2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA 2017)

Cancun, Mexico 18-21 December 2017

Pages 1-579

IEEE Catalog Number: ISBN:

CFP17592-POD 978-1-5386-1419-8

Copyright © 2017 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

IEEE Catalog Number:	CFP17592-POD
ISBN (Print-On-Demand):	978-1-5386-1419-8
ISBN (Online):	978-1-5386-1418-1

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com

Proceedings

16th IEEE International Conference on Machine Learning and Applications

ICMLA 2017

18–21 December 2017 Cancun, Mexico **Proceedings**

16th IEEE International Conference on Machine Learning and Applications

ICMLA 2017

18–21 December 2017 Cancun, Mexico

Editors Xuewen Chen, Bo Luo, Feng Luo, Vasile Palade, and M. Arif Wani

2017 16th IEEE International Conference on Machine Learning and Applications ICMLA 2017

Table of Contents

Preface	xxvi
Organizing Committee	xxviii
Program Commitee	
Keynotes	xxxii

C1A: Deep Learning I

Deep Learning of Cell Classification Using Microscope Images of Intracellular Microtubule Networks Aleksei Shpilman (Saint Petersburg National Research Academic University of the Russian Academy of Sciences), Dmitry Boikiy (Saint Petersburg National Research Academic University of the Russian Academy of Sciences), Marina Polyakova (Moscow Institute of Physics and Technology), Daniel Kudenko (Department of Computer Science), Anton Burakov (A.N. Belozersky Intstitute of Physico-Chemical Biology), and Elena Nadezhdina (Institute of Protein Research of the Russian Academy of Sciences)	1
DeepPositioning: Intelligent Fusion of Pervasive Magnetic Field and WiFi Fingerprinting for Smartphone Indoor Localization via Deep Learning Wei Zhang (Northeastern University), Rahul Sengupta (National Science Foundation Center for Big Learning), John Fodero (National Science Foundation Center for Big Learning), and Xiaolin Li (National Science Foundation Center for Big Learning)	7
Learning to Coordinate with Deep Reinforcement Learning in Doubles Pong Game	4
Deep Learning for Microalgae Classification	0

C1B: Clustering Methods with Applications

Anomaly Prediction Based on k-Means Clustering for Memory-Constrained Embedded Devices .	
Yuto Kitagawa, Tasuku Ishigoka (Center for Technology	
Innovation-Controls), and Takuya Azumi (Graduate School of Engineering	
Science Osaka University)	

Clustering Distributed Short Time Series with Dense Patterns	34
Josenildo Costa da Silva (IFMA), Gustavo H. B. S. Oliveira (IFMA),	
Stefano Lodi (Universitá di Bologna), and Matthias Klusch (DFKI)	
Modeling Over-Dispersion for Network Data Clustering	42
Lu Wang (Wayne State University), Dongxiao Zhu (Wayne State	
University), Ming Dong (Wayne State University), and Yan Li	
(University of Michigan)	
Deep Learning Based Car Damage Classification	50
Kalpesh Patil (IIT Bombay), Mandar Kulkarni (TCS Innovation Labs),	
Anand Sriraman (TCS Innovation Labs), and Shirish Karande (TCS	
Innovation Labs)	

C2A: Machine Learning Applications I

Attribute Assisted Interpretation Confidence Classification Using Machine Learning	5
 A Hybrid Scheme for Fault Diagnosis with Partially Labeled Sets of Observations	l
Predictive Modelling Strategies to Understand Heterogeneous Manifestations of Asthma in Early Life	3
Home Appliance Energy Disaggregation Using Low Frequency Data and Machine Learning Classifiers	5

C2B: Computer Vision

On the Impacts of Noise from Group-Based Label Collection for Visual Classification Maggie Wigness (US Army Research Laboratory) and Steven Gutstein (US Army Research Laboratory)	. 84
Learning Robust Video Synchronization without Annotations Patrick Wieschollek (University of Tuebingen), Ido Freeman (University of Tuebingen), and Hendrik P.A. Lensch (University of Tuebingen)	. 92
Google's Cloud Vision API is Not Robust to Noise Hossein Hosseini (University of Washington), Baicen Xiao (University of Washington), and Radha Poovendran (University of Washington)	101

Machine Learning in Appearance-Based Robot Self-Localization	106
Alexander Kuleshov (Skolkovo Institute of Science and Technology),	
Alexander Bernstein (Skolkovo Institute of Science and Technology),	
Evgeny Burnaev (Skolkovo Institute of Science and Technology), and	
Yury Yanovich (Kharkevich Institute for Information Transmission	
Problems RAS)	

C3A: Text and Natural Language Processing

Learning Antecedent Structures for Event Coreference Resolution Jing Lu (University of Texas at Dallas) and Vincent Ng (University of Texas at Dallas)	113
Automatic Generation and Recommendation for API Mashups	119
Qinghan Xue (Lehigh University), Lei Liu (Fujitsu Laboratories of	
America), Weipeng Chen (Fujitsu Laboratories of America), and Mooi	
Choo Chuah (Lehigh University)	
Classification-Based Adaptive Web Scraper	125
Ujwal B V S (Samsung Research Institute), Bharat Gaind (Samsung	
Research Institute), Abhishek Kundu (Samsung Research Institute),	
Anusha Holla (Samsung Research Institute), and Mukund Rungta (Indian	
Institute of Technology)	

C3B: Optimization and Advanced Learning Methods

Stochastic Primal-Dual Method on Riemannian Manifolds of Bounded Sectional Curvature Masoud Badiei Khuzani (Harvard University) and Na Li (Harvard University)	. 133
Anytime Exploitation of Stragglers in Synchronous Stochastic Gradient Descent Nuwan Ferdinand (University of Toronto), Benjamin Gharachorloo (University of Toronto), and Stark C. Draper (University of Toronto)	. 141
An Evolutionary Learning Approach to Self-configuring Image Pipelines in the Context of Carbon Fiber Fault Detection	. 147
Online Structure-Search for Sum-Product Networks	. 155

C4A: Machine Learning Applications II

A Machine Learning Approach to Detecting Sensor Data Modification Intrusions in WBANs	161
Alexander Verner (Nova Southeastern University) and Dany Butvinik (The	
Open University of Israel)	

Automatic Algorithm Recognition of Source-Code Using Machine Learning	
Maged Shalaby (German University in Cairo), Tarek Mehrez (German	
University in Cairo), Amr El Mougy (German University in Cairo),	
Khalid Abdulnasser (German University in Cairo), and Aysha Al-Safty	
(German University in Cairo)	
Realistic Traffic Generation for Web Robots	
Kyle Brown (Wright State University) and Derek Doran (Wright State	
University)	

C4B: Neural Networks

Incomplete Dot Products for Dynamic Computation Scaling in Neural Network Inference Brad McDanel (Harvard University), Surat Teerapittayanon (Harvard University), and HT Kung (Harvard University)	. 186
Time-Sensitive Adaptation of Regularization Strength of Recurrent Neural Networks for Accurate	
Learning	. 194
Kangil Kim (Konkuk University)	
Recognition of Acoustic Events Using Masked Conditional Neural Networks	. 199
Fady Medhat (University of York), David Chesmore (University of York),	
and John Robinson (University of York)	

C5A: Deep Learning II

Parametric Exponential Linear Unit for Deep Convolutional Neural Networks	207
Understading Image Restoration Convolutional Neural Networks with Network Inversion	215
Lecture Vdeo Indexing Using Boosted Margin Maximizing Neural Networks	221

C5B: Ensemble Methods

Direct Multiclass Boosting Using Base Classifiers' Posterior Probabilities Estimates Mathias Bourel (Universidad de la Republica) and Badih Ghattas (Université Aix-Marseilled)	228
Classification of Pollen Grain Images Based on an Ensemble of Classifiers	234
David Gutierrez Arias (Institute of Computing - UNICAMP), Marcos	
Vinicius Mussel Cirne (Institute of Computing - UNICAMP), Josimar	
Edinson Chire, and Helio Pedrini (Institute of Computing - UNICAMP)	

UoI-NMF Cluster: A Robust Nonnegative Matrix Factorization Algorithm for Improved Parts-Based	
Decomposition and Reconstruction of Noisy Data	241
Shashanka Ubaru (University of Minnesota at Twin Cities), Kesheng Wu	
(Lawrence Berkeley National Laboratory), and Kristofer E. Bouchard	
(Lawrence Berkeley National Laboratory)	

C6A: Speech and Signal Processing

Deep Transductive Nonnegative Matrix Factorization for Speech Separation Yalin Liu (National University of Defense Technology), Naiyang Guan (National University of Defense Technology), and Jie Liu (National University of Defense Technology)	249
An Empirical Study of Cross-Lingual Transfer Learning Techniques for Small-Footprint Keyword	255
Spotting	
Ming Sun (Alexa Machine Learning), Andreas Schwarz (Alexa Machine	
Learning), Minhua Wu (Alexa Machine Learning), Nikko Strom (Alexa	
Machine Learning), Spyros Matsoukas (Alexa Machine Learning), and Shiv	
Vitaladevuni (Alexa Machine Learning)	
Wearable Motion Sensor Based Analysis of Swing Sports	
Akash Anand (Samsung R&D Institute), Manish Sharma (Samsung R&D	
Institute), Rupika Srivastava (Samsung R&D Institute), Lakshmi	
Kaligounder (Samsung R&D Institute), and Divya Prakash (Samsung R&D	
Institute)	
Multiple Kernel Representation Learning for WiFi-Based Human Activity Recognition	
Han Zou (Department of Electrical Engineering and Computer Sciences),	
Yuxun Zhou (Department of Electrical Engineering and Computer	
Sciences), Jianfei Yang (School of Electrical and Electronics	
Engineering), Weixi Gu (Tsinghua-Berkeley Shenzhen Institute), Lihua	
Xie (School of Electrical and Electronics Engineering), and Costas	
Spanos (Department of Electrical Engineering and Computer Sciences)	

C6B: Advanced Classification Methods

75
81
89

NMF-Based Label Space Factorization for Multi-label Classification	. 297
Mohammad Firouzi (University of Toronto), Mahmood Karimian (Sharif	
University of Technology), and Mahdieh Soleymani (Sharif University of	
Technology)	

C7A: Machine Learning Applications III

Automatic Scoring of a Nonword Repetition Test	304
 Geometrical Analysis of Machine Learning Security in Biometric Authentication Systems	309
 Thyme: Improving Smartphone Prompt Timing Through Activity Awareness	315
 EyeQual: Accurate, Explainable, Retinal Image Quality Assessment	323

C8A: Advanced Learning Methods

The Effect of Communication on Noncooperative Multiplayer Multi-armed Bandit Problems	31
Comparing Transfer Learning and Traditional Learning Under Domain Class Imbalance	37
RobustSPAM for Inference from Noisy Longitudinal Data and Preservation of Privacy	44
On the Limitation of Convolutional Neural Networks in Recognizing Negative Images	52

Special Session: Machine Learning Algorithms Systems and Applications

A New Framework for Fine Tuning of Deep Networks M. Arif Wani (University of Kashmir) and Saduf Afzal (University of Kashmir)	359
HDLTex: Hierarchical Deep Learning for Text Classification Kamran Kowsari (University of Virginia), Donald E. Brown (University of Virginia), Mojtaba Heidarysafa (University of Virginia), Kiana Jafari Meimandi (University of Virginia), Matthew S. Gerber (University of Virginia), and Laura E. Barnes (University of Virginia)	364
A Noise Prediction and Time-Domain Subtraction Approach to Deep Neural Network Based Speech	272
Enhancement Babafemi O. Odelowo (Georgia Institute of Technology) and David V. Anderson (Georgia Institute of Technology)	312
Granular Computing with Compatibility Based Intuitionistic Fuzzy Rough Sets Sibasis Bandyopadhyay (University of Regina), JingTao Yao (University of Regina), and Yan Zhang (University of Regina)	378
Subject-Dependent SSVEP Identification Using GMM Training and Adaptation Omid Dehzangi (University of Michigan-Dearborn) and Muhamed Farooq (University of Michigan-Dearborn)	384
Supervised Machine Learning Based Surface Inspection by Synthetizing Artificial Defects	390
Adventure Game with a Neural Network Controlled Non-playing Character Michael Weeks (Georgia State University), David Binnion (Georgia State University), Andre Chase Randall (Georgia State University), and Vibhuti Patel (Georgia State University)	396
A New Approach to Segment Hemorrhagic Stroke in Computed Tomography via Optimum Path Snakes Solon A. Peixoto (Programa de Pós-Graduação em Ciência da Computação (PPGCC)), Aldisio G. Medeiros (Programa de Pós-Graduação em Ciência da Computação (PPGCC)), Antonio Carlos. S. Barros (Programa de Pós-Graduação em Ciência da Computação (PPGCC)), Victor Hugo C. de Albuquerque (Programa de Pós-Graduação em Informática Aplicada (PPGIA)), and Pedro Pedrosa Rebouças Filho (Programa de Pós-Graduação em Ciência da Computação (PPGCC))	402
Automated Patent Classification Using Word Embedding Mattyws F. Grawe (Federal University of Mato Grosso), Claudia A. Martins (Federal University of Mato Grosso), and Andreia G. Bonfante (Federal University of Mato Grosso)	408
Anomaly Detection in Multivariate Non-stationary Time Series for Automatic DBMS Diagnosis Doyup Lee (POSTECH)	412
RBF-FIRMLP Architecture for Digit Recognition Cristinel Codrescu (University of Salzburg)	420
Incremental Dynamic Search Solver Ali Hmer (University of Regina) and Malek Mouhoub (University of Regina)	426

Special Session: Machine Learning in Big Data and Information Security

DDoS Attack Modeling and Detection Using SMO Salva Daneshgadeh (Middle East Technical University), Nazife Baykal (Middle East Technical University), and eyda Ertekin (Middle East Technical University)	. 432
Cybersecurity Automated Information Extraction Techniques: Drawbacks of Current Methods, and Enhanced Extractors	. 437
Privacy Preserving Record Linkage Using MetaSoundex Algorithm	. 443
Machine Learning Methods Used in Evaluations of Secure Biometric System Components Bilgehan Arslan (Gazi University), Mehtap Ulker (Gazi University), and Seref Sagiroglu (Gazi University)	. 448
Automated Behavioral Analysis of Malware: A Case Study of WannaCry Ransomware Qian Chen (The University of Texas at San Antonio) and Robert A. Bridges (Oak Ridge National Laboratory)	. 454
Automatic Bitcoin Address Clustering Dmitry Ermilov (Skolkovo Institute of Science and Technology (Skoltech)), Maxim Panov (Skolkovo Institute of Science and Technology (Skoltech)), and Yury Yanovich (Kharkevich Institute for Information Transmission Problems RAS)	. 461

Special Session: Machine Learning in Energy Applications

Forecasting Domestic Hot Water Demand in Residential House Using Artificial Neural Networks	. 467
A Learning Framework for Control-Oriented Modeling of Buildings Javier Rubio-Herrero (St. Mary's University), Vikas Chandan (Pacific Northwest National Laboratory), Charles Siegel (Pacific Northwest National Laboratory), Abhinav Vishnu (Pacific Northwest National Laboratory), and Draguna Vrabie (Pacific Northwest National Laboratory)	473
Multistep-ahead Streamflow and Reservoir Level Prediction Using ANNs for Production Planning in Hydroelectric Stations Jorge Hernandez-Ambato (ESPOCH), Gabriel Asqui-Santillan (ESPOCH), Alberto Arellano (ESPOCH), and Carlos Cunalata (CELEC-EP HidroAgoyán)	. 479
Modelling of Fuzzy Logic Controller of a Maximum Power Point Tracker Based on Artificial Neural Network	485

3
9
5
,

Special Session: Machine Learning in Smart Grid

A Review of Deep Learning Methods Applied on Load Forecasting Abdulaziz Almalaq (University of Denver) and George Edwards (University of Denver)	511
Mitigating IoT-based Cyberattacks on the Smart Grid Yasin Yilmaz (University of South Florida) and Suleyman Uludag (University of Michigan)	517
A Novel Application of Naive Bayes Classifier in Photovoltaic Energy Prediction Ramazan Bayindir (Gazi University), Mehmet Yesilbudak (Nevsehir Haci Bektas Veli University), Medine Colak (Gazi University), and Naci Genc (Yuzuncu Yil University)	523

Special Session: Machine Learning Applications in Education

Application of Decision Trees for Detection of Student Dropout Profiles Ricardo Timaran Pereira (Universidad de Nariño) and Javier Caicedo Zambrano (Universidad de Nariño)	528
Student Retention Pattern Prediction Employing Linguistic Features Extracted from Admission Application Essays <i>Mitsunori Ogihara (University of Miami) and Gang Ren (University of Miami)</i>	532
Component Based Architecture for the Control of Crossing Regions in Railway Networks Farooq Ahmad (COMSATS Institute of Information Technology Lahore), Ayesha Sadiq (Monash University), Ana Maria Martinez-Enriquez (CINVESTAV-IPN), Aslam Muhammad (University of Engineering and Technology), Muhammad Waqas Anwar (COMSATS Institute of Information Technology Lahore), Usama Ujaz Bajwa (COMSATS Institute of Information Technology Lahore), Mudasser Naseer (Wenzhou-Kean University), and Sher Afzal Khan (King Abdul Aziz University)	540
Classification of ECG Arrhythmia with Machine Learning Techniques Halil Ibrahim Bülbül (Gazi University), Nese Usta (Gazi University), and Musa Yildiz (Hoca Ahmet Yesevi University)	546

Human Motion Trajectory Analysis Based Video Summarization Muhammad Ajmal (Department of Computer Science COMSATS Institute of Information Technology Lahore), Mudasser Naseer (Department of Computer Science Wenzhou-Kean University Wenzhou), Farooq Ahmad (Department of Computer Science COMSATS Institute of Information Technology Lahore), and Asma Saleem (Division of Science and Technology University of Education Lahore)	550
A Simple Neuro-Heuristic Computational Intelligence Algorithm for Thin Film Flow Equation Arising in Physical Models Iftikhar Ahmad (University of Gujrat), Bushra Mukhtar (Department of Mathematics University of Gujrat), Kadir Kutlu (Recep Tayyip Erdogan University Rize), and Farooq Ahmad (COMSAT)	556
Special Session: Machine Learning for Predictive Models in Engineering Applications	I
Support Vector Regression for Predicting the Enhancement Duration of Software Projects Cuauhtemoc Lopez-Martin (Universidad de Guadalajara), Shadi Banitaan (University of Detroit Mercy), Andres Garcia-Floriano (Universidad Mexiquense del Bicentenario), and Cornelio Yanez-Marquez	562
Audio Signal Reconstruction Using Cartesian Genetic Programming Evolved Artificial Neural Network (CGPANN) Nadia Masood Khan (University of Engineering and Technology Peshawar) and Gul Muhammad Khan (University of Engineering and Technology Peshawar)	568
Forward Looking Sonar Scene Matching Using Deep Learning Pedro Otávio Cardozo de Souza Ribeiro (Universidade Federal do Rio Grande), Matheus Machado dos Santos (Universidade Federal do Rio Grande), Paulo Lilles Jorge Drews-Jr (Universidade Federal do Rio Grande), and Silvia Silva da Costa Botelho (Universidade Federal do Rio Grande)	574
Brace Treatment Monitoring Solution for Idiopathic Scoliosis Patients Bhavani Anantapur Bache (University of Michigan-Dearborn), Omar Iftikhar (University of Michigan-Dearborn), and Omid Dehzangi (University of Michigan-Dearborn)	580
Exploring the Impact of Clone Refactoring on Test Code Size in Object-Oriented Software Badri Mourad (University of Quebec at Trois-Rivières), Linda Badri (University of Quebec at Trois-Rivières), Oussama Hachemane (University of Quebec at Trois-Rivières), and Alexandre Ouellet (University of Quebec at Trois-Rivières)	586
Evaluating Non-personalized Single-Heuristic Active Learning Strategies for Collaborative Filtering Recommender Systems	593

Railway Incident Ranking with Machine Learning	. 601
Evgeni Bikov (Skolkovo Institute of Science and Technology, Moscow,	
Russia), Pavel Boyko (Skolkovo Institute of Science and Technology,	
Moscow, Russia), Evgeny Sokolov (JSC Russian Railways, Moscow,	
Russia), and Dmitry Yarotsky (Skolkovo Institute of Science and	
Technology, Moscow, Russia)	
A Spatio - Temporal Hedonic House Regression Model	. 607
Timothy Oladunni (Bowie State University), Sharad Sharma (Bowie State	
University), and Raymond Tiwang (Bowie State University)	
Foreclosure Sale and House Value: Correlation or Causation?	. 613
Timothy Oladunni (Bowie State University), Sharad Sharma (Bowie State	
University), and Raymond Tiwang (Bowie State University)	
Predictive Models of Hard Drive Failures Based on Operational Data	. 619
Nicolas Aussel (Zodiac Inflight Innovations), Samuel Jaulin (Zodiac	
Inflight Innovations), Guillaume Gandon (Zodiac Inflight Innovations),	
Yohan Petetin (Universite Paris-Saclay), Eriza Fazli (Zodiac Inflight	
Innovations), and Sophie Chabridon (Universite Paris-Saclay)	
Bayesian Networks for Inverse Inference in Manufacturing Bayesian Networks	. 626
Avadhut Sardeshmukh (TRDDC, TCS Research, Tata Consultancy Services	
Pune, India), Sreedhar Reddy (TRDDC, TCS Research, Tata Consultancy	
Services Pune, India), BP Gautham (TRDDC, TCS Research, Tata	
Consultancy Services Pune, India), and Amol Joshi (TRDDC, TCS	
Research, Tata Consultancy Services Pune, India)	

Special Session: Machine Learning on Big Data

Novel Trends in Scaling Up Machine Learning Algorithms	632
MapReduce Based Classification for Fault Detection in Big Data Applications M. Omair Shafiq (Carleton University), Maryam Fekri (Carleton University), and Rami Ibrahim (Carleton University)	537
Learning Effective Query Management Strategies from Big Data	543
A Machine Learning Tool for Supporting Advanced Knowledge Discovery from Chess Game Data	649
Advanced ECHMM-Based Machine Learning Tools for Complex Big Data Applications	655

Special Session: Machine Learning Applications in Psychiatric Research

A Cluster Analysis of Challenging Behaviors in Autism Spectrum Disorder	561
Predicting Psychosis Using the Experience Sampling Method with Mobile Apps	567
Daniel Stamate (University of London), Andrea Katrinecz (University of	
London), Wajdi Alghamdi (University of London), Daniel Stahl (King's	
College London), Philippe Delespaul (Maastricht University Medical	
Centre), Jim van Os (Maastricht University Medical Centre), and Sinan	
Guloksuz (Maastricht University Medical Centre)	
Bayesian Nonparametric Clustering of Patients with Advanced Cancer on Anxiety and Depression	574
Yuelin Li (Memorial Sloan Kettering Cancer Center), Barry Rosenfeld	
(Fordham University), Hayley Pessin (Memorial Sloan Kettering Cancer	
Center), and William Breitbart (Memorial Sloan Kettering Cancer	
Center)	

Conference Poster Papers

On Classifying Facial Races with Partial Occlusions and Pose Variations Tarik Alafif (Umm Al-Qura University), Zeyad Hailat (Wayne State University), Melih Aslan (Wayne State University), and Xuewen Chen (Wayne State University)	679
Anomaly Detection in Earth Dam and Levee Passive Seismic Data Using Multivariate Gaussian Wendy Fisher (Colorado School of Mines), Blake Jackson (Colorado School of Mines), Tracy Camp (Colorado School of Mines), and Valeria V. Krzhizhanovskaya (University of Amsterdam)	685
Image Analysis Tool with Laws' Masks to Bone Texture Norma Ramirez Hernandez (University of Guadalajara), Maria Citlalli Hernandez Escareno (University of Guadalajara), and Juan Rodolfo Maestre Rendon (Universidad Politecnica de Sinaloa)	691
Multiple Kernel Learning Using Sparse Representation Nicholas Klausner (Information System Technologies) and Mahmood R. Azimi-Sadjadi (Information System Technologies)	695
Ant Colony Optimization with Stepwise Localization of the Discrete Search Space to Solve Function Optimization Problems Ryouei Takahashi (The Kyoto College of Graduate Studies for Informatics) and Yukihiro Nakamura (The Kyoto College of Graduate Studies for Informatics)	701
Putting Self-Supervised Token Embedding on the Tables Marc Szafraniec (Ecole polytechnique), Gautier Marti (Route de Saclay), and Philippe Donnat (Michelin House)	707

 Machine Learning Methods for 1D Ultrasound Breast Cancer Screening Neil Joshi (The Johns Hopkins University), Seth Billings (The Johns Hopkins University), Erika Schwartz (The Johns Hopkins University), Susan Harvey (The Johns Hopkins University), and Philippe Burlina (The Johns Hopkins University) 	.711
A Hybrid Approach for Incorporating Deep Visual Features and Side Channel Information with Applications to AMD Detection	. 716
Deep Mixture of Experts with Diverse Task Spaces Jianping Fan (UNC-Charlotte), Tianyi Zhao (UNC-Charlotte), Zhenzhong Kuang (Hangzhou Dianzi University), Zhou Yu (Hangzhou Dianzi University), and Jun Yu (Hangzhou Dianzi University)	. 721
Privacy Setting Recommendation for Image Sharing Jun Yu (Hangzhou Dianzi University), Zhenzhong Kuang (Hangzhou Dianzi University), Zhou Yu (Hangzhou Dianzi University), Dan Lin (Missouri University), and Jianping Fan (UNC-Charlotte)	. 726
An Investigation of How Neural Networks Learn from the Experiences of Peers Through Periodic Weight Averaging Joshua Smith (University of Arkansas) and Michael Gashler (University of Arkansas)	. 731
Detection of Exfiltration and Tunneling over DNS Anirban Das (Samsung Research America), Min-Yi Shen (Hewlett Packard Enterprise), Madhu Shashanka (Charles Schwab), and Jisheng Wang (Hewlett Packard Enterprise)	.737
An Evolutionary Approach to General-Purpose Automated Speed and Lane Change Behavior Carl-Johan Hoel (Chalmers University of Technology), Mattias Wahde (Chalmers University of Technology), and Krister Wolff (Chalmers University of Technology)	. 743
Computable Expert Knowledge in Computer Games Kevin Fujii (UC Davis Department of Statistics), Fushing Hsieh (UC Davis Department of Statistics), and Cho-Jui Hsieh (UC Davis Department of Computer Science and Statistics)	. 749
SUBIC: A Supervised Bi-Clustering Approach for Precision Medicine Milad Zafar Nezhad (Wayne State University), Dongxiao Zhu (Wayne State University), Najibesadat Sadati (Wayne State University), Kai Yang (Wayne State University), and Phillip Levi (Wayne State University)	.755
Reverse Engineering Regulatory Networks in Cells Using a Dynamic Bayesian Network and Mutual Information Scoring Function Haodi Jiang (New Jersey Institute of Technology), Turki Turki (King Abdulaziz University), and Jason T. L. Wang (New Jersey Institute of Technology)	. 761

Relevancy Ranking of User Recommendations of Services Based on Browsing Patterns Suresh Kumar Gudla (Samsung R and D Institute Bangalore), Joy Bose (Samsung), Venugopal Gajam (NIT Warangal), and Srinath Srinivasa (IIIT Bangalore)	765
A Neural Network Approach to Derive the Horizontal Spaces in Typefaces Ayantha Randika (University of Colombo School of Computing) and Manjusri Ishwara Ellepola Wickramasinghe (University of Colombo School of Computing)	769
Human Action Recognition Based on a Two-stream Convolutional Network Classifier Vinicius de Oliveira Silva (University of Brasilia), Flavio de Barros Vidal (University of Brasilia), and Alexandre Ricardo Soares Romariz (University of Brasilia)	774
Multidisciplinary Optimization in Decentralized Reinforcement Learning Thanh Nguyen (Indiana University) and Snehasis Mukhopadhyay (Indiana University)	779
Bias Discovery in News Articles Using Word Vectors Anish Anil Patankar (Samsung R and D Institute Bangalore) and Joy Bose (Samsung R and D Institute Bangalore)	785
Adjusting Real-Time Mode Transitions via Genetic Algorithms Gordon Chalmers (University of Georgia) and Shelby H. Funk (University of Georgia)	789
Towards Self-Learning Optical Music Recognition Alexander Pacha (TU Wien) and Horst Eidenberger (TU Wien)	795
Human Action Recognition Using Optical Flow and Convolutional Neural Networks Marco Wrzalik (RheinMain University of Applied Sciences) and Dirk Krechel (RheinMain University of Applied Sciences)	801
Deep Learning Based Link Failure Mitigation Shubham Khunteta (Advanced Modem) and Ashok Kumar Reddy Chavva (Advanced Modem)	806
Conformal Prediction Using Random Survival Forests Henrik Boström (KTH Royal Institute of Technology), Lars Asker (Stockholm University), Ram Gurung (Stockholm University), Isak Karlsson (Stockholm University), Tony Lindgren (Stockholm University), and Panagiotis Papapetrou (Stockholm University)	812
A Hierarchical, Bulk-Synchronous Stochastic Gradient Descent Algorithm for Deep-Learning Applications on GPU Clusters	818
Deep Uncertainty Interpretation in Dyadic Human Activity Prediction Maryam Ziaeefard (Laval University), Robert Bergevin (Laval University), and Jean-Francois Lalonde (Laval University)	822
Unsupervised Anomaly Detection for Digital Radio Frequency Transmissions Michael Walton (SPAWAR Systems Center Pacific), Maurice Ayache (SPAWAR Systems Center Pacific), Logan Straatemeier (SPAWAR Systems Center Pacific), Daniel Gebhardt (SPAWAR Systems Center Pacific), and Benjamin Migliori (SPAWAR Systems Center Pacific)	826

ADL Classification Based on Autocorrelation Function of Inertial Signals Walid Gomaa (1. Cyber-Physical Systems Lab.), Reda Elbasiony (1. Cyber-Physical Systems Lab.), and Sara Ashry (1. Cyber-Physical Systems Lab.)	833
Inferring Time when People Visit a Location Using Social Network Data Md Moniruzzaman (University of Calgary) and Ken Barker (University of Calgary)	838
Predicting Waiting Time Overflow on Bank Teller Queues Ricardo Silva Carvalho (University of Brasília), Rommel Novaes Carvalho (University of Brasília), Guilherme Novaes Ramos (University of Brasília), and Roberto Nunes Mourão (University of Brasília)	842
Deep Multi-camera People Detection Tatjana Chavdarova (Idiap Research Institute and École polytechnique fédérale de Lausanne) and François Fleuret (Idiap Research Institute and École polytechnique fédérale de Lausanne)	848
Surface Roughness Discrimination Using Unsupervised Machine Learning Algorithms Longhui Qin (Nanyang Technological University) and Yilei Zhang (Nanyang Technological University)	854
Medicare Fraud Detection Using Machine Learning Methods Richard A. Bauder (Florida Atlantic University) and Taghi M. Khoshgoftaar (Florida Atlantic University)	858
 Exposing Computer Generated Images by Eye's Region Classification via Transfer Learning of VGG19 CNN. <i>Tiago Carvalho (Federal Institute of São Paulo (IFSP)), Edmar R. S. de</i> <i>Rezende (CTI Renato Archer), Matheus T. P. Alves (Federal Institute of</i> <i>São Paulo (IFSP)), Fernanda K. C. Balieiro (Federal Institute of São</i> <i>Paulo (IFSP)), and Ricardo B. Sovat (Federal Institute of São Paulo</i> <i>(IFSP))</i> 	866
 Real-Time Patient Adaptivity for Freezing of Gait Classification Through Semi-Supervised Neural Networks Val Mikos (National University of Singapore), Chun-Huat Heng (National University of Singapore), Arthur Tay (National University of Singapore), Nicole Shuang Yu Chia (National Neuroscience Institute), Karen Mui Ling Koh (National Neuroscience Institute), Dawn May Leng 	871
Tan (Singapore General Hospital), and Wing Lok Au (National Neuroscience Institute)	
HWBI : Health and Well-Being Index. A Neural Network Based Index Which Quantifies the Cumulative Impact of Lifestyle Habits on Personal Health and Well-Being and Demonstration of Its Application in Managing the Risk of Diabetes Yesoda Bhargava (Samsung Research Institute) and Raj Roy (Samsung Research Institute)	877
An Empirical Study of the Hidden Matrix Rank for Neural Networks with Random Weights Pablo A. Henriquez (Facultad de ingenieria y Ciencias) and Gonzalo A. Ruz (Facultad de ingenieria y Ciencias)	883
Better Worst-Case Complexity Analysis of the Block Coordinate Descent Method for Large Scale Machine Learning Ziqiang Shi (Fujitsu Research and Development Center) and Rujie Liu (Fujitsu Research and Development Center)	889

Collaborative Filtering Based on the Latent Class Model for Attributes Manabu Kobayashi (Shonan Institute of Technology), Kenta Mikawa (Shonan Institute of Technology), Masayuki Goto (Waseda University), Toshiyasu Matsushima (Waseda University), and Shigeichi Hirasawa (Waseda University)	893
Evolving Adaptive Traffic Signal Controllers for a Real Scenario Using Genetic Programming with an Epigenetic Mechanism Esteban Ricalde (Memorial University of Newfoundland) and Wolfgang Banzhaf (Memorial University of Newfoundland)	897
Sequential Inverse Approximation of a Regularized Sample Covariance Matrix	903
Deep Ensembles for Imbalanced Classification Nataliia Kozlovskaia (Yandex.Taxi) and Alexey Zaytsev (Skoltech)	908
Modeling a Classifier for Solving Safety-Critical Binary Classification Tasks Ibrahim Alagoz, Thomas Hoiss (Automotive Safety Technologies GmbH), and Reinhard German (Department of Computer Science 7)	914
Integrating Prior Knowledge into Deep Learning Michelangelo Diligenti (Universita' di Siena), Soumali Roychowdhury (IMT Lucca), and Marco Gori (Universita' di Siena)	920
Catch It If You Can: Real-Time Network Anomaly Detection with Low False Alarm Rates Georgios Kathareios (IBM Research - Zurich), Andreea Anghel (IBM Research - Zurich), Akos Mate (IBM Research - Zurich), Rolf Clauberg (IBM Research - Zurich), and Mitch Gusat (IBM Research - Zurich)	924
Generalized Convolutional Neural Networks for Point Cloud Data Aleksandr Savchenkov (Cylance), Andrew Davis (Cylancec), and Xuan Zhao (Cylance)	930
OP-DCI: A Riskless K-Means Clustering for Influential User Identification in MOOC Forum Xiangyu Hou (The University of Hong Kong), Chi-Un Lei (The University of Hong Kong), and Yu-Kwong Kwok (The University of Hong Kong)	936
Identifying Anomalies in Parliamentary Expenditures of Brazilian Chamber of Deputies with Deep Autoencoders <i>Thiago Alencar Gomes (University of Brasilia), Rommel Novaes Carvalho</i> <i>(University of Brasilia), and Ricardo Silva Carvalho (University of</i> <i>Brasilia)</i>	940
Recognition of Human Activities Using Fast and Adaptive Sparse Representation Based on Wearable Sensors Long Cheng (Kiwii Power Technology Corporation), Yiyi Yu (Johns Hopkins University), Xinyang Liu (Rensselaer Polytechnic Institute), Jinyu Su (Rensselaer Polytechnic Institute), and Yani Guan (Rensselaer Polytechnic Institute)	944
Use of Machine Learning for Detection of Unaware Facial Recognition Without Individual Training Christopher Bellman (University of Ontario Institute of Technology) and Miguel Vargas Martin (University of Ontario Institute of Technology)	950
Performance Comparison of Algorithms for Movie Rating Estimation	955

Analyzing Facebook Activities for Personality Recognition
Using Short URLs in Tweets to Improve Twitter Opinion Mining
Tree-Structured Curriculum Learning Based on Semantic Similarity of Text
An Ensembled RBF Extreme Learning Machine to Forecast Road Surface Temperature
Schemes for Labeling Semantic Code Clones using Machine Learning
Evaluation of Microgesture Recognition Using a Smartwatch
 Automatic Fault Diagnosis of Drills Using Artificial Neural Networks
Actively Discover Knowledge by Structural Risk Estimation
Learning Long-Term Situation Prediction for Automated Driving
Transfer Learning for Large Scale Data Using Subspace Alignment
Malicious Software Classification Using Transfer Learning of ResNet-50 Deep Neural Network
Text Classification Using Hierarchical Sparse Representation Classifiers

 Two-phase Parallel Learning to Identify Similar Structures Among Relational Databases	020
Predicting Waiting Times in Radiation Oncology Using Machine Learning	024
 Evaluating the Use of Brazilian Companies' Financial Footnotes Texts for Debt Variation Prediction	030
Human Action Recognition from Body-Part Directional Velocity Using Hidden Markov Models	035
Autoencoder-Enhanced Sum-Product Networks	041
Performance and Security Strength Trade-Off in Machine Learning Based Biometric Authentication Systems	.045
Predicting Hotel Bookings Cancellation with a Machine Learning Classification Model	049
Structured Causal Inference for Rare Events: An Industrial Application to Analyze Heating-Cooling Device Failure	055
Monitoring Health Changes in Congestive Heart Failure Patients Using Wearables and Clinical Data	061
Histogram-Based Asymmetric Relabeling for Learning from Only Positive and Unlabeled Data	065
 FIT-EVE&ADAM: Estimation of Velocity & Energy for Automated Diet Activity Monitoring	071

 Early Prediction of College Attrition Using Data Mining
Model Guided Deep Learning Approach Towards Prediction of Physical System Behavior
Time-Sensitive Behavior Prediction in a Health Social Network
Incremental Open Set Intrusion Recognition Using Extreme Value Machine
Mixed Type Multi-attribute Pairwise Comparisons Learning
Classification of UXO Using Convolutional Networks Trained on a Limited Dataset
Rank Learning by Ordinal Gerrymandering
Efficient Deep Learning Model for Text Classification Based on Recurrent and Convolutional Layers 1108 <i>Abdalraouf Hassan (University of Bridgeport) and Ausif Mahmood</i> <i>(University of Bridgeport)</i>

Special Session Poster Papers

An Exploratory Study of Oral and Dental Health in Canada	1114
A Retrieval-Based Dialogue System Utilizing Utterance and Context Embeddings 1 Alexander Bartl (Maastricht University) and Gerasimos Spanakis (Maastricht University)	120
 Strength Training: A Fitness Application for Indoor Based Exercise Recognition and Comfort Analysis 1 Dipankar Das (Samsung R & D Institute India), Shiva Murthy Busetty (Samsung R & D Institute India), Vishal Bharti (Samsung R & D Institute India), and Prakhyath Kumar Hegde (Samsung R & D Institute India) 	126

Recognition of Dynamic Hand Gestures from 3D Motion Data Using LSTM and CNN Architectures
A Mask-Based Post Processing Approach for Improving the Quality and Intelligibility of Deep Neural Network Enhanced Speech
Feature Extraction and K-means Clustering Approach to Explore Important Features of Urban Identity 1139 Mei-Chih Chang (Chair of Information Architecture ETH Zürich), Peter Bus (Chair of Information Architecture ETH Zürich), and Gerhard Schmitt (Chair of Information Architecture ETH Zürich)
Applying Reinforcement Learning and Supervised Learning Techniques to Play Hearthstone
Semi-Automated Segmentation of Glioblastomas in Brain MRI Using Machine Learning Techniques 1149 Naomi Joseph (National University of Singapore Singapore), Parita Sanghani (National University of Singapore Singapore), and Hongliang Ren (National University of Singapore Singapore)

Author Index