2017 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU 2017)

Okinawa, Japan 16 – 20 December 2017

IEEE Catalog Number: ISBN: CFP17SRW-POD 978-1-5090-4789-5

Copyright © 2017 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

IEEE Catalog Number:	CFP17SRW-POD
ISBN (Print-On-Demand):	978-1-5090-4789-5
ISBN (Online):	978-1-5090-4788-8

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com

TABLE OF CONTENTS

ADV.1: ASR IN ADVERSE ENVIRONMENTS

ADV.1.1: NOISE-ROBUST EXEMPLAR MATCHING FOR RESCORING1 QUERY-BY-EXAMPLE SEARCH Emre Yilmaz, Radboud University, Netherlands; Julien van Hout, Horacio Franco, SRI International, United States ADV.1.2: LEARNING SPEAKER REPRESENTATION FOR NEURAL NETWORK BASED8 MULTICHANNEL SPEAKER EXTRACTION Katerina Zmolikova, Brno University of Technology, Czech Republic; Marc Delcroix, Keisuke Kinoshita, Takuya Higuchi, Atsunori Ogawa, Tomohiro Nakatani, NTT, Japan RECOGNITION VIA VARIATIONAL AUTOENCODER-BASED DATA AUGMENTATION Wei-Ning Hsu, Yu Zhang, James Glass, Massachusetts Institute of Technology, United States SPEECH Anjali Menon, Carnegie Mellon University, United States; Chanwoo Kim, Google Inc., United States; Umpei Kurokawa, Richard Stern, Carnegie Mellon University, United States MICROPHONE ARRAY Shoko Araki, NTT, Japan; Nobutaka Ono, National Institute of Informatics, Japan; Keisuke Kinoshita, Marc Delcroix, NTT, Japan WITHOUT PARALLEL CORPUS Takuya Higuchi, Keisuke Kinoshita, Marc Delcroix, Tomohiro Nakatani, NTT, Japan SEARCH USING TIME AND FREQUENCY CONVOLUTION FOR MULTILINGUAL DEEP BOTTLENECK FEATURES Julien van Hout, Vikramjit Mitra, Horacio Franco, Chris Bartels, Dimitra Vergyri, SRI International, United States CONVERSATIONS USING UNCALIBRATED MICROPHONE ARRAY Keisuke Nakamura, Randy Gomez, Honda Research Institute Japan Co., Ltd., Japan **ASR.1: AUTOMATIC SPEECH RECOGNITION I**

ASR.1.15: LATTICE RESCORING STRATEGIES FOR LONG SHORT TERM MEMORY165 LANGUAGE MODELS IN SPEECH RECOGNITION

Shankar Kumar, Michael Nirschl, Daniel Holtmann-Rice, Hank Liao, Ananda Theertha Suresh, Felix Yu, Google Inc., United States

ASR.1.16: SYLLABLE-BASED ACOUSTIC MODELING WITH CTC-SMBR-LSTM	173
Zhongdi Qu, Parisa Haghani, Eugene Weinstein, Pedro Moreno, Google Inc., United States	

ASR.1.17: SEQUENCE TRAINING OF DNN ACOUSTIC MODELS WITH NATURAL178 GRADIENT

Adnan Haider, Philip Woodland, University of Cambridge, United Kingdom

Karan Nathwani, Emmanuel Vincent, INRIA, Nancy, France; Irina Illina, INRIA-LORIA, Nancy, France

ASR.2: AUTOMATIC SPEECH RECOGNITION II

ASR.2.1: EXPLORING ARCHITECTURES, DATA AND UNITS FOR STREAMING
ASR.2.2: UNSUPERVISED ADAPTATION OF STUDENT DNNS LEARNED FROM
ASR.2.3: EXPLORING NEURAL TRANSDUCERS FOR END-TO-END SPEECH
ASR.2.4: UNSUPERVISED ADAPTATION WITH DOMAIN SEPARATION NETWORKS214 FOR ROBUST SPEECH RECOGNITION Zhong Meng, Georgia Institute of Technology, United States; Zhuo Chen, Vadim Mazalov, Jinyu Li, Yifan Gong, Microsoft Corporation, United States
ASR.2.5: INCREMENTAL TRAINING AND CONSTRUCTING THE VERY DEEP
ASR.2.6: ON LATTICE GENERATION FOR LARGE VOCABULARY SPEECH
ASR.2.7: SIMPLIFYING VERY DEEP CONVOLUTIONAL NEURAL NETWORK236 ARCHITECTURES FOR ROBUST SPEECH RECOGNITION Joanna Rownicka, Steve Renals, Peter Bell, University of Edinburgh, United Kingdom
ASR.2.8: LANGUAGE MODELING WITH HIGHWAY LSTM

ASR.2.9: DIRECT MODELING OF RAW AUDIO WITH DNNS FOR WAKE WORD252 DETECTION

Kenichi Kumatani, Sankaran Panchapagesan, Minhua Wu, Minjae Kim, Nikko Strom, Gautam Tiwari, Arindam Mandal, Amazon Inc., United States

ASR.2.10: IMPROVING THE EFFICIENCY OF FORWARD-BACKWARD ALGORITHM258 USING BATCHED COMPUTATION IN TENSORFLOW *Khe Chai Sim, Arun Narayanan, Tom Bagby, Tara Sainath, Michiel Bacchiani, Google Inc., United States*

ASR.2.11: LANGUAGE INDEPENDENT END-TO-END ARCHITECTURE FOR JOINT265 LANGUAGE IDENTIFICATION AND SPEECH RECOGNITION

Shinji Watanabe, Johns Hopkins University, United States; Takaaki Hori, John Hershey, Mitsubishi Electric Research Laboratories, United States

ASR.2.12: KEYWORD SPOTTING FOR GOOGLE ASSISTANT USING CONTEXTUAL272 SPEECH RECOGNITION

Assaf Hurwitz Michaely, Xuedong Zhang, Gabor Simko, Carolina Parada, Petar Aleksic, Google Inc., United States

ASR.2.13: INVESTIGATION OF TRANSFER LEARNING FOR ASR USING LF-MMI279 TRAINED NEURAL NETWORKS

Pegah Ghahremani, Vimal Manohar, Hossein Hadian, Daniel Povey, Sanjeev Khudanpur, Johns Hopkins University, United States

Takaaki Hori, Mitsubishi Electric Research Laboratories, United States; Shinji Watanabe, Johns Hopkins University, United States; John Hershey, Mitsubishi Electric Research Laboratories, United States

ASR.2.15: LANGUAGE MODELING WITH NEURAL TRANS-DIMENSIONAL RANDOM294 FIELDS

Bin Wang, Zhijian Ou, Tsinghua university, China

ASR.2.16: LISTENING WHILE SPEAKING: SPEECH CHAIN BY DEEP LEARNING......**301** *Andros Tjandra, Sakriani Sakti, Satoshi Nakamura, Nara Institute of Science and Technology, Japan*

CH.1: CHALLENGE OVERVIEW

CH.1.1: SPEECH RECOGNITION CHALLENGE IN THE WILD: ARABIC MGB-3......316 Ahmed Ali, Stephan Vogel, Qatar Computing Research Institute, Qatar; Steve Renals, University of Edinburgh, United Kingdom

United Kingdom; Alan W. Black, Carnegie Mellon University, United States

MGB.1: MULTI-GENRE BROADCAST MEDIA TRANSCRIPTION CHALLENGE: MGB-3

Peter Smit, Siva Reddy Gangireddy, Seppo Enarvi, Sami Virpioja, Mikko Kurimo, Aalto University, Finland

Maryam Najafian, Wei-Ning Hsu, Massachusetts Institute of Technology, United States; Ahmed Ali, Qatar Computing Research Institute, Qatar; James Glass, Massachusetts Institute of Technology, United States

Ahmet E. Bulut, Qian Zhang, Chunlei Zhang, Fahimeh Bahmaninezhad, John H. L. Hansen, University of Texas at Dallas, United States

Karel Veselý, Karthick Murali Baskar, Mireia Diez, Karel Beneš, Brno University of Technology, Czech Republic

Suwon Shon, MIT CSAIL, United States; Ahmed Ali, Qatar Computing Research Institute, Qatar; James Glass, MIT CSAIL, United States

NEW.1: NEW APPLICATIONS OF ASR

NEW.1.4: A CONTEXT-AWARE SPEECH RECOGNITION AND UNDERSTANDING404 SYSTEM FOR AIR TRAFFIC CONTROL DOMAIN

Youssef Oualil, Dietrich Klakow, György Szaszák, Saarland University, Germany; Ajay Srinivasamurthy, Idiap Research Institute, Switzerland; Hartmut Helmke, German Aerospace Center, Germany; Petr Motlicek, Idiap Research Institute, Switzerland

NEW.1.5: SPOKEN LANGUAGE BIOMARKERS FOR DETECTING COGNITIVE409 IMPAIRMENT

Tuka Alhanai, Massachusetts Institute of Technology, United States; Rhoda Au, Boston University School of Medicine and Public Health, United States; James Glass, Massachusetts Institute of Technology, United States

EXTRACTION FOR LANGUAGE DOCUMENTATION Markus Müller, Sebastian Stüker, Alex Waibel, Karlsruhe Institute of Technology, Germany

NEW.1.7: LEARNING MODALITY-INVARIANT REPRESENTATIONS FOR SPEECH AND424 IMAGES

Kenneth Leidal, David Harwath, James Glass, Massachusetts Institute of Technology, United States

Chiori Hori, Takaaki Hori, Tim Marks, John Hershey, Mitsubishi Electric Research Laboratories, United States

NEW.1.9: CRACKING THE COCKTAIL PARTY PROBLEM BY MULTI-BEAM DEEP437 ATTRACTOR NETWORK

Zhuo Chen, Jinyu Li, Xiong Xiao, Takuya Yoshioka, Huaming Wang, Zhenghao Wang, Yifan Gong, Microsoft Corporation, United States

SLP.1: SPOKEN LANGUAGE PROCESSING, DIALOG, MACHINE TRANSLATION

Salil Deena, Raymond Wai Man Ng, Pranava Madhyastha, Lucia Specia, Thomas Hain, University of Sheffield, United Kingdom

Marcely Zanon Boito, Alexandre Bérard, Laboratoire d'Informatique de Grenoble, France; Aline Villavicencio, Institute of Informatics, Federal University of Rio Grande do Sul, Brazil; Laurent Besacier, Laboratoire d'Informatique de Grenoble, France

Tien-Hong Lo, Ying-Wen Chen, National Taiwan Normal University, Taiwan; Kuan-Yu Chen, National Taiwan University of Science and Technology, Taiwan; Hsin-Min Wang, Academia Sinica, Taiwan; Berlin Chen, National Taiwan Normal University, Taiwan

SLP.1.4: STREAMING SMALL-FOOTPRINT KEYWORD SPOTTING USING
SLP.1.5: ITERATIVE POLICY LEARNING IN END-TO-END TRAINABLE
SLP.1.6: DENOTATION EXTRACTION FOR INTERACTIVE LEARNING IN DIALOGUE490 SYSTEMS Miroslav Vodolán, Filip Jurcícek, Charles University in Prague, Czech Republic
SLP.1.7: MITIGATING THE IMPACT OF SPEECH RECOGNITION ERRORS ON497 CHATBOT USING SEQUENCE-TO-SEQUENCE MODEL <i>Pin-Jung Chen, I-Hung Hsu, Yi Yao Huang, Hung-Yi Lee, National Taiwan University, Taiwan</i>
SLP.1.8: DEEP QUATERNION NEURAL NETWORKS FOR SPOKEN LANGUAGE
SLP.1.9: TOPIC SEGMENTATION IN ASR TRANSCRIPTS USING BIDIRECTIONAL
SLP.1.10: GROUNDED LANGUAGE UNDERSTANDING FOR MANIPULATION
SLP.1.11: HIERARCHICAL RECURRENT NEURAL NETWORK FOR STORY
SLP.1.12: PERSONALIZED WORD REPRESENTATIONS CARRYING PERSONALIZED533 SEMANTICS LEARNED FROM SOCIAL NETWORK POSTS Zih-Wei Lin, Tzu-Wei Sung, Hung-Yi Lee, Lin-Shan Lee, National Taiwan University, Taiwan
SLP.1.13: SPEAKER-SENSITIVE DUAL MEMORY NETWORKS FOR MULTI-TURN541 SLOT TAGGING Young-Bum Kim, Alexa Brain/Amazon, United States; Sungjin Lee, Microsoft Research, United States; Ruhi Sarikaya, Alexa Brain/Amazon, United States
SLP.1.14: ONENET: JOINT DOMAIN, INTENT, SLOT PREDICTION FOR SPOKEN
SLP.1.15: DYNAMIC TIME-AWARE ATTENTION TO SPEAKER ROLES AND
SLP.1.16: SCALABLE MULTI-DOMAIN DIALOGUE STATE TRACKING

SLP.1.17: EXPLORING ASR-FREE END-TO-END MODELING TO IMPROVE569

SPOKEN LANGUAGE UNDERSTANDING IN A CLOUD-BASED DIALOG SYSTEM Yao Qian, Rutuja Ubale, Vikram Ramanaryanan, Patrick Lange, David Suendermann-Oeft, Keelan Evanini, Eugene Tsuprun, Educational Testing Service, United States

SLR.1: SPEAKER/LANGUAGE RECOGNITION

Ning Gao, University of Maryland, College Park, United States; Gregory Sell, Human Language Technology Center of Excellence, The Johns Hopkins University, United States; Douglas Oard, University of Maryland, College Park, United States; Mark Dredze, Human Language Technology Center of Excellence, The Johns Hopkins University, United States

Chunlei Zhang, University of Texas at Dallas, United States; Kazuhito Koishida, Microsoft Corporation, United States

Lea Schönherr, Steffen Zeiler, Dorothea Kolossa, Ruhr-Universität Bochum, Germany

SLR.1.5: IMPROVING NATIVE LANGUAGE (L1) IDENTIFATION WITH BETTER VAD606 AND TDNN TRAINED SEPARATELY ON NATIVE AND NON-NATIVE ENGLISH CORPORA

Yao Qian, Keelan Evanini, Patrick Lange, Robert A. Pugh, Rutuja Ubale, Educational Testing Service, United States; Frank K Soong, Microsoft Research Asia, China

SLR.1.6: MULTI-VIEW (JOINT) PROBABILITY LINEAR DISCRIMINATION ANALYSIS614 FOR J-VECTOR BASED TEXT DEPENDENT SPEAKER VERIFICATION Ziqiang Shi, Liu Liu, Mengjiao Wang, Rujie Liu, Fujitsu Research and Development Center, China

SLR.1.7: LEVERAGING NATIVE LANGUAGE SPEECH FOR ACCENT IDENTIFICATION621 USING DEEP SIAMESE NETWORKS

Aditya Siddhant, Carnegie Mellon University, United States; Preethi Jyothi, Indian Institute of Technology Bombay, India; Sriram Ganapathy, Indian Institute of Science, India

Yi Liu, Liang He, Yao Tian, Zhuzi Chen, Jia Liu, Tsinghua University, China; Michael T. Johnson, University of Kentucky, United States

SML.1: SPEECH SYNTHESIS AS A MACHINE LEARNING PROBLEM

SML.1.1: THE CMU ENTRY TO BLIZZARD MACHINE LEARNING CHALLENGE644 Pallavi Baljekar, Sai Krishna Rallabandi, Alan W. Black, Carnegie Mellon University, United States
SML.1.2: THE USTC SYSTEM FOR BLIZZARD MACHINE LEARNING CHALLENGE650 2017-ES2 Ya Jun Hu, University of Science and Technology of China, China; Li Juan Liu, Chuang Ding, IFLYTEK CO.,LTD., China; Zhen Hua Ling, Li Rong Dai, University of Science and Technology of China, China
SML.1.3: THE IFLYTEK SYSTEM FOR BLIZZARD MACHINE LEARNING
TTS.1: TEXT-TO-SPEECH SYSTEMS
TTS.1.1: MINIMALLY SUPERVISED WRITTEN-TO-SPOKEN TEXT
TTS.1.2: PERCEPTUAL QUALITY AND MODELING ACCURACY OF EXCITATION671 PARAMETERS IN DLSTM-BASED SPEECH SYNTHESIS SYSTEMS Eunwoo Song, Yonsei University, Korea (South); Frank K. Soong, Microsoft Research Asia, China; Hong-Goo Kang, Yonsei University, Korea (South)
TTS.1.3: SPARSE REPRESENTATION OF PHONETIC FEATURES FOR VOICE677 CONVERSION WITH AND WITHOUT PARALLEL DATA Berrak Sisman, Haizhou Li, National University of Singapore, Singapore; Kay Chen Tan, City University of Hong Kong, China
TTS.1.4: STATISTICAL PARAMETRIC SPEECH SYNTHESIS USING GENERATIVE685 ADVERSARIAL NETWORKS UNDER A MULTI-TASK LEARNING FRAMEWORK Shan Yang, Lei Xie, Northwestern Polytechnical University, China; Xiao Chen, Xiaoyan Lou, Xuan Zhu, Samsung R&D Institute of China, China; Dongyan Huang, Institute for Infocomm Research, A*STAR, Singapore; Haizhou Li, National University of Singapore, Singapore
TTS.1.5: ERROR DETECTION OF GRAPHEME-TO-PHONEME CONVERSION IN692 TEXT-TO-SPEECH SYNTHESIS USING SPEECH SIGNAL AND LEXICAL CONTEXT Kévin Vythelingum, Yannick Estève, Le Mans University, France; Olivier Rosec, Voxygen, France
TTS.1.6: SUBBAND WAVENET WITH OVERLAPPED SINGLE-SIDEBAND698 FILTERBANKS Takuma Okamoto, Kentaro Tachibana, National Institute of Information and Communications Technology, Japan; Tomoki Toda, Nagoya University, Japan; Yoshinori Shiga, Hisashi Kawai, National Institute of Information and Communications Technology, Japan
TTS.1.7: INTEGRATED SPEAKER-ADAPTIVE SPEECH SYNTHESIS

Moquan Wan, Gilles Degottex, Mark J. F. Gales, University of Cambridge, United Kingdom

Tomoki Hayashi, Akira Tamamori, Kazuhiro Kobayashi, Kazuya Takeda, Tomoki Toda, Nagoya University, Japan

ZRS.1: THE ZERO RESOURCE SPEECH CHALLENGE 2017

ZRS.1.1: AN EMBEDDED SEGMENTAL K-MEANS MODEL FOR UNSUPERVISED719 SEGMENTATION AND CLUSTERING OF SPEECH

Herman Kamper, Stellenbosch University, South Africa; Karen Livescu, Toyota Technological Institute at Chicago, United States; Sharon Goldwater, University of Edinburgh, United Kingdom

Hongjie Chen, Northwestern Polytechnical University, China; Cheung-Chi Leung, Institute for Infocomm Research, A*STAR, Singapore; Lei Xie, Northwestern Polytechnical University, China; Bin Ma, Institute for Infocomm Research, A*STAR, Singapore; Haizhou Li, National University of Singapore, Singapore

ZRS.1.3: EXTRACTING BOTTLENECK FEATURES AND WORD-LIKE PAIRS FROM734 UNTRANSCRIBED SPEECH FOR FEATURE REPRESENTATION

Yougen Yuan, Northwestern Polytechnical University, China; Cheung-Chi Leung, Institute for Infocomm Research, A*STAR, Singapore; Lei Xie, Hongjie Chen, Northwestern Polytechnical University, China; Bin Ma, Institute for Infocomm Research, A*STAR, Singapore; Haizhou Li, National University of Singapore, Singapore

ZRS.1.4: FEATURE OPTIMIZED DPGMM CLUSTERING FOR UNSUPERVISED740 SUBWORD MODELING: A CONTRIBUTION TO ZEROSPEECH 2017

Michael Heck, Sakriani Sakti, Satoshi Nakamura, Nara Institute of Science and Technology, Japan

ZRS.1.6: DEEP LEARNING METHODS FOR UNSUPERVISED ACOUSTIC754
MODELING - LEAP SUBMISSION TO ZEROSPEECH CHALLENGE 2017
Ansari TK, Rajath Kumar, Sonali Singh, Sriram Ganapathy, Indian Institute of Science, India

ZRS.1.7: UNSUPERVISED HMM POSTERIOGRAMS FOR LANGUAGE	
INDEPENDENT ACOUSTIC MODELING IN ZERO RESOURCE CONDITIONS	
Ansari TK, Rajath Kumar, Sonali Singh, Sriram Ganapathy, Susheela Devi, Indian Institute of Scie	ence, India