2017 IEEE 6th International Conference on Teaching, Assessment, and Learning for Engineering (TALE 2017)

Hong Kong 12 – 14 December 2017

IEEE Catalog Number: ISBN: CFP17TAL-POD 978-1-5386-0901-9

Copyright © 2017 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

IEEE Catalog Number:	
ISBN (Print-On-Demand):	
ISBN (Online):	
ISSN:	

CFP17TAL-POD 978-1-5386-0901-9 978-1-5386-0900-2 2374-0191

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com

2017 IEEE International Conference on Teaching, Assessment and Learning for Engineering (TALE)

Table of Contents

Title lable of Contents	Page range
Enabling Systems Thinking for Engineering Students	1-5
Teachers' Readiness in Implementing Science, Technology, Engineering and Mathematics (STEM) Education from the Cognitive, Affective and Behavioural	6-12
Using the Augmented Reality Sandbox for Advanced Learning in Geoscience Education	13-17
Interdisciplinary New Product Development Projects Extended Over Engineering and Management Courses	18–23 24–28
Teamwork as a Fundamental Skill for Engineering Graduates	24-28
Project Management SPOC with Animation	
Design of An Augmented Reality Teaching System for FPGA Experimental Instruction	35-38
Outcome Based Evaluation of Curriculum Goals Completion for Engineering Education	39-43
THINKLog: Interactive Learning for Supply Chain Management	44-51
Mobile Device Aided Teaching and Learning of Electromagnetic Polarization	52-55
Teaching Internet of Things: Enhancing Learning Efficiency via Full-Semester Flipped Classroom	56-60
The Framework for the Integration of Computational Thinking in Ideation Process	61-65
Towards a Repository for Open Auto-Gradable Programming Exercises	66–73
Homogeneous Group Formation in Collaborative Learning using Fuzzy C-Mean	N/A
Integrative Learning in K-12 STEM Education: How to Prepare the First Step?	80–87
Study And Exploration About Quality Assurance System Of College Graduation Design Based On Cooperative Teaching	88–91
Vocational Education and Training Policy and Its Learners - What Are The Links?	92–94
Does a Good Match of Trainees, Aô Learning Styles to Their Tutors' Instructional Strategies Contribute to Trainees, Aô Academic Achievements?	95–99
Video Conferencing as a Peephole to MOOC Participants	100–107
Cyber Security Education for K-6 Using CS4K, Graphical Authentication and Authorisation Modules for Learning About Security	N/A
Development of a Blended Learning System for Engineering Students Studying Intellectual Property Law, and an Analysis of the Relationship between System	114–117
The influence of learners, Aô openness to IT experience on the attitude and perceived learning effectiveness with virtual reality technologies	118–123
Accuracy problems' solutions in Analog Electronics course: Work in progress	124–127
Facilitating Online Casual Interactions and Creating a Community of Learning in a First-Year Electrical Engineering Course	128–133
Dual-Study Electrical Engineering at Al-Quds University in Palestine	134–138
REPDL: Research-oriented e-learning platform based on digital library	139–142
Design of an Web-based Interactive Quantitative (IQ) Curriculum Map	143–146
An Efficient Framework for Game-Based Learning Activity	147–150
Exercation: Educating Students on their Exercise, Sedentary Behaviour and Screen Time Data. Engineering Technology to provide eHealth Awareness	N/A
Improvement on Education Quality of Graduate Students Facing the Challenge of Big Data Era	156–159
An Efficient Method for Changing Undergraduate Students' Addiction to the Computer Games into the Interest of Learning	160–162
Analysis and Reform of Engineering Curriculums for Graduate Students in China	163–166
The Interactive Effects of Coaching Styles on Students' Self-Regulatory Emotions and Academic Performance in a Peer-Assisted Learning Scheme	167–174
Effectiveness of Teaching and Learning Activities with Miniproject Development Towards Enhancing The Undergraduate Engineering Skills	175–180
Science and Technology Learning Quality Model -The Innovation of Smart School Alliances	N/A
Learning Pairing-Based Cryptography by Hands-On Exercises	186–191
Prediction Models of Learning Strategies and Learning Achievement for Lifelong Learning	192–197
Outcomes-based Student Performance Diagnostic and Support Model	198–203
Preferred Methods for Innovative Concept Generation in Engineering	204–208
Quantitative Learning Effect Evaluation of Programming Learning Tools	209–216
An early warning model of student achievement based on Decision Trees algorithm	217–222
A Flipped Mode Approach to Teaching an Electronic System Design Course	223–228
English-Medium Instruction in Engineering Education: Practices, Challenges, and Suggestions	229–232
Developing an Automated Coding Tutorial OER	233–238
Investigating Performance in a Blended SPOC	239–245
Exploring the Impact of Flipped Classroom on Students' Acceptance of Programming in Secondary Education	246-249
Students' Behavior Analysis under the Sakai LMS	250-255
Teaching Research Methods for Computer Science Students Using Active Learning Approach	256-260
Impact of Outcome-Based Education on Software Engineering Teaching: a Case Study	261-264
Promoting staged self-directed learning (SSDL) among Malaysian tertiary learners through online discussion in completing group assignment	265-270
Anatomy Learning by Virtual Reality and Leap Motion	N/A
Online Design of an Advanced Analytical Engineering Course: Outcome of a Pilot Implementation	277–282
Affecting Factors and Supporting Measures for International Student Mobility	283-289
Designing Simulation Games for Information Systems Education – a Case Study in Teaching for Digital Marketing	290–295
	230-235

A Conceptual Model of Integrated STEM Education in K-12	296–302
An Intelligent Mining Technique for CBL	303–306
Modular Virtual Simulation Experimental Resource Designing and Application for Optical Fiber Communication Course	307–308
Engineering Accomplishment Cultivation for Engineering Education Accreditation oriented Higher Education Reform: An Empirical Research in NJUPT	309-312
Potentials and challenges of Using Flipped Classroom in Teaching Computer Programming	N/A
Open Educational Resource (OER) Adoption in Higher Education: Challenges and Strategies	317–319
Integrating Computational Thinking into English Dialogue Learning through Graphical Programming Tool	320–325
Improving Students' Hands-on Experiences in Learning Signals and Systems	326–332
Students, Äô Perception on Teaching and Learning Activities and Their Understanding in Power Engineering Course	333–338
Effect of Secondary School Subject Choices on Performance of Sub-degree Students In Hong Kong ,Äì A STEM Perspective	339–345
Student's Characteristics and Programming Learning – A Macanese Perspective	346–353
Utilization Of ICTs In Quality Assurance And Accreditation Of Higher Education: Systematic Literature Review	354–359
Supporting Better Formative Feedback In Task-Oriented Portfolio Assessment	360–367
A Comprehension Based Intelligent Assessment Architecture	368–371
The Demand of Entrepreneurship Training Program for Engineering Students	372–376
Teachers' Perception of Professional Development in Coding Education	377–380
The Effect of Collaborative Learning Techniques in the Flipped Classroom Learning - Computer Ethics Course	381–388
Fuzzy Signature Approach to Clarification of Subjectivity in Assessment of Metacognitive Skills Transfer	389–392
Class-Wide Course Feedback Methods by Student Engagement Program	393–398
Implement Cooperative Learning Activities via Cloud Application to Enhancing ICT Literacy Skills of Vocational Teachers	399–405
Enhancing an Automated System for Assessment of Student Programs using the Token Pattern Approach	406-413
Exploring the Use of Virtual Environment for International Creative Education (Art & Design)	414-419
What Computer Games Can Teach Us about Classroom Teaching?	420-425
A propriety game based learning mobile game to learn Object-Oriented Programming - Odyssey of Phoenix	426-431
EasyHPC: An Online Programming Platform for Learning High Performance Computing	432-435
Vertically Integrated Projects (VIP) at Inha University: The Effect of Convergence Project Education on Learning Satisfaction	436–443
A preliminary study on teaching quality assessment from the perspective of "Students as Customers"	444-448
Principle-Guided Flipped Classroom Implementation Framework for Teaching Technological Contents	449-456
Understanding the Role of Arts and Humanities in Social Robotics Design: An Experiment for STEAM Enrichment Program in Thailand	457–460
Active Learning Modules for Multi-Professional Emergency Management Training in Virtual Reality	461–468
Assessing Primary School Students' Intrinsic Motivation of Computational Thinking	469-474
Towards a Student-centered Lab Design for Learning Principles of Communications	475–478
Towards Research-led Teaching Curriculum Development for Machine Learning Algorithms	479–481
Analyzing Heterogeneous Learning Logs using the Iterative Convergence Method	482–487
Utilizing Virtual Reality to Assist Students in Learning Physics	486–489
A Model of Identification and Adaptation of Learning Styles Based on Cognitive Inference	490–496
RankwithTA: A robust and accurate peer grading mechanism for Massive Online Open Courses (MOOCs)	497–502
A Quick Prototyping Project for First Year Engineering Students	503–508