSED SENSING, DEEP LEARNING II

CSDL-2.1: A FAST ITERATIVE ALGORITHM FOR DEMIXING SPARSE SIGNALS FROM167 NONLINEAR OBSERVATIONS

Mohammadreza Soltani, Chinmay Hegde, Iowa State University, United States

CSDL-2.2: ACTIVE REGRESSION WITH COMPRESSIVE-SENSING BASED OUTLIER172 MITIGATION FOR BOTH SMALL AND LARGE OUTLIERS

Jian Zheng, Xiaohua Li, State University of New York at Binghamton, United States

Minh Dao, The Johns Hopkins University, United States; Chiman Kwan, Bulent Ayhan, Applied Research LLC, United States; Trac Tran, The Johns Hopkins University, United States

Minh Dao, Tung-Duong Tran-Luu, U.S. Army Research Laboratory, United States; Nasser Nasrabadi, West Virginia University, United States

CSDL-3: COMPRESSED SENSING, DEEP LEARNING III

CSDL-3.1: PAIRWISE INTERACTION ANALYSIS OF LOGISTIC REGRESSION
Easton Li Xu, Xiaoning Qian, Tie Liu, Texas A&M University, United States; Shuguang Cui, University of California, Davis, United States
CSDL-3.2: RECONSTRUCTION OF SPARSE VECTORS IN COMPRESSIVE SENSING192 WITH MULTIPLE MEASUREMENT VECTORS USING BIDIRECTIONAL LONG SHORT-TERM MEMORY <i>Hamid Palangi, Rabab Ward, University of British Columbia, Canada; Li Deng, Microsoft Research, United</i> <i>States</i>
CSDL-3.3: GHOSTING SUPPRESSION FOR INCREMENTAL PRINCIPAL
CSDL-3.4: SYMMETRIC POLYNOMIAL & CRT BASED ALGORITHMS FOR
CSDL-4: COMPRESSED SENSING, DEEP LEARNING IV
CSDL-4.1: A RANDOMIZED APPROACH TO EFFICIENT KERNEL CLUSTERING207 Farhad Pourkamali-Anaraki, Stephen Becker, University of Colorado at Boulder, United States
CSDL-4.2: INVARIANT HIERARCHICAL SPARSE CODING FOR OBJECT
CSDL-4.3: AXIOMATIC HIERARCHICAL CLUSTERING FOR INTERVALS OF METRIC217 DISTANCES <i>Weiyu Huang, Alejandro Ribeiro, University of Pennsylvania, United States</i>
CSDL-4.4: EFFICIENT LEARNING OF DICTIONARIES WITH LOW-RANK ATOMS222 Saiprasad Ravishankar, Brian Moore, Raj Rao Nadakuditi, Jeffrey A. Fessler, University of Michigan, United States
CSDL-5: COMPRESSED SENSING, DEEP LEARNING V

Mark Borgerding, Philip Schniter, The Ohio State University, United States

Kung-Hung Lu, Kuang-Yu Chang, Chu-Song Chen, Institute of Information Science, Academia Sinica, Taiwan

CSDL-5.3: DEEP LEARNING BASED IMAGE SUPER-RESOLUTION WITH COUPLED237 BACKPROPAGATION

Tiantong Guo, Hojjat Seyed Mousavi, Vishal Monga, The Pennsylvania State University, United States

CSDL-P1: COMPRESSED SENSING, DEEP LEARNING POSTER I

CSDL-P1.1: MINIMUM-VOLUME-REGULARIZED WEIGHTED SYMMETRIC247 NONNEGATIVE MATRIX FACTORIZATION FOR CLUSTERING

Tianxiang Gao, Sigurdur Olafsson, Songtao Lu, Iowa State University, United States

CSDL-P1.2: BEST BASIS SELECTION USING SPARSITY DRIVEN MULTI-FAMILY252 WAVELET TRANSFORM

Romain Cosentino, Randall Balestriero, Ecole Normale Superieure & RICE University, United States; Behnaam Aazhang, Rice University, United States

CSDL-P1.3: DEFENDING ACTIVE LEARNING AGAINST ADVERSARIAL INPUTS IN257 AUTOMATED DOCUMENT CLASSIFICATION

Lei Pi, University of Memphis, United States; Zhuo Lu, University of South Florida, United States; Yalin Sagduyu, Intelligent Automation Inc., United States; Su Chen, University of Memphis, United States

Lasith Adhikari, Arnold Kim, Roummel Marcia, University of California, Merced, United States

CSDL-P1.5: D-OAMP: A DENOISING-BASED SIGNAL RECOVERY ALGORITHM FOR267 COMPRESSED SENSING

Zhipeng Xue, ShanghaiTech University, China; Junjie Ma, City University of Hong Kong, China; Xiaojun Yuan, ShanghaiTech University, China

CSDL-P2: COMPRESSED SENSING, DEEP LEARNING POSTER II

CSDL-P2.1: LOW-LATENCY SOUND SOURCE SEPARATION USING DEEP NEURAL272 NETWORKS

Gaurav Naithani, Giambattista Parascandolo, Tom Barker, Tampere University of Technology, Finland; Niels Henrik Pontoppidan, Oticon A/S, Denmark; Tuomas Virtanen, Tampere University of Technology, Finland

CSDL-P2.2: END-TO-END RADIO TRAFFIC SEQUENCE RECOGNITION WITH277 RECURRENT NEURAL NETWORKS

Timothy J. O'Shea, Seth Hitefield, Virginia Tech, United States; Johnathan Corgan, Corgan Labs, United States

Lei Wang, Yimin Liu, Tsinghua University, China

CSDL-P2.4: SPARSE RECOVERY IN WIGNER-D BASIS EXPANSION	
Arya Bangun, Arash Behboodi, Rudolf Mathar, RWTH Aachen University, Germany	

Haoli Zhao, Shuxue Ding, Yujie Li, Zhenni Li, Xiang Li, Benying Tan, School of Computer Science and Engineering, Japan

CSDL-P3: COMPRESSED SENSING, DEEP LEARNING POSTER III

CSDL-P3.1: SPACEBORNE SAR ANTENNA SIZE REDUCTION ENABLED BY COMPRESSIVE SAMPLING	297
Xiaqing Yang, Vishal M. Patel, Athina P. Petropulu, Rutgers University, United States	
CSDL-P3.2: SPARSE REPRESENTATION OF HUMAN AUDITORY SYSTEM Mohammad Edalatian, Ali Asghar Soltani, Neda Faraji, Imam Khomeini International University, Iran	302
CSDL-P3.3: OUT-OF-LABEL SUPPRESSION DICTIONARY LEARNING WITH CLUSTER REGULARIZATION	307
Xiudong Wang, Yuantao Gu, Tsinghua University, China	
SPN-1: SIGNAL AND INFORMATION PROCESSING OVER NETWORKS I	
SPN-1.1: DISTRIBUTED SEQUENCE PREDICTION: A CONSENSUS + INNOVATIONS	312
Anit Kumar Sahu, Soummya Kar, Carnegie Mellon University, United States	
SPN-1.2: MULTILAYER SPECTRAL GRAPH CLUSTERING VIA CONVEX LAYER AGGREGATION Din Yu Chan Alfred Here, University of Michigan United States	317
Pin-iu Chen, Alfrea Hero, University of Michigan, United States	
SPN-1.3: CONSTRUCTION OF UNDERSAMPLED GRAPH FILTER BANKS VIA ROW SUBSET SELECTION Akie Sakiyama, Yuichi Tanaka, Tokyo University of Agriculture and Technology, Japan	322
SPN-1.4: SHANNON SAMPLING AND AN INVERSE PROBLEM FOR THE SCHRODINGER EQUATION ON COMBINATORIAL GRAPHS Isaac Pesenson, Temple University, United States	327
SPN-2: SIGNAL AND INFORMATION PROCESSING OVER NETWORKS II	
SPN-2.1: LOCALIZATION BOUNDS FOR THE GRAPH TRANSLATION	331
Benjamin Girault, University of Southern California, United States; Paulo Gonçalves, Inria, United States; Shrikanth S. Narayanan, Antonio Ortega, University of Southern California, United States	
SPN-2.2: CENTER-WEIGHTED MEDIAN GRAPH FILTERS	336
Santiago Segarra, University of Pennsylvania, United States; Antonio Garcia Marques, King Juan Carlos University, Spain; Gonzalo Arce, University of Delaware, United States; Alejandro Ribeiro, University of Pennsylvania, United States	
SPN-2.3: EGONET TENSOR DECOMPOSITION FOR COMMUNITY	341
IDENTIFICATION Fatemeh Sheikholeslami, Brian Baingana, Georgios B. Giannakis, Nicholas D. Sidiropoulos, University of Minnesota, United States	
SPN-2.4: FREQUENCY ANALYSIS OF TIME-VARYING GRAPH SIGNALS	346

Andreas Loukas, Damien Foucard, Technical University of Berlin, Switzerland

Francesco Grassi, Politecnico di Torino, Italy; Nathanaël Perraudin, Benjamin Ricaud, Ecole Polytechnique Fédérale de Lausanne, Switzerland

SPN-3: SIGNAL AND INFORMATION PROCESSING OVER NETWORKS III

Stefania Sardellitti, Sergio Barbarossa, Sapienza University of Rome, Italy; Paolo Di Lorenzo, University of Perugia, Italy

Abderrahim Elmoataz, University of Caen Normandy, GREYC Laboratory, Image Team / Université de Paris-Est Marne-La-Valée, Laboratoire LIGIM, France; François Lozes, University of Caen Normandy, GREYC Laboratory, Image Team, France; Hugues Talbot, Groupe ESIEE Paris, laboratoire A2SI, France

Benjamin Miller, Rajmonda Caceres, Steven Smith, MIT Lincoln Laboratory, United States

June Zhang, Centers for Disease Control and Prevention, United States; José M.F. Moura, Carnegie Mellon University, United States

SPN-4: SIGNAL AND INFORMATION PROCESSING OVER NETWORKS IV

Yanning Shen, Brian Baingana, Georgios B. Giannakis, University of Minnesota, United States

Feng Ji, Wee Peng Tay, Nanyang Technological University, Singapore; Lav R. Varshney, University of Illinois at Urbana-Champaign, United States

Fernando Gama, University of Pennsylvania, United States; Antonio Marques, King Juan Carlos University, Spain; Gonzalo Mateos, University of Rochester, United States; Alejandro Ribeiro, University of Pennsylvania, United States

SPN-P1: SIGNAL AND INFORMATION PROCESSING OVER NETWORKS POSTER I

SPN-P1.1: RECONSTRUCTION OF EUCLIDEAN EMBEDDINGS IN DENSE400NETWORKSSarah Costrell, Subhrajit Bhattacharya, Robert Ghrist, University of Pennsylvania, United States
SPN-P1.2: 2-DIMENSIONAL FINITE IMPULSE RESPONSE GRAPH-TEMPORAL405 FILTERS <i>Elvin Isufi, Geert Leus, Paolo Banelli, TU Delft, Netherlands</i>
SPN-P1.3: NEIGHBORHOOD-PRESERVING TRANSLATIONS ON GRAPHS410 <i>Nicolas Grelier, Bastien Pasdeloup, Jean-Charles Vialatte, Vincent Gripon, Télécom Bretagne, France</i>
SPN-P1.4: TRUSTABLE SERVICE RATING IN SOCIAL NETWORKS: A PEER
SPN-P1.5: APPROXIMATION OF NETWORK LINEAR OPERATORS USING
SPN-P1.6: CONSENSUS AND MULTIPLEX APPROACH FOR COMMUNITY
SPN-P1.7: GREEDY APPROACHES TO FINDING A SPARSE COVER IN A SENSOR430 NETWORK WITHOUT LOCATION INFORMATION <i>Terrence Moore, U.S. Army Research Lab, United States</i>
SPN-P1.8: A SCALABLE SMOOTH GRAPH LEARNING METHOD BASED ON
SPN-P2: SIGNAL AND INFORMATION PROCESSING OVER NETWORKS POSTER II
SPN-P2.1: A NEW PERSPECTIVE ON RANDOMIZED GOSSIP ALGORITHMS
SPN-P2.2: GRAPH TRANSFORMATION FOR KEYPOINT TRAJECTORY CODING445 Dong Tian, Huifang Sun, Anthony Vetro, Mitsubishi Electric Research Labs, United States
SPN-P2.3: A SPECTRAL GRAPH WIENER FILTER IN GRAPH FOURIER DOMAIN FOR

SPN-P2.4: IMPROVED ZERO-FORCING LINEAR PRECODER THROUGH TONE455 SUPPRESSION

Shailendra Singh, Qualcomm Atheros Inc, United States; Surendra Prasad, IIT Delhi, India, India

Sandeep Kumar, Ketan Rajawat, Indian Institute of Technology Kanpur, India

SPN-P2.6: OUTAGE BOTTLENECK FOR RELIABLE MOBILE COMPUTATION465 OFFLOADING: TRANSMISSION OR COMPUTATION?

Di Han, Bo Bai, Wei Chen, Tsinghua University, China

Jingjing Wang, Chunxiao Jiang, Tsinghua University, China; Tony Q. S. Quek, Singapore University of Technology and Design, Singapore; Yong Ren, Tsinghua University, China

RMN-1: DISTRIBUTED INFORMATION PROCESSING, OPTIMIZATION, AND RESOURCE MANAGEMENT OVER NETWORKS I

RMN-1.1: A PROJECTION-FREE DECENTRALIZED ALGORITHM FOR475 NON-CONVEX OPTIMIZATION

Hoi-To Wai, Anna Scaglione, Arizona State University, United States; Jean Lafond, Telecom ParisTech, France; Eric Moulines, Ecole Polytechnique, France

Dusan Jakovetic, Natasa Krklec Jerinkic, Natasa Krejic, Dragana Bajovic, University of Novi Sad, Serbia

Angelia Nedich, Alex Olshevsky, Wei Shi, University of Illinois at Urbana-Champaign, United States

Manxi Wang, Yongcheng Li, State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and Information System, China; Xiaohan Wei, University of Southern California, United States; Qing Ling, University of Science and Technology of China, China

RMN-1.5: DISTRIBUTED FICTITIOUS PLAY FOR MULTI-AGENT SYSTEMS WITH495 UNCERTAINTY

Ceyhun Eksin, Georgia Institute of Technology, United States; Alejandro Ribeiro, University of Pennsylvania, United States

RMN-2: DISTRIBUTED INFORMATION PROCESSING, OPTIMIZATION, AND RESOURCE MANAGEMENT OVER NETWORKS II

Sijia Liu, University of Michigan, United States; Vinod Sharma, Indian Institute of Science, India; Pramod K. Varshney, Syracuse University, United States

Mingmin Zhao, Zhejiang University, China; Qingjiang Shi, Zhejiang Sci-Tech University, China; Mingyi Hong, Iowa State University, United States

RMN-2.3: A DATA-DRIVEN APPROACH TO STOCHASTIC NETWORK OPTIMIZATION......510

Tianyi Chen, University of Minnesota, United States; Aryan Mokhtari, University of Pennsylvania, United States; Xin Wang, Fudan University, China; Alejandro Ribeiro, University of Pennsylvania, United States; Georgios B. Giannakis, University of Minnesota, United States

Alec Koppel, University of Pennsylvania, United States; Brian M. Sadler, U.S. Army Research Laboratory, United States; Alejandro Ribeiro, University of Pennsylvania, United States

RMN-P1: DISTRIBUTED INFORMATION PROCESSING, OPTIMIZATION, AND RESOURCE MANAGEMENT OVER NETWORKS POSTER

Sijia Liu, University of Michigan, United States; Nianxia Cao, Pramod K. Varshney, Syracuse University, United States

Tarek Lahlou, Tom Baran, MIT, United States

RMN-P1.3: ON LEADER-FOLLOWER MULTI-AGENT SYSTEMS IN DIRECTED530 LATTICES

Fu Lin, United Technologies Research Center, United States

RMN-P1.4: DISTRIBUTED LEARNING FOR RESOURCE ALLOCATION UNDER535 UNCERTAINTY

Panayotis Mertikopoulos, French National Center for Scientific Research, France; E. Veronica Belmega, École Nationale Supérieure de l'Electronique et de ses Applications, France; Luca Sanguinetti, University of Pisa, Italy

RMN-P1.5: DISTRIBUTED REGULARIZED PRIMAL-DUAL METHOD	540
Masoud Badiei Khuzani, Na Li, Harvard University, United States	

Elaheh Mohammadi, Alireza Fallah, Farokh Marvasti, Sharif University of Technology, Iran

Miguel Angel Gutierrez-Estevez, Renato Luis Garrido Cavalcante, Slawomir Stanczak, Fraunhofer Heinrich Herz Institute, Germany; Jietao Zhang, Hongcheng Zhuang, Huawei Technologies Co., China

RMN-P1.8: DISTRIBUTED SPARSITY-BASED BEARING ESTIMATION WITH A SWARM555 OF COOPERATIVE AGENTS

Dmitriy Shutin, Siwei Zhang, German Aerospace Center (DLR), Germany

Daniyal Amir Awan, Technische Universitaet Berlin, Germany; Renato Luis Garrido Cavalcante, Slawomir Stanczak, Fraunhofer Heinrich Hertz Institute, Germany

RMN-P1.10: DECENTRALIZED CONSTRAINED CONSENSUS OPTIMIZATION WITH565 PRIMAL DUAL SPLITTING PROJECTION

Han Zhang, University of Science and Technology of China, China; Wei Shi, University of Illinois at Urbana-Champaign, United States; Aryan Mokhtari, Alejandro Ribeiro, University of Pennsylvania, United States; Qing Ling, University of Science and Technology of China, China

Mark Eisen, Aryan Mokhtari, Alejandro Ribeiro, University of Pennsylvania, United States

Fahira Sangare, University of Houston, United States; Duy Huu Ngoc Nguyen, The University of Texas at Austin, United States; Yong Xiao, Zhu Han, University of Houston, United States

Francois Cote, Ioannis Psaromiligkos, Warren J. Gross, McGill University, Canada

Yujiao Cheng, Houfeng Huang, Gang Wu, Qing Ling, University of Science and Technology of China, China

DT5G-1: TRANSCEIVER IMPLEMENTATIONS AND ARCHITECTURES

DT5G-1.3: DECENTRALIZED BEAMFORMING FOR MASSIVE MU-MIMO ON A GPU590 CLUSTER

Kaipeng Li, Rice University, United States; Rishi Sharan, Cornell University, United States; Yujun Chen, Joseph R. Cavallaro, Rice University, United States; Tom Goldstein, University of Maryland, United States; Christoph Studer, Cornell University, United States

DT5G-1.4: COMPACT MODELING AND MANAGEMENT OF RECONFIGURATION IN595 DIGITAL CHANNELIZER IMPLEMENTATION

Adrian Sapio, University of Maryland, United States; Marilyn Wolf, Georgia Institute of Technology, United States; Shuvra Bhattacharyya, University of Maryland, United States

DT5G-2: MILLIMETER WAVE TECHNOLOGIES

DT5G-2.1: DYNAMIC SUBARRAY ARCHITECTURE FOR WIDEBAND HYBRID600 PRECODING IN MILLIMETER WAVE MASSIVE MIMO SYSTEMS

Sungwoo Park, Ahmed Alkhateeb, Robert W. Heath Jr., The University of Texas at Austin, United States

Cheng-Rung Tsai, Chiang-Hen Chen, Yu-Hsin Liu, An-Yeu (Andy) Wu, National Taiwan University, Taiwan

DT5G-2.3: PROGRESSIVE CHANNEL ESTIMATION FOR ULTRA-LOW LATENCY
Hung-Yi Cheng, Ching-Chun Liao, An-Yeu (Andy) Wu, National Taiwan University, Taiwan
DT5G-2.4: ANALYSIS OF BEAM SWEEP CHANNEL ESTIMATION IN MMWAVE 615 MASSIVE MIMO NETWORKS <i>Tianyang Bai, Robert W. Heath Jr., The University of Texas at Austin, United States</i>
DT5G-2.5: COMPRESSIVE SENSING BASED INITIAL BEAMFORMING TRAINING620 FOR MASSIVE MIMO MILLIMETER-WAVE SYSTEMS Han Yan, Danijela Cabric, University of California, Los Angeles, United States
DT5G-3: CELLULAR 5G SYSTEMS
DT5G-3.1: ENERGY EFFICIENT MULTI-HOP WIRELESS BACKHAUL IN625 HETEROGENEOUS CELLULAR NETWORKS Yuan Liang, Tianlong Song, Tongtong Li, Michigan State University, United States
DT5G-3.2: JOINT UL/DL MODE SELECTION AND TRANSCEIVER DESIGN FOR630 DYNAMIC TDD SYSTEMS Antti Tolli, Jarkko Kaleva, Ganesh Venkatraman, University of Oulu, Finland; David Gesbert, EURECOM,
France
DT5G-3.3: FAST-CONVOLUTION FILTERED OFDM WAVEFORMS WITH635 ADJUSTABLE CP LENGTH Markku Renfors, Juha Yli-Kaakinen, Toni Levanen, Mikko Valkama, Tampere University of Technology, Finland
DT5G-3.4: TRANSMIT BEAMFORMER AND QUANTIZATION DESIGN FOR
DT5G-4: TRANSCEIVER ALGORITHMS
DT5G-4.1: PILOT DECONTAMINATION VIA DOPPLER PSD ALIGNMENT645 Xiliang Luo, Xiaoyu Zhang, Penghao Cai, Fuqian Yang, ShanghaiTech University, China
DT5G-4.2: BLIND DIGITAL MODULATION CLASSIFICATION BASED ON M-TH650 POWER NONLINEAR TRANSFORMATION <i>Vincent Gouldieff, Jacques Palicot, CentraleSupelec/IETR, France; Steredenn Daumont, Zodiac Data Systems, France</i>
DT5G-4.3: EFFICIENT TIME-DOMAIN PHASE NOISE MITIGATION IN CM-WAVE655 WIRELESS COMMUNICATIONS <i>Ville Syrjälä, Toni Levanen, Mikko Valkama, Tampere University of Technology, Finland; Eeva Lähetkangas,</i> <i>Nokia Bell Labs, Finland</i>
DT5G-4.4: METHODS FOR PHASE NOISE MITIGATION FOR DFT-S-OFDM660 WAVEFORMS Ville Syrjälä, Toni Levanen, Mikko Valkama, Tampere University of Technology, Finland

DT5G-5: MASSIVE MIMO SYSTEMS

Karthik Upadhya, Sergiy Vorobyov, Aalto University, Finland; Mikko Vehkapera, The University of Sheffield, United Kingdom

DT5G-5.2: LOW-DENSITY SPATIAL RS DESIGN AND CHANNEL ESTIMATION FOR670 FDD MASSIVE FULL-DIMENSIONAL MIMO SYSTEMS

Wendong Liu, Zhaocheng Wang, Xudong Zhu, Tsinghua University, China

DT5G-5.3: LOW COMPLEXITY MRC AND EGC BASED RECEIVERS FOR SC-FDE675 MODULATIONS WITH MASSIVE MIMO SCHEMES

David Borges, Paulo Montezuma, Rui Dinis, FCT-UNL, Portugal

DT5G-6: FULL DUPLEX, TRANSCEIVER AND RF TECHNOLOGIES

DT5G-6.1: LOCATION-BASED BIDIRECTIONAL USER SCHEDULING AND MODE679 SELECTION IN FULL-DUPLEX SYSTEM

Jing Zhao, Shengqian Han, Chenyang Yang, Beihang University, China; Yong Teng, Naizheng Zheng, Nokia Networks, China

Jaakko Marttila, Markus Allén, Tampere University of Technology, Finland; Marko Kosunen, Kari Stadius, Jussi Ryynänen, Aalto University School of Electrical Engineering, Finland; Mikko Valkama, Tampere University of Technology, Finland

Adnan Kiayani, Lauri Anttila, Mikko Valkama, Tampere University of Technology, Finland

Mahmoud Abdelaziz, Lauri Anttila, Mikko Valkama, Tampere University of Technology, Finland

DT5G-P1: TRANSCEIVERS AND SIGNAL PROCESSING FOR 5G WIRELESS SYSTEMS

Liang Dong, Baylor University, United States

Kai Yang, Yuanming Shi, ShanghaiTech University, China; Jun Zhang, Hong Kong University of Science and Technology, China; Zhi Ding, University of California, Davis, United States; Khaled Letaief, Hong Kong University of Science and Technology, China

Huiting Su, Shengqian Han, Chenyang Yang, Beihang University, China

Long D. Nguyen, Trung Q. Duong, Queen's University Belfast, United Kingdom; Diep N. Nguyen, University of Technology Sydney, Australia; Le-Nam Tran, Maynooth University, Ireland

DT5G-P1.6: NOVEL EXTENDED MODIFIED TWIN TEST BASED SENSING FOR723 COOPERATIVE COMMUNICATION UNDER NOISE UNCERTAINTY

Antonio Tedeschi, Roma TRE University, Italy; Sener Dikmese, Tampere University of Technology, Finland; Francesco Benedetto, Roma TRE University, Italy; Markku Renfors, Tampere University of Technology, Finland; Gaetano Giunta, Roma TRE University, Italy

DT5G-P1.7: LOW POWER BASEBAND PROCESSOR FOR IOT TERMINALS WITH728 LONG RANGE WIRELESS COMMUNICATIONS

Shunyao Wu, Arizona State University, United States; Sungmoon Kang, Kwangwoon University, Korea (South); Chaitali Chakrabarti, Arizona State University, United States; Hyunseok Lee, Kwangwoon University, Korea (South)

Mona Aghababaeetafreshi, Matias Koskela, Dani Korpi, Pekka Jääskeläinen, Mikko Valkama, Jarmo Takala, Tampere University of Technology, Finland

DT5G-P2: MASSIVE MIMO AND MMWAVE

DT5G-P2.1: A PROBABILISTIC INTERFERENCE DISTRIBUTION MODEL	
ENCOMPASSING CELLULAR LOS AND NLOS MMWAVE PROPAGATION	
Hussain Elkotby, Mai Vu, Tufts University, United States	

Vutha Va, Haris Vikalo, Robert W. Heath Jr., The University of Texas at Austin, United States

Che-Chuan Yeh, Kai-Neng Hsu, Yuan-Hao Huang, National Tsing Hua University, Taiwan

DT5G-P2.4: IMPACT OF TRAINING ON MMWAVE MULTI-USER MIMO DOWNLINK......753 *Gilwon Lee, Jungho So, Youngchul Sung, KAIST, Korea (South)*

Saeid Aghaeinezhadfirouzja, Hui Liu, Bin Xia, Shanghai Jiao Tong University, China; Qun Luo, Weibin Guo, Shenzhen Institute of Radio Testing, China

Oskari Tervo, University of Oulu, Finland; Le-Nam Tran, Maynooth University, Ireland; Markku Juntti, University of Oulu, Finland

Chuting Yao, Jia Guo, Chenyang Yang, Beihang University, China

SGI-1: STATE ESTIMATION

Gang Wang, Ahmed S. Zamzam, Georgios B. Giannakis, Nicholas D. Sidiropoulos, University of Minnesota, United States

Marko Angjelichinoski, Aalborg University, Denmark; Anna Scaglione, Arizona State University, United States; Petar Popovski, Cedomir Stefanovic, Aalborg University, Denmark

Jinsub Kim, Sharmin Kibria, Oregon State University, United States

Dexin Wang, Liuqing Yang, Colorado State University, United States; Anthony Florita, S M Shafiul Alam, Tarek Elgindy, Bri-Mathias Hodge, National Renewable Energy Laboratory, United States

SGI-2: MEASUREMENT-BASED SMART GRID ANALYTICS

Mohammadreza Ghorbaniparvar, Ning Zhou, Xiaohua Li, Binghamton University, United States

Yang Chen, PJM Interconnection, United States; Harish Chintakunta, Florida Polytechnic University, United States; Le Xie, Texas A&M University, United States; Yuliy Baryshnikov, University of Illinois at Urbana-Champaign, United States; P. R. Kumar, Texas A&M University, United States

Liu Liu, University of Tennessee, United States; Austin Albright, Oak Ridge National Laboratory, United States; Alireza Rahimpour, Jiahui Guo, Hairong Qi, Yilu Liu, University of Tennessee, United States

Miltiadis Alamaniotis, Lefteri Tsoukalas, Purdue University, United States

Yue Zhao, Stony Brook University, United States; Jianshu Chen, Microsoft Research, United States; H. Vincent Poor, Princeton University, United States

SGI-3: CYBER-PHYSICAL ATTACKS AND FORENSICS

Young-hwan Lee, Seung-Jun Kim, University of Maryland, Baltimore County, United States

SGI-3.4: ADAPTIVE STATISTICAL DETECTION OF FALSE DATA INJECTION ATTACKS826 IN SMART GRIDS

Michael Kallitsis, Merit Network, Inc., United States; Shrijita Bhattacharya, Stilian Stoev, University of Michigan, United States; George Michailidis, University of Florida, United States

SGI-4: SMART GRID CONTROL

Matthew Weiss, Jianhua Zhang, Aranya Chakrabortty, North Carolina State University, United States

Yanhua Tian, Joshua A. Taylor, University of Toronto, Canada

SGI-5: OPTIMAL POWER FLOW AND POWER MARKETS

Hyungjin Choi, Peter Seiler, Sairaj Dhople, University of Minnesota, United States

Mohammadhafez Bazrafshan, Nikolaos Gatsis, University of Texas at San Antonio, United States

Daniel Molzahn, Argonne National Laboratory, United States; Cédric Josz, RTE, France; Ian Hiskens, University of Michigan, United States

Yuanzhang Xiao, Chaithanya Bandi, Ermin Wei, Northwestern University, United States

Hyun-Suk Lee, Yonsei University, Korea (South); Cem Tekin, Bilkent University, Turkey; Mihaela van der Schaar, University of California, Los Angeles, United States; Jang-Won Lee, Yonsei University, Korea (South)

SGI-6: POWER LINE AND SMART GRID COMMUNICATIONS

Mostafa Sayed, Naofal Al-Dhahir, University of Texas at Dallas, United States

Mahmoud Elgenedy, Mostafa Sayed, Naofal Al-Dhahir, University of Texas at Dallas, United States

Peter He, Lian Zhao, Xavier Fernando, Ryerson University, Canada

SGI-7: ELECTRIC VEHICLES

Javad Mohammadi, Soummya Kar, Carnegie Mellon University, United States; Gabriela Hug, ETH Zurich, United States

Akshay Malhotra, Nuh Erdogan, University of Texas at Arlington, United States; Giulio Binetti, Polytechnic University of Bari, United States; Ioannis Schizas, Ali Davoudi, University of Texas at Arlington, United States

Mohammad Sadegh Nourbakhsh, Mohammad Hossein Manshaei, Isfahan University of Technology, Iran; Mohammad Ashiqur Rahman, Tennessee Tech, United States; Walid Saad, Virginia Tech, United States

Mithat Kisacikoglu, University of Alabama, United States; Fatih Erden, Atilim University, Turkey; Nuh Erdogan, University of Texas at Arlington, United States

SGI-P1: STORAGE MANAGEMENT AND DEMAND RESPONSE

SGI-P1.1: REAL-TIME OPERATION OF HETEROGENEOUS ENERGY STORAGE916 UNITS
Sarthak Gupta, Vassilis Kekatos, Virginia Tech, United States
SGI-P1.2: DEMAND RESPONSE AGGREGATORS IN MICROGRID ENERGY TRADING921 Maria Gregori, Javier Matamoros, David Gregoratti, CTTC, Spain
SGI-P1.3: AGGREGATE LOAD MODELS FOR DEMAND RESPONSE: EXPLORING
SGI-P1.4: ADMM APPROACH TO ASYNCHRONOUS DISTRIBUTED
SGI-P1.5: DECENTRALIZED TEMPERATURE CONTROL VIA HVAC SYSTEMS IN
ITSP-1: INFORMATION THEORETIC APPROACHES TO SECURITY AND PRIVACY I
ITSP-1.1: THE CAPACITY OF PRIVATE INFORMATION RETRIEVAL WITH941 COLLUDING DATABASES Hua Sun, Syed Jafar, University of California Irvine, United States
ITSP-1.2: ON DETERMINISTIC IC WITH COMMON AND PRIVATE MESSAGE
Hendrik Vogt, Zonaib Hassan Awan, Ayain Sezgin, Kunr-Universität Bochum, Germany
Hendrik Vogt, Zonaib Hassan Awan, Ayain Sezgin, Runr-Universität Bochum, Germany ITSP-1.3: ON THE DUALITY BETWEEN STATE-DEPENDENT CHANNELS AND953 WIRETAP CHANNELS David Kibloff, Samir M. Perlaza, INRIA, France; Guillaume Villemaud, Leonardo Cardoso, INSA de Lyon, France

ITSP-2: INFORMATION THEORETIC APPROACHES TO SECURITY AND PRIVACY II

ITSP-2.4: ACHIEVING SEMANTIC SECURITY WITHOUT KEYS THROUGH CODING964 AND ALL-OR-NOTHING TRANSFORMS OVER WIRELESS CHANNELS

Marco Baldi, Linda Senigagliesi, Franco Chiaraluce, Università Politecnica delle Marche, Italy

ITSP-2.5: ON THE INPUT DISTRIBUTION AND OPTIMAL BEAMFORMING FOR THE970 MISO VLC WIRETAP CHANNEL

Mohamed Amine Arfaoui, Texas A&M University at Qatar, Qatar; Zouheir Rezki, University of Idaho, United States; Ali Ghrayeb, Texas A&M University at Qatar, Qatar; Mohamed-Slim Alouini, King Abdullah University of Science and Technology, Saudi Arabia

ITSP-P1: INFORMATION THEORETIC APPROACHES TO SECURITY AND PRIVACY POSTER

ITSP-P1.1: A MINORIZATION-MAXIMIZATION ALGORITHM FOR AN-BASED MIMOME975 SECRECY RATE MAXIMIZATION

Mudassir Masood, Ali Ghrayeb, Texas A&M University at Qatar, Qatar; Prabhu Babu, CARE, IIT Delhi, India; Issa Khalil, QCRI, Qatar; Mazen Hasna, Qatar University, Qatar

ITSP-P1.2: ROBUST ENERGY-EFFICIENT TRANSMIT DESIGN FOR MISOME981 WIRETAP CHANNELS

Weidong Mei, Zhi Chen, Jun Fang, University of Electronic Science and Technology of China, China

Onur Günlü, Technical University of Munich, Germany; Onurcan Iscan, Huawei Technologies Duesseldorf GmbH, Germany; Vladimir Sidorenko, Gerhard Kramer, Technical University of Munich, Germany

ITSP-P1.4: PHYSICAL LAYER SECURITY GAME WITH FULL-DUPLEX PROACTIVE992 EAVESDROPPER

Wei Huang, Wei Chen, Bo Bai, Shidong Zhou, Tsinghua University, China; Zhu Han, University of Houston, United States

Mohaned Chraiti, Concordia University, Canada; Ali Ghrayeb, Texas A&M University at Qatar, Qatar; Chadi Assi, Concordia University, Canada

ITSP-P1.6: STRONG SECRECY CAPACITY OF ARBITRARILY VARYING WIRETAP1002 CHANNELS WITH FINITE COORDINATION RESOURCES

Ahmed Mansour, Holger Boche, Technische Universität München, Germany

ITSP-P1.7: PRIVACY PROTECTION: A COMMUNITY-STRUCTURED1007 EVOLUTIONARY GAME APPROACH

Jun Du, Chunxiao Jiang, Tsinghua University, China; Shui Yu, Deakin University, Australia; Kwang-Cheng Chen, National Taiwan University, Taiwan; Yong Ren, Tsinghua University, China

ESP-1: EMERGING SIGNAL PROCESSING APPLICATIONS I

ESP-1.1: FROM CELLULAR NETWORKS TO THE GARDEN HOSE: ADVANCES IN1012 RAINFALL MONITORING VIA CELLULAR POWER MEASUREMENTS

Hagit Messer, Lior Gazit, Tel Aviv University, Israel

ESP-1.2: HIDDEN MARKOV MODEL-BASED GESTURE RECOGNITION WITH1017 FMCW RADAR

Greg Malysa, Dan Wang, Lorin Netsch, Murtaza Ali, Texas Instruments, United States

Chen Chen, Yi Han, University of Maryland College Park, United States; Yan Chen, School of Electronic Engineering, University of Electronic Science and Technology of China, China; Feng Zhang, K.J. Ray Liu, University of Maryland College Park, United States

ESP-2: EMERGING SIGNAL PROCESSING APPLICATIONS II

ESP-2.4: CASCADED REGRESSION FOR 3D POSE ESTIMATION FOR MOUSE IN1032 FISHEYE LENS DISTORTED MONOCULAR IMAGES

Ghadi Salem, Jonathan Krynitsky, National Institutes of Health, United States; Monson Hayes, George Mason University, United States; Thomas Pohida, National Institutes of Health, United States; Xavier Burgos-Artizzu, Transmural Biotech, Spain

ESP-2.5: COMPLEX INPUT CONVOLUTIONAL NEURAL NETWORKS FOR WIDE1037 ANGLE SAR ATR

Michael Wilmanski, University of Michigan & Integrity Applications Incorporated, United States; Chris Kreucher, Integrity Applications Incorporated, United States; Alfred Hero, University of Michigan, United States

ESP-P1: EMERGING SIGNAL PROCESSING APPLICATIONS POSTER

ESP-P1.1: HIERARCHICAL ACTIVITY CLUSTERING ANALYSIS FOR ROBUST1042 GRAPHICAL STRUCTURE RECOVERY

Namita Lokare, Daniel Benavides, Sahil Juneja, Edgar Lobaton, North Carolina State University, United States

ESP-P1.2: SHARING FOR SAFETY: THE BANDWIDTH ALLOCATION AMONG1047 AUTOMOTIVE RADARS

Hang Ruan, Yimin Liu, Tsinghua University, China; Huadong Meng, University of California, Berkeley, United States; Xiqin Wang, Tsinghua University, China

ESP-P1.3: ON THE TRADEOFF BETWEEN RESOLUTION AND AMBIGUITIES FOR1052 NON-UNIFORM LINEAR ARRAYS

Francois Vincent, Olivier Besson, University of Toulouse, France; Souleymane Abakar-Issakha, Frantz Bodereau, Autocruise, France; Laurent Ferro-Famil, University of Rennes 1, France

ESP-P1.4: CONTROL LOOP AUTOMATION MANAGEMENT PLATFORM (CLAMP)......1056 Mazin Gilbert, Rittwik Jana, Eric Noel, Vijay Gopalakrishnan, AT&T Labs, United States

ESP-P1.5: MULTI-PERSON BREATHING RATE ESTIMATION USING1059 TIME-REVERSAL ON WIFI PLATFORMS

Chen Chen, Yi Han, University of Maryland College Park, United States; Yan Chen, School of Electronic Engineering, University of Electronic Science and Technology of China, China; K.J. Ray Liu, University of Maryland College Park, United States

ESP-P1.8: LOW COMPLEXITY ALGORITHMS TO INDEPENDENTLY AND JOINTLY1072 ESTIMATE THE LOCATION AND RANGE OF TARGETS USING FMCW

Sajid Ahmed, Seifallah Jardak, Mohamed-Slim Alouini, King Abdullah University of Science and Technology, Saudi Arabia

CCR-1: MACHINE LEARNING FOR CHARACTERIZATION OF COGNITIVE COMMUNICATIONS AND RADAR I

CCR-1.4: OPTIMAL EXPLOITATION OF FLUCTUATING TARGET MEASUREMENTS1088 *Chris Kreucher, Paul Bierdz, IAI, United States; Kristine Bell, Metron Scientific Solutions, United States*

CCR-2: MACHINE LEARNING FOR CHARACTERIZATION OF COGNITIVE COMMUNICATIONS AND RADAR II

Silvija Kokalj-Filipovic, Michael Pepe, Crystal Bertoncini Acosta, Naval Research Laboratory, United States

Kevin Pietsch, Sean Mason, Lockheed Martin, United States

CCR-2.3: LEARNING EQUILIBRIA FOR POWER ALLOCATION GAMES IN COGNITIVE1104 RADIO NETWORKS WITH A JAMMER

Raghed El-Bardan, Syracuse University, United States; Vinod Sharma, Indian Institute of Science, India; Pramod K. Varshney, Syracuse University, United States

CCR-3: MACHINE LEARNING FOR CHARACTERIZATION OF COGNITIVE COMMUNICATIONS AND RADAR III

CCR-3.2: USING DEPENDENT COMPONENT ANALYSIS FOR BLIND CHANNEL
CCR-3.3: SENSITIVITY OF L-1 REGULARIZATION ON SUBSPACE-BASED SIMO
CCR-3.4: A SEQUENTIAL DETECTION APPROACH TO INDOOR POSITIONING
BDMI-1: BIG DATA ANALYSIS AND CHALLENGES IN MEDICAL IMAGING I
BDMI-1.1: COMPLEXITY REDUCTION TECHNIQUES IN MUSIC-BASED EEG
BDMI-1.2: GRAPH INFORMATION THEORETIC MEASURES ON FUNCTIONAL
BDMI-1.3: SUM OF OUTER PRODUCTS DICTIONARY LEARNING FOR INVERSE
BDMI-2: BIG DATA ANALYSIS AND CHALLENGES IN MEDICAL IMAGING II
BDMI-2.3: COMMUNITY DETECTION FROM GENOMIC DATASETS ACROSS1147 HUMAN CANCERS <i>Nandinee Haq, Z. Jane Wang, University of British Columbia, Canada</i>
BDMI-2.4: CLOUD-BASED DEEP LEARNING OF BIG EEG DATA FOR EPILEPTIC

Monammaa-Parsa Hosseini, Kutgers University, United States; Hamid Soltanian-Zadeh, Henry Ford Health System, United States; Kost V Elisevich, Michigan State University, United States; Dario Pompili, Rutgers University, The State University of New Jersey, United States

BDMI-3: BIG DATA ANALYSIS AND CHALLENGES IN MEDICAL IMAGING III

Zhe Wang, Tianlong Song, Yuan Liang, Tongtong Li, Michigan State University, United States

BDMI-3.2: EPILEPTOGENIC BRAIN CONNECTIVITY PATTERNS USING SCALP EEG......1161

Panuwat Janwattanapong, Mercedes Cabrerizo, Hoda Rajaei, Florida International University, United States; Alberto Pinzon-Ardila, Baptist Hospital of Miami, United States; Sergio Gonzalez-Arias, Malek Adjouadi, Florida International University, United States

Mahmoud Essalat, Mahdi Boloursaz Mashhadi, Farokh Marvasti, Advanced Communications Research Institute (ACRI), Iran

BDMI-4: BIG DATA ANALYSIS AND CHALLENGES IN MEDICAL IMAGING IV

Ramy Hussein, Z. Jane Wang, Rabab Ward, University of British Columbia, Canada

Abbas Kazemipour, Ji Liu, Patrick Kanold, Min Wu, Behtash Babadi, University of Maryland, United States

UCD-1: SIGNAL PROCESSING FOR UNDERSTANDING CROWD DYNAMICS I

Peter Tu, Ming-Ching Chang, Tao Gao, General Electric, United States

UCD-2: SIGNAL PROCESSING FOR UNDERSTANDING CROWD DYNAMICS II

UCD-2.1: AN ANALYSIS OF THE ROBUSTNESS OF DEEP FACE RECOGNITION1192 NETWORKS TO NOISY TRAINING LABELS

Christopher Reale, University of Maryland, United States; Nasser Nasrabadi, West Virginia University, United States; Rama Chellappa, University of Maryland, United States

UCD-2.2: A GAME-THEORETIC MODELING OF POPULARITY DYNAMICS1197

Xuanyu Cao, University of Maryland, United States; Yan Chen, University of Electronic Science and Technology of China, China; K.J. Ray Liu, University of Maryland, United States

UCD-2.4: ACTIVE SPEAKER DETECTION IN HUMAN MACHINE MULTIPARTY1207 DIALOGUE USING VISUAL PROSODY INFORMATION

Fasih Haider, Trinity College Dublin, Ireland; Saturnino Luz, University of Edinburgh, United Kingdom; Nick Campbell, Trinity College Dublin, Ireland

Sebastian Bek, Eduardo Monari, Fraunhofer Institute of Optronics, System Technologies and Image Exploitation (IOSB), Germany

UCD-P1: SIGNAL PROCESSING FOR UNDERSTANDING CROWD DYNAMICS POSTER

UCD-P1.1: SURFACE-BASED BACKGROUND COMPLETION IN 3D SCENE
UCD-P1.2: A HIERARCHICAL APPROACH TO EVENT DISCOVERY FROM SINGLE
UCD-P1.3: THE IMPACT OF PHASE TRANSITION ON QUALITY ASSESSMENT OF
UCD-P1.4: EMPLOYING VECTOR QUANTIZATION ON DETECTED FACIAL PARTS
UCD-P1.5: TRACKING HIERARCHICAL STRUCTURE OF WEB VIDEO GROUPS1238 BASED ON SALIENT KEYWORD MATCHING INCLUDING SEMANTIC BROADNESS ESTIMATION Ryosuke Harakawa, Takahiro Ogawa, Miki Haseyama, Hokkaido University, Japan
UCD-P1.7: CROWD ANALYSIS USING VISUAL AND NON-VISUAL SENSORS, A
UCD-P1.8: DYNAMIC SCENE CLASSIFICATION USING CONVOLUTIONAL NEURAL1255 NETWORKS Aalok Gangopadhyay, Shivam Mani Tripathi, Ishan Jindal, Shanmuganathan Raman, IIT Gandhinagar, India
UCD-P1.9: ACTION CLASSIFICATION FROM MOTION CAPTURE DATA USING
SPBD-1: SIGNAL PROCESSING OF BIG DATA I
SPBD-1.1: NEAR-OPTIMALITY OF GREEDY SET SELECTION IN THE SAMPLING1265 OF GRAPH SIGNALS <i>Luiz F. O. Chamon, Alejandro Ribeiro, University of Pennsylvania, United States</i>
SPBD-1.2: MONITORING MANHATTAN'S TRAFFIC AT 5 INTERSECTIONS?

Joya A. Deri, José M.F. Moura, Carnegie Mellon University, United States

Panagiotis Traganitis, Georgios B. Giannakis, University of Minnesota, United States

SPBD-2: SIGNAL PROCESSING OF BIG DATA II

SPBD-2.1: THE BRAIN STRATEG	Y FOR ONLINE LEARNING	
Stefan Vlaski, Bicheng Ying, Ali Sayed,	University of California, Los Angeles,	United States

Aurelie Lozano, Prasanna Sattigeri, Aleksandra Mojsilovic, Kush Varshney, IBM Thomas J. Watson Research Center, United States

Qilian Yu, University of California, Davis, United States; Easton Li Xu, Texas A&M University, United States; Shuguang Cui, University of California, Davis, United States

Sunandan Chakraborty, Lakshminarayanan Subramanian, New York University, United States

SPBD-3: SIGNAL PROCESSING OF BIG DATA III

Abolfazl Hashemi, Haris Vikalo, The University of Texas at Austin, United States

Mostafa Rahmani, George Atia, University of Central Florida, United States

NCTA-1: NON-COMMUTATIVE THEORY AND APPLICATIONS I

Kwang-Sung Jun, Robert Nowak, University of Wisconsin-Madison, United States

Todd Coleman, Justin Tantiongloc, Alexis Allegra, Diego Mesa, Dae Kang, Marcela Mendoza, University of California, San Diego, United States

NCTA-2: NON-COMMUTATIVE THEORY AND APPLICATIONS II

Lu Wei, University of Michigan-Dearborn, United States; Anand Sarwate, Rutgers University, United States; Jukka Corander, University of Oslo, Norway; Alfred Hero, University of Michigan, Ann Arbor, United States; Vahid Tarokh, Harvard University, United States

Basak Guler, Aylin Yener, The Pennsylvania State University, United States; Ananthram Swami, Army Research Laboratory, United States

Noor Felemban, Zongqing Lu, Tom La Porta, The Pennsylvania State University, United States; Kevin Chan, U.S. Army Research Laboratory, United States

SSPC-1: SPARSE SIGNAL PROCESSING FOR COMMUNICATIONS I

SSPC-1.2: DECENTRALIZED JOINT SPARSITY PATTERN RECOVERY USING 1-BIT1354 COMPRESSIVE SENSING

Swatantra Kafle, Bhavya Kailkhura, Thakshila Wimalajeewa, Pramod K. Varshney, Syracuse University, United States

Santhosh Karnik, Georgia Institute of Technology, United States; Zhihui Zhu, Michael Wakin, Colorado School of Mines, United States; Justin Romberg, Mark Davenport, Georgia Institute of Technology, United States

SSPC-1.4: NONNEGATIVE GRIDLESS COMPRESSIVE SENSING FOR CO-PRIME1364 ARRAYS

Heeseong Yang, KAIST, Korea (South); Haris Vikalo, The University of Texas at Austin, United States; Joohwan Chun, KAIST, Korea (South)

SSPC-1.5: ON THE EARTH MOVER'S DISTANCE AS A PERFORMANCE METRIC FOR1368 SPARSE SUPPORT RECOVERY

Anastasia Lavrenko, Florian Römer, Technische Universität Ilmenau, Germany; Giovanni Del Galdo, Fraunhofer Institute for Integrated Circuits, Germany; Reiner Thomä, Technische Universität Ilmenau, Germany

SSPC-2: SPARSE SIGNAL PROCESSING FOR COMMUNICATIONS II

Danlan Huang, Xiaoming Tao, Tsinghua University, China; Mai Xu, Beihang University, China; Shenghua Gao, ShanghaiTech University, China; Jianhua Lu, Tsinghua University, China

Xingjian Zhang, Yuan Ma, Yue Gao, Queen Mary University of London, United Kingdom

Fnu Suya, Arizona State University, United States; Yuanming Shi, ShanghaiTech University, China; Bo Bai, Wei Chen, Tsinghua University, China; Jun Zhang, Khaled Letaief, The Hong Kong University of Science and Technology, China; Shidong Zhou, Tsinghua University, China

Mohamed Mokhtar Awadin, Ridha Hamila, Qatar University, Qatar; Waheed Bajwa, Rutgers University, The State University of New Jersey, United States; Naofal Al-Dhahir, University of Texas at Dallas, United States

SSPC-P1: SPARSE SIGNAL PROCESSING FOR COMMUNICATIONS POSTER I

Ahmad Bazzi, EURECOM / RW-CEVA, France; Dirk Slock, EURECOM, France; Lisa Meilhac, RW-CEVA, France

Ahmad Bazzi, EURECOM / RW-CEVA, France; Dirk Slock, EURECOM, France; Lisa Meilhac, RW-CEVA, France

SSPC-P1.3: FAST METHODS FOR RECOVERING SPARSE PARAMETERS IN LINEAR1403 LOW RANK MODELS

Ashkan Esmaeili, Arash Amini, Farokh Marvasti, Sharif University of Technology, Iran

SSPC-P1.4: A STUDY ON MIXING SEQUENCES IN MODULATED WIDEBAND1408 CONVERTERS

Jehyuk Jang, Nam Yul Yu, Heung-No Lee, Gwangju Institute of Science and Technology, Korea (South)

Yue Wang, Hisilicon Technologies Co. Ltd., United States; Zhi Tian, George Mason University, United States; Shulan Feng, Philipp Zhang, Hisilicon Technologies Co. Ltd., China

SSPC-P1.6: REGULARIZED VSSNLMS-BASED ITERATIVE CHANNEL ESTIMATION1418 FOR MC-IDMA SYSTEMS

Olutayo Oyeyemi Oyerinde, University of the Witwatersrand, South Africa

Tilahun Melkamu Getu, École de Technologie Supérieure (ÉTS) and Université du Québec À Montréal (UQÀM), Canada; Wessam Ajib, Université du Québec À Montréal (UQÀM), Canada; René Jr. Landry, École de Technologie Supérieure (ÉTS), Montréal, QC, Canada, Canada

SSPC-P1.8: GENERALIZED APPROXIMATE MESSAGE PASSING FOR ONE-BIT1428 COMPRESSED SENSING WITH AWGN

Osman Musa, Gabor Hannak, Norbert Goertz, Technische Univesitaet Wien, Austria