2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW 2018)

Salt Lake City, Utah, USA 18-22 June 2018

Pages 1-813

IEEE Catalog Number: ISBN: CFP1888A-POD 978-1-5386-6101-7

Copyright © 2018 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

IEEE Catalog Number:	(
ISBN (Print-On-Demand):	Ç
ISBN (Online):	Ç
ISSN:	4

CFP1888A-POD 978-1-5386-6101-7 978-1-5386-6100-0 2160-7508

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com

2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops **CVPRW 2018**

Table of Contents

Message from the General and Program Chairs	xxxviii
Organizing Committee and Area Chairs	xl
Reviewers	xli

Disguised Faces in the Wild

Disguised Faces in the Wild Vineet Kushwaha (IIIT-Delhi, India), Maneet Singh (IIIT-Delhi), Richa Singh (IIIT-Delhi), Mayank Vatsa (IIIT-Delhi), Nalini Ratha (IBM TJ Watson Research Center), and Rama Chellappa (University of Maryland)	1
Deep Features for Recognizing Disguised Faces in the Wild Ankan Bansal (University of Maryland College Park), Rajeev Ranjan (University of Maryland College Park), Carlos D. Castillo (University of Maryland College Park), and Rama Chellappa (University of Maryland College Park)	10
Face Verification with Disguise Variations via Deep Disguise Recognizer Naman Kohli (West Virginia University), Daksha Yadav (West Virginia University), and Afzel Noore (Texas A&M University-Kingsville)	17
DisguiseNet: A Contrastive Approach for Disguised Face Verification in the Wild Skand Vishwanath Peri (Learning Affect and Semantic Image AnalysIs (LASII) Group) and Abhinav Dhall (Learning Affect and Semantic Image AnalysIs (LASII) Group)	25
Deep Disguised Faces Recognition Kaipeng Zhang (National Taiwan University), Ya-Liang Chang (National Taiwan University), and Winston Hsu (National Taiwan University)	32
Hard Example Mining with Auxiliary Embeddings Evgeny Smirnov (Speech Technology Center), Elizaveta Ivanova (Speech Technology Center), Aleksandr Melnikov (ITMO University), Ilya Kalinovskiy (Speech Technology Center), Andrei Oleinik (ITMO University), and Eugene Luckyanets (ITMO University)	.37
Detecting Presentation Attacks from 3D Face Masks Under Multispectral Imaging Jun Liu (The Hong Kong Polytechnic University) and Ajay Kumar (The Hong Kong Polytechnic University)	47

NVIDIA AI City Challenge

The 2018 NVIDIA AI City Challenge .53. Milind Naphade (NVIDIA Corporation, CA), Ming-Ching Chang (University at Albany, State University of New York), Anuj Sharma (Iowa State University, IA), David C. Anastasiu (San José State University, CA), Vamsi Jagarlamudi (Iowa State University, IA), Pranamesh Chakraborty (Iowa State University, IA), Tingting Huang (Iowa State University, IA), Shuo Wang (NVIDIA Corporation, CA), Ming-Yu Liu (NVIDIA Corporation, CA), Rama Chellappa (University at Maryland, College Park), Jenq-Neng Hwang (University of Washington, WA), and Siwei Lyu (University at Albany, State University of New York)
 Video Analytics in Smart Transportation for the AIC' 18 Challenge .6.1 Ming-Ching Chang (University at Albany, State University of New York), Yi Wei (University at Albany, State University of New York), Nenghui Song (University at Albany, State University of New York), and Siwei Lyu (University at Albany, State University of New York)
 Challenges on Large Scale Surveillance Video Analysis .69. Weitao Feng (Beihang University, China), Deyi Ji (Shanghai Jiao Tong University, China), Yiru Wang (Beihang University, China), Shuorong Chang (Beihang University, China), Hansheng Ren (University of Chinese Academy of Sciences, China), and Weihao Gan (University of Southern California, USA)
 Graph@FIT Submission to the NVIDIA AI City Challenge 2018 .7.7
AIC2018 Report: Traffic Surveillance Research .85 Tingyu Mao (Columbia University), Wei Zhang (Columbia University), Haoyu He (Columbia University), Yanjun Lin (Columbia University), Vinay Kale (Columbia University), Alexander Stein (Columbia University), and Zoran Kostic (Columbia University)
Speed Estimation and Abnormality Detection from Surveillance Cameras .93 Panagiotis Giannakeris (CERTH-ITI Thessaloniki), Vagia Kaltsa (CERTH-ITI Thessaloniki), Konstantinos Avgerinakis (CERTH-ITI Thessaloniki), Alexia Briassouli (Dept of Data Science and Knowledge Engineering Maastricht University), Stefanos Vrochidis (CERTH-ITI Thessaloniki), and Ioannis Kompatsiaris (CERTH-ITI Thessaloniki)
Traffic Flow Analysis with Multiple Adaptive Vehicle Detectors and Velocity Estimation with Landmark-Based Scanlines .100 Minh-Triet Tran (University of Science, VNU-HCM), Tung Dinh-Duy (University of Science, VNU-HCM), Thanh-Dat Truong (University of Science, VNU-HCM), Vinh Ton-That (University of Science, VNU-HCM), Thanh-Nhon Do (University of Science, VNU-HCM), Quoc-An Luong (University of Science, VNU-HCM), Thanh-An Nguyen (University of Science, VNU-HCM), Vinh-Tiep Nguyen (University of Science, VNU-HCM), and Minh N. Do (University of Illinois at Urbana-Champaign, U.S.)

Single-Camera and Inter-Camera Vehicle Tracking and 3D Speed Estimation Based on Fusion of Visual and Semantic Features .108.
Zheng Tang (University of Washington (UW) Seattle), Gaoang Wang (University of Washington (UW) Seattle), Hao Xiao (University of Washington (UW) Seattle), Aotian Zheng (University of Washington (UW) Seattle), and Jenq-Neng Hwang (University of Washington (UW) Seattle)
Geometry-Aware Traffic Flow Analysis by Detection and Tracking .1.16 Honghui Shi (IFP Group; IBM Research), Zhonghao Wang (IFP Group), Yang Zhang (IFP Group; IBM Research), Xinchao Wang (IFP Group; Stevens Institute of Technology), and Thomas Huang (IFP Group)
Vehicle Re-identification with the Space-Time Prior .121. <i>Chih-Wei Wu (NTU IoX Center), Chih-Ting Liu (NTU IoX Center), Cheng-En</i> <i>Chiang (NTU IoX Center), Wei-Chih Tu (NTU IoX Center), and Shao-Yi</i> <i>Chien (NTU IoX Center)</i>
Unsupervised Anomaly Detection for Traffic Surveillance Based on Background Modeling .129 JiaYi Wei (Beijing University of Posts and Telecommunications), JianFei Zhao (Beijing University of Posts and Telecommunications), YanYun Zhao (Beijing University of Posts and Telecommunications), and ZhiCheng Zhao (Beijing University of Posts and Telecommunications)
A Semi-Automatic 2D Solution for Vehicle Speed Estimation from Monocular Videos .137 Amit Kumar (Center for Automation Research), Pirazh Khorramshahi (Center for Automation Research), Wei-An Lin (Center for Automation Research, UMIACS University of Maryland), Prithviraj Dhar (Center for Automation Research), Jun-Cheng Chen (Center for Automation Research), and Rama Chellappa (Center for Automation Research)
 Dual-Mode Vehicle Motion Pattern Learning for High Performance Road Traffic Anomaly Detection .145 Yan Xu (Panasonic R&D Center Singapore), Xi Ouyang (Huazhong University of Science and Technology), Yu Cheng (Nanyang Technological University), Shining Yu (Nanyang Technological University), Lin Xiong (Panasonic R&D Center Singapore), Choon-Ching Ng (Panasonic R&D Center Singapore), Sugiri Pranata (Panasonic R&D Center Singapore), Shengmei Shen (Panasonic R&D Center Singapore), and Junliang Xing (National Laboratory of Pattern Recognition)
Vehicle Tracking and Speed Estimation from Traffic Videos .153 Shuai Hua (San Jose State University, USA), Manika Kapoor (San Jose State University, USA), and David C. Anastasiu (San Jose State University, USA)
Traffic Speed Estimation from Surveillance Video Data: For the 2nd NVIDIA AI City Challenge Track 1 .161. <i>Tingting Huang (Institute for Transportation)</i>
Unsupervised Vehicle Re-identification Using Triplet Networks .166 Pedro Antonio Marín-Reyes (University of Las Palmas de Gran Canaria), Luca Bergamini (University of Modena and Reggio Emilia), Javier Lorenzo-Navarro (University of Las Palmas de Gran Canaria), Andrea Palazzi (University of Modena and Reggio Emilia), Simone Calderara (University of Modena and Reggio Emilia), and Rita Cucchiara (University of Modena and Reggio Emilia)

DeepGlobe: A Challenge for Parsing the Earth through Satellite Images

DeepGlobe 2018: A Challenge to Parse the Earth through Satellite Images <u>172</u> Ilke Demir (Facebook), Krzysztof Koperski (DigitalGlobe), David Lindenbaum (CosmiQ Works), Guan Pang (Facebook), Jing Huang (Facebook), Saikat Basu (Facebook), Forest Hughes (Facebook), Devis Tuia (Wageningen University), and Ramesh Raska (The MIT Media Lab)
Semantic Binary Segmentation Using Convolutional Networks without Decoders .182 Shubhra Aich (University of Saskatchewan), William van der Kamp (University of Saskatchewan), and Ian Stavness (University of Saskatchewan)
Stacked U-Nets with Multi-output for Road Extraction .187 Tao Sun (Tongji University), Zehui Chen (Tongji University), Wenxiang Yang (Tongji University), and Yin Wang (Tongji University)
D-LinkNet: LinkNet with Pretrained Encoder and Dilated Convolution for High Resolution Satellite Imagery Road Extraction .192 Lichen Zhou (Beijing University of Posts and Telecommunications), Chuang Zhang (Beijing University of Posts and Telecommunications), and Ming Wu (Beijing University of Posts and Telecommunications)
Fully Convolutional Network for Automatic Road Extraction from Satellite Imagery .197 Alexander Buslaev (Mapbox R&D Center), Selim Seferbekov (Veeva Systems), Vladimir Iglovikov (Level5 Engineering Center, Lyft Inc), and Alexey Shvets (Massachusetts Institute of Technology)
Road Detection with EOSResUNet and Post Vectorizing Algorithm .201 Oleksandr Filin (EOS Data Analytics), Anton Zapara (EOS Data Analytics), and Serhii Panchenko (EOS Data Analytics)
Residual Inception Skip Network for Binary Segmentation .206 Jigar Doshi (CrowdAI)
Roadmap Generation using a Multi-stage Ensemble of Deep Neural Networks with Smoothing-Based Optimization .210 Dragos Costea (University Politehnica of Bucharest), Alina Marcu (Autonomous Systems), Emil Slusanschi (University Politehnica of Bucharest), and Marius Leordeanu (University Politehnica of Bucharest)
Rotated Rectangles for Symbolized Building Footprint Extraction .215 Matt Dickenson (UBER Technologies Inc.) and Lionel Gueguen (UBER Technologies Inc.)
Building Detection from Satellite Imagery Using a Composite Loss Function .219 Sergey Golovanov (Neuromation OU), Rauf Kurbanov (Neuromation OU), Aleksey Artamonov (Neuromation OU), Alex Davydow (Neuromation OU), and Sergey Nikolenko (Neuromation OU)
Building Detection from Satellite Imagery using Ensemble of Size-Specific Detectors .223 Ryuhei Hamaguchi (Pasco Corporation) and Shuhei Hikosaka (Pasco Corporation)
TernausNetV2: Fully Convolutional Network for Instance Segmentation .228 Vladimir Iglovikov (Level5 Engineering Center, Lyft Inc), Selim Seferbekov (Veeva Systems), Alexander Buslaev (Mapbox R&D Center), and Alexey Shvets (Massachusetts Institute of Technology)

Semantic Segmentation Based Building Extraction Method Using Multi-source GIS Map Datasets and Satellite Imagery .233. Weijia Li (Tsinghua University, China), Conghui He (Tsinghua University, China), Jiarui Fang (Tsinghua University, China), and Haohuan Fu (Tsinghua University, China)
CNNs Fusion for Building Detection in Aerial Images for the Building Detection Challenge .237 Remi Delassus (Univ. Bordeaux, France) and Romain Giot (Univ. Bordeaux, France)
Building Extraction from Satellite Images Using Mask R-CNN with Building Boundary Regularization .242 Kang Zhao (York University), Jungwon Kang (York University), Jaewook Jung (Thales Canada), and Gunho Sohn (York University)
Deep Aggregation Net for Land Cover Classification .247. <i>Tzu-Sheng Kuo (National Taiwan University), Keng-Sen Tseng (National Taiwan University), Jia-Wei Yan (National Taiwan University),</i> <i>Yen-Cheng Liu (National Taiwan University), and Yu-Chiang Frank Wang (National Taiwan University)</i>
Stacked U-Nets for Ground Material Segmentation in Remote Sensing Imagery .252 Arthita Ghosh (University of Maryland, USA), Max Ehrlich (University of Maryland, USA), Sohil Shah (University of Maryland, USA), Larry Davis (University of Maryland, USA), and Rama Chellappa (University of Maryland, USA)
Land Cover Classification from Satellite Imagery with U-Net and Lovász-Softmax Loss .257 Alexander Rakhlin (Neuromation OU), Alex Davydow (Neuromation OU), and Sergey Nikolenko (Neuromation OU)
Dense Fusion Classmate Network for Land Cover Classification .262 Chao Tian (Harbin Institute of Technology), Cong Li (SenseTime Group Limited), and Jianping Shi (SenseTime Group Limited)
NU-Net: Deep Residual Wide Field of View Convolutional Neural Network for Semantic Segmentation .267 Mohamed Samy (Nile University), Karim Amer (Nile University), Kareem Eissa (Nile University), Mahmoud Shaker (Nile University), and Mohamed ElHelw (Nile University)
Feature Pyramid Network for Multi-Class Land Segmentation .2.72 Selim Seferbekov (Veeva Systems), Vladimir Iglovikov (Level5 Engineering Center, Lyft Inc), Alexander Buslaev (Mapbox R&D Center), and Alexey Shvets (Massachusetts Institute of Technology)
Uncertainty Gated Network for Land Cover Segmentation .276 Guillem Pascual (University of Barcelona), Santi Segui (University of Barcelona), and Jordi Vitria (University of Barcelona)
Land Cover Classification with Superpixels and Jaccard Index Post-Optimization .280 Alex Davydow (Neuromation OU) and Sergey Nikolenko (Neuromation OU)

Visual Understanding of Humans in Crowd Scene and Look Into Person Challenge

Adaptation and Re-identification Network: An Unsupervised Deep Transfer Learning Approach to Person Re-identification 285
Attention in Multimodal Neural Networks for Person Re-identification .292 Aske R. Lejbølle (Aalborg University), Benjamin Krogh (BlipTrack Veovo), Kamal Nasrollahi (Aalborg University), and Thomas B. Moeslund (Aalborg University)
Pose Encoding for Robust Skeleton-Based Action Recognition .301 Girum G. Demisse (University of Luxembourg), Konstantinos Papadopoulos (University of Luxembourg), Djamila Aouada (University of Luxembourg), and Björn Ottersten (University of Luxembourg)
An Aggregated Multicolumn Dilated Convolution Network for Perspective-Free Counting .308 Diptodip Deb (Georgia Institute of Technology) and Jonathan Ventura (University of Colorado Colorado Springs)
Learning to Refine Human Pose Estimation 318. Mihai Fieraru (Max Planck Institute for Informatics Saarland Informatics Campus Saarbrücken), Anna Khoreva (Max Planck Institute for Informatics Saarland Informatics Campus Saarbrücken), Leonid Pishchulin (Max Planck Institute for Informatics Saarland Informatics Campus Saarbrücken), and Bernt Schiele (Max Planck Institute for Informatics Saarland Informatics Campus Saarbrücken)
Crowd Activity Change Point Detection in Videos via Graph Stream Mining .328 Meng Yang (The University of Melbourne, Australia; Data61 Victoria Research Laboratory), Lida Rashidi (The University of Melbourne, Australia; Data61 Victoria Research Laboratory), Sutharshan Rajasegarar (Deakin University, Australia; The University of Melbourne, Australia), Christopher Leckie (The University of Melbourne, Australia; Data61 Victoria Research Laboratory), Aravinda S. Rao (The University of Melbourne, Australia), and Marimuthu Palaniswami (The University of Melbourne, Australia)

Deep Learning for Visual SLAM

SuperPoint: Self-Supervised Interest Point Detection and Description .337 Daniel DeTone (Magic Leap Sunnyvale), Tomasz Malisiewicz (Magic Leap Sunnyvale), and Andrew Rabinovich (Magic Leap Sunnyvale)
Global Pose Estimation with an Attention-Based Recurrent Network .350
Emilio Parisotto (Apple Inc.; Carnegie Mellon University), Devendra
Singh Chaplot (Apple Inc.; Carnegie Mellon University), Jian Zhang
(Apple Inc.), and Ruslan Salakhutdinov (Apple Inc.; Carnegie Mellon
University)

Visual SLAM for Automated Driving: Exploring the Applications of Deep Learning .360 Stefan Milz (Valeo Schalter und Sensoren GmbH), Georg Arbeiter (Valeo Schalter und Sensoren GmbH), Christian Witt (Valeo Schalter und Sensoren GmbH), Bassam Abdallah (Valeo Vision), and Senthil Yogamani (Valeo Vision Systems)
Mask-SLAM: Robust Feature-Based Monocular SLAM by Masking Using Semantic Segmentation .3.7.1 Masaya Kaneko (The University of Tokyo), Kazuya Iwami (The University of Tokyo), Torn Ogawa (The University of Tokyo), Toshihiko Yamasaki (The University of Tokyo), and Kiyoharu Aizawa (The University of Tokyo)
Geometric Consistency for Self-Supervised End-to-End Visual Odometry .380 Ganesh Iyer (International Institute of Information Technology Hyderabad, India), J. Krishna Murthy (Montreal Institute of Learning Algorithms (MILA)), Gunshi Gupta (International Institute of Information Technology Hyderabad, India), K. Madhava Krishna (International Institute of Information Technology Hyderabad, India), and Liam Paull (Montreal Institute of Learning Algorithms (MILA), Universite de Montreal)
Learning Descriptor, Confidence, and Depth Estimation in Multi-view Stereo .389 Sungil Choi (Yonsei University), Seungryong Kim (Yonsei University), Kihong park (Yonsei University), and Kwanghoon Sohn (Yonsei University)
DepthNet: A Recurrent Neural Network Architecture for Monocular Depth Prediction .396 Aran CS Kumar (The University of Georgia), Suchendra M. Bhandarkar (The University of Georgia), and Mukta Prasad (Trinity College Dublin)
Towards CNN map Representation and Compression for Camera Relocalisation .405 Luis Contreras (University of Bristol, United Kingdom) and Walterio Mayol-Cuevas (University of Bristol, United Kingdom)
Monocular Depth Prediction Using Generative Adversarial Networks .4.13 Aran CS Kumar (The University of Georgia), Suchendra M. Bhandarkar (The University of Georgia), and Mukta Prasad (Trinity College Dublin)
Learning 3D Scene Semantics and Structure from a Single Depth Image .422 Bo Yang (University of Oxford), Zihang Lai (University of Oxford), Xiaoxuan Lu (University of Oxford), Shuyu Lin (University of Oxford), Hongkai Wen (University of Warwick), Andrew Markham (University of Oxford), and Niki Trigoni (University of Oxford)
QuadricSLAM: Dual Quadrics as SLAM Landmarks .426 Lachlan Nicholson Nicholson (Queensland University of Technology (QUT), Brisbane), Michael Milford (Queensland University of Technology (QUT), Brisbane), and Niko Sünderhauf (Queensland University of Technology (QUT), Brisbane)

Diff-CVML: Differential Geometry in Computer Vision and Machine Learning

The Riemannian Geometry of Deep Generative Models .428 Hang Shao (University of Utah, Salt Lake City), Abhishek Kumar (IBM T.J. Watson Research Center), and P. Thomas Fletcher (University of Utah, Salt Lake City)
Elastic Handling of Predictor Phase in Functional Regression Models .4.37 Kyungmin Ahn (Florida State University Tallahassee), J. Derek Tucker (Sandia National Laboratories Albuquerque), Wei Wu (Florida State University Tallahassee), and Anuj Srivastava (Florida State University Tallahassee)
Geodesic Discriminant Analysis for Manifold-Valued Data .445 Maxime Louis (Institut du Cerveau et de la Moelle épinière), Benjamin Charlier (Institut du Cerveau et de la Moelle épinière), and Stanley Durrleman (Institut du Cerveau et de la Moelle épinière)
A Mixture Model for Aggregation of Multiple Pre-Trained Weak Classifiers .454 Rudrasis Chakraborty (University of Florida), Chun-Hao Yang (University of Florida), and Baba C. Vemuri (University of Florida)
Temporal Alignment Improves Feature Quality: An Experiment on Activity Recognition with Accelerometer Data .462 Hongjun Choi (Arizona State University), Qiao Wang (Arizona State University), Meynard Toledo (Arizona State University), Pavan Turaga (Arizona State University), Matthew Buman (Arizona State University), and Anuj Srivastava (Florida State University)
Locally-Weighted Elastic Comparison of Planar Shapes .4.7.1 Justin Strait (The Ohio State University), Sebastian Kurtek (The Ohio State University), and Steven MacEachern (The Ohio State University)
Covariance Pooling for Facial Expression Recognition .480 Dinesh Acharya (ETH Zurich, Switzerland), Zhiwu Huang (ETH Zurich, Switzerland), Danda Pani Paudel (ETH Zurich, Switzerland), and Luc Van Gool (ETH Zurich, Switzerland; VISICS, KU Leuven, Belgium)
Image Segmentation by Deep Learning of Disjunctive Normal Shape Model Shape Representation .488 Mehran Javanmardi (University of Utah, Salt Lake City), Ricardo Bigolin Lanfredi (University of Utah, Salt Lake City), Mujdat Cetin (Sabanci University, Istanbul), and Tolga Tasdizen (University of Utah, Salt Lake City)
Predicting Dynamical Evolution of Human Activities from a Single Image 496 Suhas Lohit (Arizona State University, Tempe), Ankan Bansal (University of Maryland, College Park), Nitesh Shroff (Zoox Inc.), Jaishanker Pillai (Google Research), Pavan Turaga (Arizona State University, Tempe), and Rama Chellappa (University of Maryland, College Park)
Covariance Matrices Encoding Based on the Log-Euclidean and Affine Invariant Riemannian Metrics .506 Ioana Ilea (Technical University of Cluj-Napoca), Lionel Bombrun Bombrun (Laboratoire IMS, Université de Bordeaux), Salem Said

Principal Curvature Guided Surface Geometry Aware Global Shape Representation .5.16..... Somenath Das (The University of Georgia) and Suchendra M. Bhandarkar (The University of Georgia)

Biometrics

Toward More Realistic Face Recognition Evaluation Protocols for the YouTube Faces Database .526 Yoanna Martínez-Díaz (Advanced Technologies Application Center (CENATAV), Cuba), Heydi Méndez-Vázquez (Advanced Technologies Application Center (CENATAV), Cuba), Leyanis López-Avila (Advanced Technologies Application Center (CENATAV), Cuba), Leonardo Chang (Tecnológico de Monterrey, Mexico), L. Enrique Sucar (INAOE, Mexico), and Massimo Tistarelli (University of Sassari, Italy)
Dict Layer: A Structured Dictionary Layer .535. Yefei Chen (Shanghai Jiao Tong University, China) and Jianbo Su (Shanghai Jiao Tong University, China)
 Hierarchical Dictionary Learning and Sparse Coding for Static Signature Verification .545 Elias N. Zois (University of West Attica Agiou Spiridonos Str.), Marianna Papagiannopoulou (University of Patras), Dimitrios Tsourounis (University of Patras), and George Economou (University of Patras)
Realtime Quality Assessment of Iris Biometrics Under Visible Light .556 Mohsen Jenadeleh (University of Konstanz; Norwegian University of Science and Technology), Marius Pedersen (Norwegian University of Science and Technology), and Dietmar Saupe (University of Konstanz)
Multi-frame Super Resolution for Ocular Biometrics .566. Narsi Reddy (University of Missouri at Kansas City), Dewan Fahim Noor (University of Missouri at Kansas City), Zhu Li (University of Missouri at Kansas City), and Reza Derakhshani (University of Missouri at Kansas City)
Face Template Protection Using Deep Convolutional Neural Network .5.75 Arun Kumar Jindal (Tata Consultancy Services, India), Srinivas Chalamala (Tata Consultancy Services, India), and Santosh Kumar Jami (Tata Consultancy Services, India)
Incorporating Touch Biometrics to Mobile One-Time Passwords: Exploration of Digits .584 Ruben Tolosana (Universidad Autonoma de Madrid, Spain), Ruben Vera-Rodriguez (Universidad Autonoma de Madrid, Spain), Julian Fierrez (Universidad Autonoma de Madrid, Spain), and Javier Ortega-Garcia (Universidad Autonoma de Madrid, Spain)
Identity Aware Synthesis for Cross Resolution Face Recognition .592 Maneet Singh (IIIT-Delhi), Shruti Nagpal (IIIT-Delhi), Mayank Vatsa (IIIT-Delhi), Richa Singh (IIIT-Delhi), and Angshul Majumdar (IIIT-Delhi)
GenLR-Net: Deep Framework for Very Low Resolution Face and Object Recognition with Generalization to Unseen Categories .602 Sivaram Prasad Mudunuri (Indian Institute of Science, Bangalore, India), Soubhik Sanyal (Max-Planck Institute for Intelligent Systems, Tuebingen, Germany), and Soma Biswas (Indian Institute of Science, Bangalore, India)

Attribute-Centered Loss for Soft-Biometrics Guided Face Sketch-Photo Recognition .6.12 Hadi Kazemi (West Virginia University), Sobhan Soleymani (West Virginia University), Ali Dabouei (West Virginia University), Mehdi Iranmanesh (West Virginia University), and Nasser M. Nasrabadi (West Virginia University)
Latent Fingerprint Image Quality Assessment Using Deep Learning .621 Jude Ezeobiejesi (University of California at Riverside) and Bir Bhanu (University of California at Riverside)
Unconstrained Fingerphoto Database .630 Shaan Chopra (IIIT Delhi), Aakarsh Malhotra (IIIT Delhi), Mayank Vatsa (IIIT Delhi), and Richa Singh (IIIT Delhi)
Hybrid User-Independent and User-Dependent Offline Signature Verification with a Two-Channel CNN .639. Mustafa Berkay Yilmaz (Akdeniz University) and Kagan Öztürk (Akdeniz University)
It Takes Two to Tango: Cascading off-the-Shelf Face Detectors .648 Siqi Yang (The University of Queensland), Arnold Wiliem (The University of Queensland), and Brian C. Lovell (The University of Queensland)
Time Analysis of Pulse-Based Face Anti-Spoofing in Visible and NIR .657 Javier Hernandez-Ortega (Universidad Autonoma de Madrid, Spain), Julian Fierrez (Universidad Autonoma de Madrid, Spain), Aythami Morales (Universidad Autonoma de Madrid, Spain), and Pedro Tome (Universidad Autonoma de Madrid, Spain)
A Deep Face Identification Network Enhanced by Facial Attributes Prediction .666 Fariborz Taherkhani (West Virginia University), Nasser M. Nasrabadi (West Virginia University), and Jeremy Dawson (West Virginia University)
Gait Recognition by Deformable Registration .67.4 Yasushi Makihara (Osaka University), Daisuke Adachi (Osaka University), Chi Xu (Nanjing University of Science and Technology; Osaka University), and Yasushi Yagi (Osaka University)
 Fusion of Handcrafted and Deep Learning Features for Large-Scale Multiple Iris Presentation Attack Detection .685 Daksha Yadav (West Virginia University), Naman Kohli (West Virginia University), Akshay Agarwal (IIIT-Delhi), Mayank Vatsa (IIIT-Delhi), Richa Singh (IIIT-Delhi), and Afzel Noore (Texas A&M University-Kingsville)
Hierarchical Network for Facial Palsy Detection <u>.693</u> Gee-Sern Jison Hsu (National Taiwan University of Science and Technology Taipei), Wen-Fong Huang (National Taiwan University of Science and Technology Taipei), and Jiunn-Horng Kang (Taipei Medical University Taipei)

Embedded Vision

A Comparative Study of Real-time Semantic Segmentation for Autonomous Driving .700 Mennatullah Siam (University of Alberta), Mostafa Gamal (Cairo University), Moemen Abdel-Razek (Cairo University), Senthil Yogamani (Valeo Vision Systems), Martin Jagersand (University of Alberta), and Hong Zhang (University of Alberta)
Efficient Semantic Segmentation Using Gradual Grouping .7.11 Nikitha Vallurupalli (IIIT-Hyderabad, India), Sriharsha Annamaneni (IIIT-Hyderabad, India), Girish Varma (IIIT-Hyderabad, India), CV Jawahar (IIIT-Hyderabad, India), Manu Mathew (Texas Instruments, Bangalore, India), and Soyeb Nagori (Texas Instruments, Bangalore, India)
IFQ-Net: Integrated Fixed-Point Quantization Networks for Embedded Vision .720 Hongxing Gao (Canon Information Technology (Beijing) Co.), Wei Tao (Canon Information Technology (Beijing) Co.), Dongchao Wen (Canon Information Technology (Beijing) Co.), Tse-Wei Chen, Kinya Osa (Device Technology Development Headquarters, Canon Inc.), and Kato Masami (Device Technology Development Headquarters, Canon Inc.)
Interpolation-Based Object Detection Using Motion Vectors for Embedded Real-time Tracking Systems .729 Takayuki Ujiie (Kyoto University, Japan), Masayuki Hiromoto (Kyoto University, Japan), and Takashi Sato (Kyoto University, Japan)
Onboard Stereo Vision for Drone Pursuit or Sense and Avoid .738 Cevahir Cigla (Aselsan Inc.), Rohan Thakker (Jet Propulsion Laboratory, California Institute of Technology), and Larry Matthies (Jet Propulsion Laboratory, California Institute of Technology)
Light Field Depth Estimation on Off-the-Shelf Mobile GPU .747 Andre Ivan (Inha University, Incheon, Korea), Williem . (Bina Nusantara University, Jakarta, Indonesia), and In Kyu Park (Inha University, Incheon, Korea)
Pseudo-Labels for Supervised Learning on Dynamic Vision Sensor Data, Applied to Object Detection Under Ego-Motion .757
GPU Based Video Object Tracking on PTZ Cameras .767 Cevahir Cigla (Aselsan Inc. Turkey), Kemal Emrecan Sahin (Aselsan Inc. Turkey), and Fikret Alim (Aselsan Inc. Turkey)
Analysis of Efficient CNN Design Techniques for Semantic Segmentation .7.7.6 Alexandre Briot (GEEDS AI), Prashanth Viswanath (Valeo Vision Systems), and Senthil Yogamani (Valeo Vision Systems)
Design of a Reconfigurable 3D Pixel-Parallel Neuromorphic Architecture for Smart Image Sensor .786 Pankaj Bhowmik (University of Arkansas Fayetteville), Md Jubaer Hossain Pantho (University of Arkansas Fayetteville), Marjan Asadinia (University of Arkansas Fayetteville), and Christophe Bobda (University of Arkansas Fayetteville)
KCNN: Extremely-Efficient Hardware Keypoint Detection with a Compact Convolutional Neural Network .795 Paolo Di Febbo (Aquifi Inc.), Carlo Dal Mutto (Aquifi Inc.), Kinh Tieu

(Aquifi Inc.), and Stefano Mattoccia (University of Bologna)

New Trends in Image Restoration and Enhancement

WESPE: Weakly Supervised Photo Enhancer for Digital Cameras .804 Andrey Ignatov (Computer Vision Laboratory), Nikolay Kobyshev (Computer Vision Laboratory), Radu Timofte (Computer Vision Laboratory), Kenneth Vanhoey (Computer Vision Laboratory), and Luc Van Gool (Computer Vision Laboratory, ETH Zürich; ESAT - PSI, KU Leuven)
Unsupervised Image Super-Resolution Using Cycle-in-Cycle Generative Adversarial Networks .8.14 Yuan Yuan (Sensetime Research; Shenzhen University), Siyuan Liu (Tsinghua University, China), Jiawei Zhang (Sensetime Research), Yongbing Zhang (Tsinghua University, China), Chao Dong (Sensetime Research), and Liang Lin (Sensetime Research)
DPW-SDNet: Dual Pixel-Wavelet Domain Deep CNNs for Soft Decoding of JPEG-Compressed Images .824 Honggang Chen (Sichuan University), Xiaohai He (Sichuan University), Linbo Qing (Sichuan University), Shuhua Xiong (Sichuan University), and Truong Q. Nguyen (UC San Diego)
Attribute Augmented Convolutional Neural Network for Face Hallucination .834 Cheng-Han Lee (National Taiwan University), Kaipeng Zhang (National Taiwan University), Hu-Cheng Lee (National Taiwan University), Chia-Wen Cheng (The University of Texas at Austin), and Winston Hsu (National Taiwan University)
Recursive Deep Residual Learning for Single Image Dehazing .843 Yixin Du (West Virginia University LCSEE) and Xin Li (West Virginia University LCSEE)
Synthesized Texture Quality Assessment via Multi-scale Spatial and Statistical Texture Attributes of Image and Gradient Magnitude Coefficients .851. S. Alireza Golestaneh (Arizona State University) and Lina J. Karam (Arizona State University)
Learning Face Deblurring Fast and Wide .858 Meiguang Jin (University of Bern Switzerland), Michael Hirsch (Amazon Research Germany), and Paolo Favaro (University of Bern Switzerland)
O-HAZE: A Dehazing Benchmark with Real Hazy and Haze-Free Outdoor Images .867 Codruta O. Ancuti (MEO, Universitatea Politehnica Timisoara), Cosmin Ancuti (MEO, Universitatea Politehnica Timisoara), Radu Timofte (ETH Zurich, Switzerland and Merantix GmbH), and Christophe De Vleeschouwer (ICTEAM, Universite Catholique de Louvain)
Large Receptive Field Networks for High-Scale Image Super-Resolution .8.76 George Seif (Ryerson University) and Dimitrios Androutsos (Ryerson University)
Multi-level Wavelet-CNN for Image Restoration .886. Pengju Liu (Harbin Institute of Technology, China), Hongzhi Zhang (Harbin Institute of Technology, China), Kai Zhang (Harbin Institute of Technology, China), Liang Lin (Sun Yat-Sen University, Guangzhou, China), and Wangmeng Zuo (Harbin Institute of Technology, China)
ComboGAN: Unrestrained Scalability for Image Domain Translation .896 Asha Anoosheh (ETH Zurich, Switzerland), Eirikur Agustsson (ETH Zurich, Switzerland), Radu Timofte (ETH Zurich, Switzerland), and Luc Van Gool (ETH Zurich, Switzerland)

Image Super-Resolution via Progressive Cascading Residual Network .904. Namhyuk Ahn (Ajou University, Korea), Byungkon Kang (Ajou University, Korea), and Kyung-Ah Sohn (Ajou University, Korea)
Deep Residual Network with Enhanced Upscaling Module for Super-Resolution .9.13 Jun-Hyuk Kim (Yonsei University, Korea) and Jong-Seok Lee (Yonsei University, Korea)
Persistent Memory Residual Network for Single Image Super Resolution .922 Rong Chen (Xiamen University, China), Yanyun Qu (Xiamen University, China), Kun Zeng (Xiamen University, China), Jinkang Guo (Xiamen University, China), Cuihua Li (Xiamen University, China), and Yuan Xie (Chinese Academy of Sciences, Beijing, China)
 Fully End-to-End Learning Based Conditional Boundary Equilibrium GAN with Receptive Field Sizes Enlarged for Single Ultra-High Resolution Image Dehazing .930 Sehwan Ki (Korea Advanced Institute of Science and Technology), Hyeonjun Sim (Korea Advanced Institute of Science and Technology), Jae-Seok Choi (Korea Advanced Institute of Science and Technology), Soomin Seo (Korea Advanced Institute of Science and Technology), Saehun Kim (Korea Advanced Institute of Science and Technology), Saehun Kim (Korea Advanced Institute of Science and Technology), Munchurl Kim (Korea Advanced Institute of Science and Technology)
Cycle-Dehaze: Enhanced CycleGAN for Single Image Dehazing .938 Deniz Engin (SiMiT Lab), Anil Genc (SiMiT Lab), and Hazim Kemal Ekenel (SiMiT Lab)
IRGUN : Improved Residue Based Gradual Up-Scaling Network for Single Image Super Resolution .947 Manoj Sharma (CSIR- CEERI, India), Rudrabha Mukhopadhyay (CSIR- CEERI, India), Avinash Upadhyay (CSIR- CEERI, India), Sriharsha Koundinya (CSIR- CEERI, India), Ankit Shukla (CSIR- CEERI, India), and Santanu Chaudhury (CSIR- CEERI, India)
2D-3D CNN Based Architectures for Spectral Reconstruction from RGB Images .957 Sriharsha Koundinya (CSIR-CEERI, India; AcSIR), Himanshu Sharma (CSIR-CEERI, India), Manoj Sharma (CSIR-CEERI, India), Avinash Upadhyay (CSIR-CEERI, India), Raunak Manekar (CSIR-CEERI, India), Rudrabha Mukhopadhyay (CSIR-CEERI, India), Abhijit Karmakar (CSIR-CEERI, India; AcSIR), and Santanu Chaudhury (CSIR-CEERI, India; AcSIR)
 NTIRE 2018 Challenge on Single Image Super-Resolution: Methods and Results .965 Radu Timofte (ETH Zurich, Switzerland; Merantix, Germany), Shuhang Gu (ETH Zurich, Switzerland), Luc Van Gool (ETH Zurich, Switzerland; ESAT, KU Leuven, Belgium), Lei Zhang (The Hong Kong Polytechnic University, China), and Ming-Hsuan Yang (University of California at Merced, USA)
A Fully Progressive Approach to Single-Image Super-Resolution .9.77 Yifan Wang (ETH Zurich; Disney Research), Federico Perazzi (Disney Research), Brian McWilliams (Disney Research), Alexander Sorkine-Hornung (Disney Research), Olga Sorkine-Hornung (ETH Zurich), and Christopher Schroers (Disney Research)

New Techniques for Preserving Global Structure and Denoising with Low Information Loss in Single-Image Super-Resolution .987 Yijie Bei (Duke University), Alex Damian (Duke University), Shijia Hu (Duke University), Sachit Menon (Duke University), Nikhil Ravi (Duke University), and Cynthia Rudin (Duke University)
Efficient Module Based Single Image Super Resolution for Multiple Problems .995 Dongwon Park (Ulsan National Institute of Science and Technology, South Korea), Kwanyoung Kim (Ulsan National Institute of Science and Technology, South Korea), and Se Young Chun (Ulsan National Institute of Science and Technology, South Korea)
NTIRE 2018 Challenge on Image Dehazing: Methods and Results .1004 Cosmin Ancuti (University Politehnica Timisoara, Romania), Codruta O. Ancuti (University Politehnica Timisoara, Romania), Radu Timofte (ETH Zurich, Switzerland; Merantix GmbH, Germany), Luc Van Gool (ETH Zurich, Switzerland; ESAT, KU Leuven, Belgium), Lei Zhang (Polytechnic University of Hong Kong, China), and Ming-Hsuan Yang (University of California at Merced, USA)
Multi-scale Single Image Dehazing Using Perceptual Pyramid Deep Network .1015 He Zhang (Rutgers University, Piscataway), Vishwanath Sindagi (Rutgers University, Piscataway), and Vishal M. Patel (Rutgers University, Piscataway)
 High-Resolution Image Dehazing with Respect to Training Losses and Receptive Field Sizes .1025 Hyeonjun Sim (Korea Advanced Institute of Science and Technology, Korea), Sehwan Ki (Korea Advanced Institute of Science and Technology, Korea), Jae-Seok Choi (Korea Advanced Institute of Science and Technology, Korea), Soomin Seo (Korea Advanced Institute of Science and Technology, Korea), Saehun Kim (Korea Advanced Institute of Science and Technology, Korea), and Munchurl Kim (Korea Advanced Institute of Science and Technology, Korea)
Image Dehazing by Joint Estimation of Transmittance and Airlight Using Bi-Directional Consistency Loss Minimized FCN .1033 Ranjan Mondal (Indian Statistical Institute, Kolkata, India), Sanchayan Santra (Indian Statistical Institute, Kolkata, India), and Bhabatosh Chanda (Indian Statistical Institute, Kolkata, India)
NTIRE 2018 Challenge on Spectral Reconstruction from RGB Images .1042 Boaz Arad (Ben-Gurion University of the Negev, Israel), Ohad Ben-Shahar (Ben-Gurion University of the Negev, Israel), Radu Timofte (ETH Zurich, Switzerland; Merantix, Germany), Luc Van Gool (ETH Zurich, Switzerland; ESAT, KU Leuven, Belgium), Lei Zhang (Polytechnic University of Hong Kong, China), and Ming-Hsuan Yang (University of California at Merced, USA)
HSCNN+: Advanced CNN-Based Hyperspectral Recovery from RGB Images .1052 Zhan Shi (University of Science and Technology of China), Chang Chen (University of Science and Technology of China), Zhiwei Xiong (University of Science and Technology of China), Dong Liu (University of Science and Technology of China), and Feng Wu (University of Science and Technology of China)

Reconstructing Spectral Images from RGB-Images Using a Convolutional Neural Network .1061..... Tarek Stiebei (RWTH Aachen University), Simon Köppers (RWTH Aachen University), Philipp Seltsam (RWTH Aachen University), and Dorit Merhof (RWTH Aachen University)

Autonomous Driving

The ApolloScape Dataset for Autonomous Driving .1067 Xinyu Huang (Baidu Research), Xinjing Cheng (Baidu Research), Qichuan Geng (Baidu Research), Binbin Cao (Baidu Research), Dingfu Zhou (Baidu Research), Peng Wang (Baidu Research), Yuanqing Lin (Baidu Research), and Ruigang Yang (Baidu Research)
Scene Understanding Networks for Autonomous Driving Based on Around View Monitoring System .107.4 JeongYeol Baek (Convergence Center, LG Electronics), Ioana Veronica Chelu (Arnia Software, Romania), Livia Iordache (Arnia Software, Romania), Vlad Paunescu (Arnia Software, Romania), HyunJoo Ryu (Convergence Center, LG Electronics), Alexandru Ghiuta (Arnia Software, Romania), Andrei Petreanu (Arnia Software, Romania), YunSung Soh (Convergence Center, LG Electronics), Andrei Leica (Arnia Software, Romania), and ByeongMoon Jeon (Convergence Center)
 Training Deep Networks with Synthetic Data: Bridging the Reality Gap by Domain Randomization .1082 Jonathan Tremblay (NVIDIA), Aayush Prakash (NVIDIA), David Acuna (NVIDIA; University of Toronto), Mark Brophy (NVIDIA), Varun Jampani (NVIDIA), Cem Anil (also University of Toronto), Thang To (NVIDIA), Eric Cameracci (NVIDIA), Shaad Boochoon (NVIDIA), and Stan Birchfield (NVIDIA)
On the Iterative Refinement of Densely Connected Representation Levels for Semantic Segmentation .109.1 Arantxa Casanova (Montreal Institute for Learning Algorithms; Computer Vision Center, Barcelona), Guillem Cucurull (Montreal Institute for Learning Algorithms; Computer Vision Center, Barcelona), Michal Drozdzal (Montreal Institute for Learning Algorithms; Facebook AI Research), Adriana Romero (Montreal Institute for Learning Algorithms; Facebook AI Research), and Yoshua Bengio (Montreal Institute for Learning Algorithms)
Minimizing Supervision for Free-Space Segmentation .1.10.1 Satoshi Tsutsui (Indiana University; Preferred Networks), Tommi Kerola (Preferred Networks), Shunta Saito (Preferred Networks), and David J. Crandall (Indiana University)
Error Correction for Dense Semantic Image Labeling .1.1.1. Yu-Hui Huang (KU-Leuven/ESAT-PSI, Toyota Motor Europe (TRACE)), Xu Jia (KU-Leuven/ESAT-PSI, IMEC), Stamatios Georgoulis (KU-Leuven/ESAT-PSI, Toyota Motor Europe (TRACE)), Tinne Tuytelaars (KU-Leuven/ESAT-PSI, IMEC), and Luc Van Gool (KU-Leuven/ESAT-PSI, Toyota Motor Europe (TRACE); ETH/DITET-CVL)
On the Importance of Stereo for Accurate Depth Estimation: An Efficient Semi-Supervised Deep Neural Network Approach .1.120 Nikolai Smolyanskiy (NVIDIA), Alexey Kamenev (NVIDIA), and Stan Birchfield (NVIDIA)

Accurate Deep Direct Geo-Localization from Ground Imagery and Phone-Grade GPS .1.129 Shaohui Sun (Lyft Inc, USA), Ramesh Sarukkai (Lyft Inc, USA), Jack Kwok (Lyft Inc, USA), and Vinay Shet (Lyft Inc, USA)
Efficient and Safe Vehicle Navigation Based on Driver Behavior Classification .1.13.7 Ernest Cheung (The University of North Carolina at Chapel Hill Chapel Hill), Aniket Bera (The University of North Carolina at Chapel Hill Chapel Hill), and Dinesh Manocha (The University of North Carolina at Chapel Hill Chapel Hill)
Detection of Distracted Driver Using Convolutional Neural Network .1.14.5 Bhakti Baheti (SGGS Institute of Engineering and Technology, Maharashtra, India), Suhas Gajre (SGGS Institute of Engineering and Technology, Maharashtra, India), and Sanjay Talbar (SGGS Institute of Engineering and Technology, Maharashtra, India)
Classifying Group Emotions for Socially-Aware Autonomous Vehicle Navigation .1.152 Aniket Bera (University of North Carolina at Chapel Hill), Tanmay Randhavane (University of North Carolina at Chapel Hill), Austin Wang (University of North Carolina at Chapel Hill), Dinesh Manocha (University of North Carolina at Chapel Hill), Emily Kubin (University of North Carolina at Chapel Hill), and Kurt Gray (University of North Carolina at Chapel Hill),
AutonoVi-Sim: Autonomous Vehicle Simulation Platform with Weather, Sensing, and Traffic Control .1.161 Andrew Best (UNC Chapel Hill), Sahil Narang (UNC Chapel Hill), Lucas Pasqualin (Institute for Simulation and Training, UCF), Daniel Barber (Institute for Simulation and Training, UCF), and Dinesh Manocha (UNC Chapel Hill)
Learning Hierarchical Models for Class-Specific Reconstruction from Natural Data .1.17.0 Arun CS Kumar (University of Georgia), Suchendra M. Bhandarkar (University of Georgia), and Mukta Prasad (Daedalean AG)
Subset Replay Based Continual Learning for Scalable Improvement of Autonomous Systems .1179 Pratik Prabhanjan Brahma (Electronics Research Laboratory Volkswagen Group of America) and Adrienne Othon (Electronics Research Laboratory

Volkswagen Group of America)

Human Pose, Motion, Activities and Shape in 3D

Monocular RGB Hand Pose Inference from Unsupervised Refinable Nets .1.188 Endri Dibra (ETH Zurich), Silvan Melchior (ETH Zurich), Ali Balkis (ETH Zurich), Thomas Wolf (ETH Zurich), Cengiz Öztireli (ETH Zurich), and Markus Gross (ETH Zurich)
Unsupervised Features for Facial Expression Intensity Estimation Over Time .1.199
Maren Awiszus (Institut für Informationsverarbeitung Leibniz
Universität Hannover), Stella Graßhof (Institut für
Informationsverarbeitung Leibniz Universität Hannover), Felix Kuhnke
(Institut für Informationsverarbeitung Leibniz Universität Hannover),
and Jörn Ostermann (Institut für Informationsverarbeitung Leibniz
Universität Hannover)

Deep Learning Whole Body Point Cloud Scans from a Single Depth Map	.1208
Nolan Lunscher (University of Waterloo, Canada) and John Zelek	
(University of Waterloo, Canada)	

HandyNet: A One-stop Solution to Detect, Segment, Localize & Analyze Driver Hands .1216..... Akshay Rangesh (UC San Diego) and Mohan M. Trivedi (UC San Diego)

Perception Beyond the Visible Spectrum

Generating Visible Spectrum Images from Thermal Infrared .1224 Amanda Berg (Termisk Systemteknik AB, Sweden), Jorgen Ahlberg (Termisk Systemteknik AB, Sweden), and Michael Felsberg (Linköping University, Sweden)
 IR2VI: Enhanced Night Environmental Perception by Unsupervised Thermal Image Translation .1234 Shuo Liu (University of British Columbia), Vijay John (Toyota Institute of Technology), Erik Blasch (Air Force Research Laboratory), Zheng Liu (University of British Columbia), and Ying Huang (Chongqing University of Posts and Telecommunications)
Path Orthogonal Matching Pursuit for Sparse Reconstruction and Denoising of SWIR Maritime Imagery .1242 <i>Timothy Doster (U.S. Naval Research Laboratory), Tegan Emerson (U.S.</i> <i>Naval Research Laboratory), and Colin Olson (U.S. Naval Research</i> <i>Laboratory)</i>
 Deep Learning Based Single Image Dehazing .1250. Patricia L. Suárez (Escuela Superior Politécnica del Litoral), Angel D. Sappa (Escuela Superior Politécnica del Litoral; Computer Vision Center), Boris X. Vintimilla (Escuela Superior Politécnica del Litoral), and Riad I. Hammoud (BAE Systems)
Generative Adversarial Networks for Depth Map Estimation from RGB Video .1258 Kin Gwn (United Technologies Research Center), Kishore Reddy (United Technologies Research Center), Michael Giering (United Technologies Research Center), and Edgar A. Bernal (United Technologies Research Center)
On the Impact of Parallax Free Colour and Infrared Image Co-Registration to Fused Illumination Invariant Adaptive Background Modelling .1267 Michael Loveday (Durham University, UK) and Toby P. Breckon (Durham University, UK)
Integrated Learning and Feature Selection for Deep Neural Networks in Multispectral Images .1277 Anthony Ortiz (University of Texas at El Paso), Alonso Granados (University of Texas at El Paso), Olac Fuentes (University of Texas at El Paso), Christopher Kiekintveld (University of Texas at El Paso), Dalton Rosario (U.S. Army Research Laboratory (ARL)), and Zachary Bell (University of Texas at El Paso)
A Comprehensive Solution for Deep-Learning Based Cargo Inspection to Discriminate Goods in Containers .1287 Jiahang Che (NUCTECH company limited), Yuxiang Xing (Tsinghua University), and Li Zhang (Tsinghua University)

Cross-Domain Hallucination Network for Fine-Grained Object Recognition .1295 Jin-Fu Lin (National Taiwan University), Yen-Liang Lin (GE Global Research), Erh-Kan King (National Taiwan University), Hung-Ting Su (National Taiwan University), and Winston H. Hsu (National Taiwan University)
Deep Convolutional Neural Networks with Integrated Quadratic Correlation Filters for Automatic Target Recognition .1303 Brian Millikan (University of Central Florida), Hassan Foroosh (University of Central Florida), and Qiyu Sun (University of Central Florida)
An Online and Flexible Multi-object Tracking Framework Using Long Short-Term Memory .131.1 Xingyu Wan (Xi'an Jiaotong University Institute of Artificial Intelligence and Robotics), Jinjun Wang (Xi'an Jiaotong University Institute of Artificial Intelligence and Robotics), and Sanping Zhou (Xi'an Jiaotong University Institute of Artificial Intelligence and Robotics)
 Polarimetric Synthetic-Aperture-Radar Change-Type Classification with a Hyperparameter-Free Open-Set Classifier .1320
University), Mehryar Emambakhsh (Cortexica Vision Systems), Sen Wang (Heriot-Watt University), and Barry Connor (Thales UK)

Computer Vision for Physiological Measurement

Local Group Invariance for Heart Rate Estimation from Face Videos in the Wild .1335..... Christian S. Pilz (CanControls, Aachen), Sebastian Zaunseder (TU Dresden, Germany), Jarek Krajewski (University of Wuppertal, Germany), and Vladimir Blazek (RWTH Aachen University, Germany CTU Prague)

Advertisement Effectiveness Estimation Based on Crowdsourced Multimodal Affective Responses .1344..... Genki Okada (Chiba University Chiba), Kenta Masui (Chiba University Chiba), and Norimichi Tsumura (Chiba University Chiba)

SparsePPG: Towards Driver Monitoring Using Camera-Based Vital Signs Estimation in Near-Infrared .1353.. Ewa Magdalena Nowara (Mitsubishi Electric Research Laboratories (MERL); Rice University), Tim K. Marks (Mitsubishi Electric Research Laboratories (MERL)), Hassan Mansour (Mitsubishi Electric Research Laboratories (MERL)), and Ashok Veeraraghavany (Rice University)

Novel Algorithms to Monitor Continuous Cardiac Activity with a Video Camera .1363..... Gregory F. Lewis (Indiana University), Maria I. Davila (University of North Carolina), and Stephen W. Porges (Indiana University)

Measurement of Capillary Refill Time (CRT) in Healthy Subjects Using a Robotic Hand .1.372 Emmett Kerr (Ulster University Intelligent Systems Research Centre), Sonya Coleman (Ulster University Intelligent Systems Research Centre), T.M. McGinnity (Nottingham Trent University School of Science and Technology), and Andrea Shepherd (Ulster University School of Nursing)
A Novel Framework for Remote Photoplethysmography Pulse Extraction on Compressed Videos .1380 Changchen Zhao (Beihang University, China; National Chung Hsing University, Taiwan), Chun-Liang Lin (National Chung Hsing University, Taiwan), Weihai Chen (Beihang University, Beijing, China), and Zhengguo Li (Institute for Infocomm Research, Singapore)
Non-contact Heart Rate Monitoring by Combining Convolutional Neural Network Skin Detection and Remote Photoplethysmography via a Low-Cost Camera .1390 <i>Chuanxiang Tang (Hunan University Changsha, China), Jiwu Lu (Hunan</i> <i>University Changsha, China), and Jie Liu (Hunan University Changsha,</i> <i>China)</i>
 Exploring the Feasibility of Face Video Based Instantaneous Heart-Rate for Micro-Expression Spotting.139.7. Puneet Gupta (TCS Research and Innovation, India), Brojeshwar Bhowmick (TCS Research and Innovation, India), and Arpan Pal (TCS Research and Innovation, India)
Video Based Measurement of Heart Rate and Heart Rate Variability Spectrogram from Estimated Hemoglobin Information .1405 Munenori Fukunishi (Chiba University, Japan), Kouki Kurita (Chiba University, Japan), Shoji Yamamoto (Tokyo Metropolitan College, Japan), and Norimichi Tsumura (Chiba University, Japan)
Periodic Variance Maximization Using Generalized Eigenvalue Decomposition Applied to Remote Photoplethysmography Estimation .1413 <i>Richard Macwan (Univ. Bourgogne Franche-Comté, France), Serge Bobbia</i> <i>(Univ. Bourgogne Franche-Comté, France), Yannick Benezeth (Univ. Bourgogne Franche-Comté, France), Julien Dubois (Univ. Bourgogne Franche-Comté, France), and Alamin Mansouri (Univ. Bourgogne Franche-Comté, France)</i>
Real-Time Temporal Superpixels for Unsupervised Remote Photoplethysmography .1.422 Serge Bobbia (Univ. Bourgogne Franche-Comté, France), Duncan Luguern (Univ. Bourgogne Franche-Comté, France), Yannick Benezeth (Univ. Bourgogne Franche-Comté, France), Keisuke Nakamura (Honda Research Institute Japan Co., Ltd.), Randy Gomez (Honda Research Institute Japan Co., Ltd.), and Julien Dubois (Univ. Bourgogne Franche-Comté, France)
 Fully-Automatic Camera-Based Pulse-Oximetry During Sleep .1430 Tom Vogels (Eindhoven University of Technology), Mark van Gastel (Eindhoven University of Technology), Wenjin Wang (Philips Research), and Gerard de Haan (Philips Research)
Impairing Factors in Remote-PPG Pulse Transit Time Measurements on the Face .1439 Andreia Moço (Eindhoven University of Technology), Sander Stuijk (Eindhoven University of Technology), Mark van Gastel (Philips Research), and Gerard de Haan (Philips Research)
Deep Super Resolution for Recovering Physiological Information from Videos .1.44.8 Daniel McDuff (Microsoft Research)

Direct-Global Separation for Improved Imaging Photoplethysmography .145.6..... Jaehee Park (Rice University), Ashutosh Sabharwal (Rice University), and Ashok Veeraraghavan (Rice University)

Automated Analysis of Marine Video for Environmental Monitoring

Automated Analysis of Marine Video with Limited Data .1466....
Deborah Levy (Leon H. Charney School of Marine Sciences), Deborah Levy (Technion - Israel Institute of Technology University of Haifa), Yuval Belfer (Technion - Israel Institute of Technology University of Haifa), Elad Osherov (Technion - Israel Institute of Technology University of Haifa), Eyal Bigal (Leon H. Charney School of Marine Sciences), Aviad P. Scheinin (Leon H. Charney School of Marine Sciences), Hagai Nativ (Leon H. Charney School of Marine Sciences), Dan Tchernov (Leon H. Charney School of Marine Sciences), Dan Tchernov (Leon H. Charney School of Marine Sciences)

A Comparison of Deep Learning Methods for Semantic Segmentation of Coral Reef Survey Images .147.5.... Andrew King (The University of Georgia), Suchendra M. Bhandarkar (The University of Georgia), and Brian M. Hopkinson (The University of Georgia)

Stingray Detection of Aerial Images Using Augmented Training Images Generated by a Conditional

Generative Model .1484.....
Yi-Min Chou (Institute of Information Science, Academia Sinica; MOST Joint Research Center for AI Technology and All Vista Healthcare,), Chien-Hung Chen (Institute of Information Science, Academia Sinica; MOST Joint Research Center for AI Technology and All Vista Healthcare,), Keng-Hao Liu (National Sun Yat-sen University), and Chu-Song Chen (Institute of Information Science, Academia Sinica; MOST Joint Research Center for AI Technology and All Vista Healthcare,)

Camera Calibration for Underwater 3D Reconstruction Based on Ray Tracing Using Snell's Law .1491...... Malte Pedersen (Visual Analysis of People (VAP) Laboratory), Stefan Hein Bengtson (Visual Analysis of People (VAP) Laboratory), Rikke Gade (Visual Analysis of People (VAP) Laboratory), Niels Madsen (Visual Analysis of People (VAP) Laboratory), and Thomas B. Moeslund (Visual Analysis of People (VAP) Laboratory)

Joint Detection, Tracking, and Prediction in the Wild

HP-GAN: Probabilistic 3D Human Motion Prediction via GAN .1499 Emad Barsoum (Columbia University), John Kender (Columbia University), and Zicheng Liu (Microsoft)
Fusion of Head and Full-Body Detectors for Multi-object Tracking .1509
Roberto Henschel (Leibniz Universität Hannover), Laura Leal-Taixé
(Technische Universität München), Daniel Cremers (Technische
Universität München), and Bodo Rosenhahn (Leibniz Universität
Hannover)

Re-identification for Online Person Tracking by Modeling Space-Time Continuum .1519 Neeti Narayan (University at Buffalo), Nishant Sankaran (University at Buffalo), Srirangaraj Setlur (University at Buffalo), and Venu Govindaraju (University at Buffalo)
DIY Human Action Dataset Generation .1529. Mehran Khodabandeh (Simon Fraser University), Hamid Reza Vaezi Joze (Microsoft), Ilya Zharkov (Microsoft), and Vivek Pradeep (Microsoft)
Joint Detection and Online Multi-object Tracking .1540 Hilke Kieritz (Fraunhofer IOSB), Wolfgang Hübner (Fraunhofer IOSB), and Michael Arens (Fraunhofer IOSB)
Convolutional Social Pooling for Vehicle Trajectory Prediction .1549. Nachiket Deo (University of California, San Diego) and Mohan M. Trivedi (University of California, San Diego)

Visual Odometry and Computer Vision Applications Based on Location Clues

Drone-View Building Identification by Cross-View Visual Learning and Relative Spatial Estimation .1558 Chun-Wei Chen (National Taiwan University), Yin-Hsi Kuo (National Taiwan University), Tang Lee (National Taiwan University), Cheng-Han Lee (National Taiwan University), and Winston Hsu (National Taiwan University)	
Integration of Absolute Orientation Measurements in the KinectFusion Reconstruction Pipeline .1567 Silvio Giancola (King Abdullah University of Science and Technology (KAUST)), Jens Schneider (King Abdullah University of Science and Technology (KAUST)), Peter Wonka (King Abdullah University of Science and Technology (KAUST)), and Bernard S. Ghanem (King Abdullah University of Science and Technology (KAUST))	
Optimal Linear Attitude Estimator for Alignment of Point Clouds .1577 Xue Iuan Wong (University at Buffalo), Puneet Singla (Penn State University), Taewook Lee (University at Buffalo), and Manoranjan Majji (Texas A&M University)	
Multi-scale Voxel Hashing and Efficient 3D Representation for Mobile Augmented Reality .1586 Yi Xu (JD.COM American Technologies Corporation), Yuzhang Wu (JD.COM American Technologies Corporation), and Hui Zhou (JD.COM American Technologies Corporation)	
A Deep CNN-Based Framework For Enhanced Aerial Imagery Registration with Applications to UAV Geolocalization .159.4 <i>Ahmed Nassar (IRISA institute; Nile University), Karim Amer (Nile University), Reda ElHakim (Nile University), and Mohamed ElHelw (Nile University)</i>	
Automated Virtual Navigation and Monocular Localization of Indoor Spaces from Videos .1605 Qiong Wu (HERE Technologies) and Ambrose Li (HERE Technologies)	
Deep Visual Teach and Repeat on Path Networks .1614 Tristan Swedish (MIT Media Lab) and Ramesh Raskar (MIT Media Lab)	

Semantic Metric 3D Reconstruction for Concrete Inspection .1624..... Liang Yang (Shenyang Institute of Automation, UCAS; CCNY Robotics Lab, City College of New York), Bing Li (CCNY Robotics Lab, City College of New York), Wei Li (Amazon AWS AI), Biao Jiang (CCNY Robotics Lab, City College of New York; Hostos Community College), and Jizhong Xiao (Shenyang Institute of Automation, UCAS; NY Robotics Lab, City College of New York)

Bright and Dark Sides of Computer Vision: Challenges and Opportunities for Privacy and Security

Discrete Cosine Transform Residual Feature Based Filtering Forgery and Splicing Detection in JPEG Images .1633 Aniket Roy (Indian Institute of Technology Kharagpur, India), Diangarti Bhalang Tariang (Indian Institute of Technology Kharagpur, India), Rajat Subhra Chakraborty (Indian Institute of Technology Kharagpur, India), and Ruchira Naskar (National Institute of Technology, Rourkela, India)
Forgery Detection in 3D-Sensor Images .1642 Noa Privman-Horesh (University of Haifa, Haifa, Isreal), Azmi Haider (University of Haifa, Haifa, Israel), and Hagit Hel-Or (University of Haifa, Haifa, Israel)
VGAN-Based Image Representation Learning for Privacy-Preserving Facial Expression Recognition .1651 Jiawei Chen (Boston University), Janusz Konrad (Boston University), and Prakash Ishwar (Boston University)
Privacy-Preserving Indoor Localization via Active Scene Illumination .1661 Jinyuan Zhao (Boston University), Natalia Frumkin (Boston University), Janusz Konrad (Boston University), and Prakash Ishwar (Boston University)
Human Perceptions of Sensitive Content in Photos .167.1 Yifang Li (Clemson University), Wyatt Troutman (Clemson University), Bart P. Knijnenburg (Clemson University), and Kelly Caine (Clemson University)
On Visible Adversarial Perturbations & Digital Watermarking .167.8 Jamie Hayes (University College London)
On the Suitability of Lp-Norms for Creating and Preventing Adversarial Examples .1686 Mahmood Sharif (Carnegie Mellon University), Lujo Baue (Carnegie Mellon University), and Michael K. Reite (University of North Carolina at Chapel Hill)
Semantic Adversarial Examples .1695 Hossein Hosseini (University of Washington, Seattle, WA) and Radha Poovendran (University of Washington, Seattle, WA)
Convolutional Neural Networks for Iris Presentation Attack Detection: Toward Cross-Dataset and Cross-Sensor Generalization .1701 Steven Hoffman (Michigan State University, USA), Renu Sharma (Michigan State University, USA), and Aran Ross (Michigan State University, USA)

Efficient Deep Learning for Computer Vision

Eye in the Sky: Real-time Drone Surveillance System (DSS) for Violent Individuals Identification Using ScatterNet Hybrid Deep Learning Network .1.7.10. <i>Amarjot Singh (University of Cambridge), Devendra Patil (National</i> <i>Institute of Technology Warangal, India), and SN Omkar (Indian</i> <i>Institute of Science Bangalore, India)</i>
SqueezeNext: Hardware-Aware Neural Network Design .1.7.1.9. <i>Amir Gholami (UC Berkeley), Kiseok Kwon (UC Berkeley), Bichen Wu (UC Berkeley), Zizheng Tai (UC Berkeley), Xiangyu Yue (UC Berkeley), Peter Jin (UC Berkeley), Sicheng Zhao (UC Berkeley), and Kurt Keutzer (UC Berkeley)</i>
Recurrent Segmentation for Variable Computational Budgets .1.729 Lane McIntosh (Stanford University), Niru Maheswaranathan (Google Brain), David Sussillo (Google Brain), and Jonathon Shlens (Google Brain)
Highway Network Block with Gates Constraints for Training Very Deep Networks .1.7.3.9 Oyebade K. Oyedotun (University of Luxembourg), Abd El Rahman Shabayek (University of Luxembourg), Djamila Aouada (University of Luxembourg), and Björn Ottersten (University of Luxembourg)
MUNet: Macro Unit-Based Convolutional Neural Network for Mobile Devices .1749 Dae Ha Kim (Inha University Incheon), Seung Hyun Lee (Inha University Incheon), and Byung Cheol Song (Inha University Incheon)
Ultra Power-Efficient CNN Domain Specific Accelerator with 9.3TOPS/Watt for Mobile and Embedded Applications .1758 Baohua Sun (Gyrfalcon Technology Inc.), Lin Yang (Gyrfalcon Technology Inc.), Patrick Dong (Gyrfalcon Technology Inc.), Wenhan Zhang (Gyrfalcon Technology Inc.), Jason Dong (Gyrfalcon Technology Inc.), and Charles Young (Gyrfalcon Technology Inc.)
 Merging Deep Neural Networks for Mobile Devices .1767
Efficient Deep Learning Inference Based on Model Compression .1.7.6 Qing Zhang (Alibaba Group), Mengru Zhang (Alibaba Group), Mengdi Wang (Alibaba Group), Wanchen Sui (Alibaba Group), Chen Meng (Alibaba Group), Jun Yang (Alibaba Group), Weidan Kong (Alibaba Group), Xiaoyuan Cui (Alibaba Group), and Wei Lin (Alibaba Group)
Learning Network Architectures of Deep CNNs Under Resource Constraints .1.7.84 Michael Chan (MIT Lincoln Laboratory), Daniel Scarafoni (MIT Lincoln Laboratory), Ronald Duarte (MIT Lincoln Laboratory), Jason Thornton (MIT Lincoln Laboratory), and Luke Skelly (MIT Lincoln Laboratory)

Computer Vision in Sports

SoccerNet: A Scalable Dataset for Action Spotting in Soccer Videos .1.792 Silvio Giancola (King Abdullah University of Science and Technology (KAUST)), Mohieddine Amine (King Abdullah University of Science and Technology (KAUST)), Tarek Dghaily (King Abdullah University of Science and Technology (KAUST)), and Bernard Ghanem (King Abdullah University of Science and Technology (KAUST))
Deep Decision Trees for Discriminative Dictionary Learning with Adversarial Multi-agent Trajectories.1803. <i>Tharindu Fernando (Queensland University of Technology (QUT),</i> <i>Australia), Sridha Sridharan (Queensland University of Technology</i> <i>(QUT), Australia), Clinton Fookes (Queensland University of Technology</i> <i>(QUT), Australia), and Simon Denman (Queensland University of</i> <i>Technology (QUT), Australia)</i>
Part-Based Player Identification Using Deep Convolutional Representation and Multi-scale Pooling .181.3 Arda Senocak (KAIST, South Korea), Tae-Hyun Oh (MIT CSAIL, MA), Junsik Kim (KAIST, South Korea), and In So Kweon (KAIST, South Korea)
Fine-Grained Activity Recognition in Baseball Videos .1821 AJ Piergiovanni (Indiana University) and Michael S. Ryoo (Indiana University)
Soccer: Who Has the Ball? Generating Visual Analytics and Player Statistics .1830 Rajkumar Theagarajan (University of California, Riverside), Federico Pala (University of California, Riverside), Xiu Zhang (University of California, Riverside), and Bir Bhanu (University of California, Riverside)
Convolutional Neural Networks Based Ball Detection in Tennis Games .1839 Vito Renò (National Research Council of Italy - Institute of Intelligent Systems for Automation), Nicola Mosca (National Research Council of Italy - Institute of Intelligent Systems for Automation), Roberto Marani (National Research Council of Italy - Institute of Intelligent Systems for Automation), Massimiliano Nitti (National Research Council of Italy - Institute of Intelligent Systems for Automation), Tiziana D'Orazio (National Research Council of Italy - Institute of Intelligent Systems for Automation), and Ettore Stella (National Research Council of Italy - Institute of Intelligent Systems for Automation)
A Bottom-Up Approach Based on Semantics for the Interpretation of the Main Camera Stream in Soccer Games 1846
A. Cioppa (University of Liège Institut Montefiore), A. Deliège (University of Liège Institut Montefiore), and M. Van Droogenbroeck (University of Liège Institut Montefiore)
Human Pose as Calibration Pattern: 3D Human Pose Estimation with Multiple Unsynchronized and Uncalibrated Cameras .1856 <i>Kosuke Takahashi (Nippon Telegraph and Telephone Corporation, Japan),</i> <i>Dan Mikami (Nippon Telegraph and Telephone Corporation, Japan), Mariko</i> <i>Isogawa (Nippon Telegraph and Telephone Corporation, Japan), and</i> <i>Hideaki Kimata (Nippon Telegraph and Telephone Corporation, Japan)</i>

Jersey Number Recognition with Semi-Supervised Spatial Transformer Network .1864 Gen Li (Toutiao AI Lab, Beijing, China), Shikun Xu (Toutiao AI Lab, Beijing, China), Xiang Liu (Beijing Univ. of Posts & Telecoms), Lei Li (Toutiao AI Lab, Beijing, China), and Changhu Wang (Toutiao AI Lab, Beijing, China)
 Kinematic Pose Rectification for Performance Analysis and Retrieval in Sports .1872 Dan Zecha (Multimedia Computing and Computer Vision Lab University of Augsburg), Moritz Einfalt (Multimedia Computing and Computer Vision Lab University of Augsburg), Christian Eggert (Multimedia Computing and Computer Vision Lab University of Augsburg), and Rainer Lienhart (Multimedia Computing and Computer Vision Lab University of Augsburg)
 Automatic Cricket Highlight Generation Using Event-Driven and Excitement-Based Features .1881 Pushkar Shukla (University of California, Santa Barbara), Hemant Sadana (Indian Institute of Technology, Roorkee; Raman Classes, Roorkee), Apaar Bansal (Indian Institute of Technology, Roorkee; Raman Classes, Roorkee), Deepak Verma (Indian Institute of Technology, Roorkee; Raman Classes, Roorkee), Carlos Elmadjian (University of São Paulo), Balasubramanian Raman (Indian Institute of Technology, Roorkee), and Matthew Turk (University of California, Santa Barbara)
Estimation of Center of Mass for Sports Scene Using Weighted Visual Hull .1890 Tomoya Kaichi (Keio University), Shohei Mori (Keio University), Hideo Saito (Keio University), Kosuke Takahashi (NTT Corporation), Dan Mikami (NTT Corporation), Mariko Isogawa (NTT Corporation), and Hideaki Kimata (NTT Corporation)
A Directed Sparse Graphical Model for Multi-target Tracking .1897 Mohib Ullah (Norwegian University of Science and Technology) and Faouzi Alaya Cheikh (Norwegian University of Science and Technology)
Estimating the Number of Soccer Players Using Simulation-Based Occlusion Handling .1905 Noor Ul Huda (Visual Analysis of People Lab), Kasper H. Jensen (Visual Analysis of People Lab), Rikke Gade (Visual Analysis of People Lab), and Thomas B. Moeslund (Visual Analysis of People Lab)

Computational Cameras and Displays

Space-Time-Brightness Sampling Using an Adaptive Pixel-Wise Coded Exposure .1915 Hajime Nagahara (Osaka University, Japan), Dengyu Liu (Intel Corporation), Toshiki Sonoda (Kyushu University, Japan), and Jinwei Gu (Nvidia Research)
Multi-capture Dynamic Calibration of Multi-camera Systems .1924 Avinash Kumar (Intel Labs), Manjula Gururaj (Intel Labs), Kalpana Seshadrinathan (Intel Labs), and Ramkumar Narayanswamy
Jittered Exposures for Image Super-Resolution .1933. Nianyi Li (University of Delaware), Scott McCloskey (Honeywell ACST), and Jingyi Yu (ShanghaiTech University; University of Delaware)

Women in Computer Vision

WiCV 2018: The Fourth Women in Computer Vision Workshop .1941 Ilke Demir (Facebook), Dena Bazazian (Computer Vision Center), Adriana Romero (Facebook AI Research), Viktoriia Sharmanska (Imperial College London), and Lyne P. Tchapmi (Stanford University)
Autonomous Detection of Disruptions in the Intensive Care Unit Using Deep Mask R-CNN .1944 Kumar Rohit Malhotr (University of Florida Gainesville), Anis Davoudi (University of Florida Gainesville), Scott Siegel (University of Florida Gainesville), Azra Bihorac (University of Florida Gainesville), and Parisa Rashidi (University of Florida Gainesville)
Encapsulating the Impact of Transfer Learning, Domain Knowledge and Training Strategies in Deep-Learning Based Architecture: A Biometric Based Case Study .1947 Avantika Singh (Indian Institute of Technology Mandi, India) and Aditya Nigam (Indian Institute of Technology Mandi, India)
Cross-Domain Fashion Image Retrieval .1950 Bojana Gajic (Universitat Autnoma de Barcelona, Spain) and Ramon Baldrich (Universitat Autnoma de Barcelona, Spain)
Word Spotting in Scene Images Based on Character Recognition .1953 Dena Bazazian (Universitat Autonoma de Barcelona), Dimosthenis Karatzas (Universitat Autonoma de Barcelona), and Andrew D. Bagdanov (University of Florence)
A Holistic Framework for Addressing the World Using Machine Learning .1956 Ilke Demir (Facebook), Forest Hughes (Facebook), Aman Raj (Facebook), Kaunil Dhruv (Facebook), Suryanarayana Murthy Muddala (Facebook), Sanyam Garg (Facebook), Barrett Doo (Facebook), and Ramesh Raskar (MIT Media Lab)
I Know How You Feel: Emotion Recognition with Facial Landmarks .1959 Ivona Tautkute (Tooploox; Polish-Japanese Academy of Information Technology), Tomasz Trzcinski (Tooploox; Warsaw University of Technology), and Adam Bielski (Tooploox)
Early Diagnosis of Alzheimer's Disease: A Neuroimaging Study with Deep Learning Architectures .1962 Jyoti Islam (Georgia State University Atlanta) and Yanqing Zhang (Georgia State University Atlanta)
Cosmetic Features Extraction by a Single Image Makeup Decomposition .1965 Kanami Yamagishi (Waseda University), Shintaro Yamamoto (Waseda University), Takuya Kato (Waseda University), and Shigeo Morishima (Waseda Research Institute for Science and Engineering)
Automatic Large-Scale 3D Building Shape Refinement Using Conditional Generative Adversarial Networks.1968 Ksenia Bittner (German Aerospace Center - DLR Munich) and Marco Körner (Technical University of Munich Munich)
SAM: Pushing the Limits of Saliency Prediction Models .197.1 Marcella Cornia (University of Modena and Reggio Emilia), Lorenzo Baraldi (University of Modena and Reggio Emilia), Giuseppe Serra (University of Udine), and Rita Cucchiara (University of Modena and Reggio Emilia)

RPIfield: A New Dataset for Temporally Evaluating Person Re-identification .1974 Meng Zheng (Rensselaer Polytechnic Institute, Troy NY), Srikrishna Karanam (Siemens Corporate Technology), and Richard J. Radke (Rensselaer Polytechnic Institute, Troy NY)
Large-Scale Ecological Analyses of Animals in the Wild Using Computer Vision .1977 Mikayla Timm (University of Massachusetts Amherst), Subhransu Maji (University of Massachusetts Amherst), and Todd Fuller (University of Massachusetts Amherst)
Discovering Style Trends Through Deep Visually Aware Latent Item Embeddings .1980 Murium Iqbal (Overstock.com), Adair Kovac (Overstock.com), and Kamelia Aryafar (Overstock.com)
Towards More Accurate Radio Telescope Images .1983 Nezihe Merve Gürel (ETH Zurich, Switzerland), Paul Hurley (IBM Research Zurich, Switzerland), and Matthieu Simeoni (IBM Research Zurich, Switzerland)
ARC: Adversarial Robust Cuts for Semi-Supervised and Multi-label Classification .1986 Sima Behpour (University Of Illinois at Chicago), Wei Xing (University Of Illinois at Chicago), and Brian D. Ziebart (University Of Illinois at Chicago)

Mutual Benefits of Cognitive and Computer Vision: How Can We Use One to Understand the Other?

ViS-HuD: Using Visual Saliency to Improve Human Detection with Convolutional Neural Networks .1989 Vandit Gajjar (Computer Vision Group), Yash Khandhediya (Computer Vision Group; Dosepack LLC), Ayesha Gumani (Computer Vision Group), Viraj Mavani (Computer Vision Group), and Mehul S. Raval (School of Engineering and Applied Science (SEAS))
Learning Biomimetic Perception for Human Sensorimotor Control .1998 Masaki Nakada (University of California, Los Angeles), Honglin Chen (University of California, Los Angeles), and Demetri Terzopoulos (University of California, Los Angeles)
Assessing Shape Bias Property of Convolutional Neural Networks 2004 Hossein Hosseini (University of Washington), Baicen Xiao (University of Washington), Mayoore Jaiswal (University of Washington), and Radha Poovendran (University of Washington)
Deep-BCN: Deep Networks Meet Biased Competition to Create a Brain-Inspired Model of Attention Control .2013. Hossein Adeli (Stony Brook University) and Gregory Zelinsky (Stony Brook University)
Image Caption Generation with Hierarchical Contextual Visual Spatial Attention .2024 Mahmoud Khademi (Simon Fraser University Burnaby) and Oliver Schulte (Simon Fraser University Burnaby)
Estimating Attention of Faces Due to its Growing Level of Emotions .2033 Ravi Kant Kumar (National Institute of Technology Durgapur), Jogendra Garain (National Institute of Technology Durgapur), Dakshina Ranjan Kisku (National Institute of Technology Durgapur), and Goutam Sanyal (National Institute of Technology Durgapur)

Totally Looks Like - How Humans Compare, Compared to Machines .2042 Amir Rosenfeld (York University Toronto), Markus D. Solbach (York University Toronto), and John K. Tsotsos (York University Toronto)
Fusing Visual Saliency for Material Recognition .2046 Lin Qi (Ocean University of China), Ying Xu (Ocean University of China), Xiaowei Shang (Ocean University of China), and Junyu Dong (Ocean University of China)
Increasing Video Saliency Model Generalizability by Training for Smooth Pursuit Prediction .2050 Mikhail Startsev (Technical University of Munich) and Michael Dorr (Technical University of Munich)
Representation of Categories in Filters of Deep Neural Networks .2054 Katerina Malakhova (Pavlov Institute of Physiology Russian Academy of Sciences)
Using Psychophysical Methods to Understand Mechanisms of Face Identification in a Deep Neural Network 2057
Tian Xu (University of Glasgow, United Kingdom), Oliver Garrod (University of Glasgow, United Kingdom), Steven H Scholte (University of Amsterdam, The Netherlands), Robin Ince (University of Glasgow, United Kingdom), and Philippe G Schyns (University of Glasgow, United Kingdom)
Relating Deep Neural Network Representations to EEG-fMRI Spatiotemporal Dynamics in a Perceptual Decision-Making Task .2066 <i>Tao Tu (Columbia University), Jonathan Koss (Columbia University), and</i> <i>Paul Sajda (Columbia University)</i>
Scene Grammar in Human and Machine Recognition of Objects and Scenes .2073 Akram Bayat (University of Massachusetts, Boston), Anubhaw Kumar Nand (University of Massachusetts, Boston), Do Hyong Koh (University of Massachusetts, Boston), Marta Pereira (University of Massachusetts, Boston), and Marc Pomplun (University of Massachusetts, Boston)
 Audio-Visual Temporal Saliency Modeling Validated by fMRI Data .2081 Petros Koutras (National Technical University of Athens, Greece), Georgia Panagiotaropoulou (National Technical University of Athens, Greece), Antigoni Tsiami (National Technical University of Athens, Greece), and Petros Maragos (National Technical University of Athens, Greece)
Priming Neural Networks .2092 Amir Rosenfeld (York University Toronto), Mahdi Biparva (York University Toronto), and John K. Tsotsos (York University Toronto)

Real World Challenges and New Benchmarks for Deep Learning in Robotic Vision

VisDA: A Synthetic-to-Real Benchmark for Visual Domain Adaptation .2.102..... Xingchao Peng (Boston University), Ben Usman (Boston University), Neela Kaushik (Boston University), Dequan Wang (University of California Berkeley), Judy Hoffman (University of California Berkeley), and Kate Saenko (Boston University)

Paris-Lille-3D: A Point Cloud Dataset for Urban Scene Segmentation and Classification .2.108 Xavier Roynard (MINES ParisTech), Jean-Emmanuel Deschaud (MINES ParisTech), and François Goulette (MINES ParisTech)
New Metrics and Experimental Paradigms for Continual Learning .2.112 Tyler L. Hayes (Rochester Institute of Technology), Ronald Kemker (Rochester Institute of Technology), Nathan D. Cahill (Rochester Institute of Technology), and Christopher Kanan (Rochester Institute of Technology)
Action-Conditioned Convolutional Future Regression Models for Robot Imitation Learning .2.1.1.6 Alan Wu (Indiana University), AJ Piergiovanni (Indiana University,), and Michael S. Ryoo (Indiana University)
Falling Things: A Synthetic Dataset for 3D Object Detection and Pose Estimation .2.119 Jonathan Tremblay (NVIDIA), Thang To (NVIDIA), and Stan Birchfield (NVIDIA)
Learning Instance Segmentation by Interaction .2123 Deepak Pathak (UC Berkeley), Yide Shentu (UC Berkeley), Dian Chen (UC Berkeley), Pulkit Agrawal (UC Berkeley), Trevor Darrell (UC Berkeley), Sergey Levine (UC Berkeley), and Jitendra Malik (UC Berkeley)
Active Vision Dataset Benchmark .2.127. <i>Phil Ammirato (UNC-Chapel Hill), Alexander C. Berg (UNC-Chapel Hill),</i> <i>and Jana Košecká (George Mason University)</i>
Zero-Shot Visual Imitation .2.13.1 Deepak Pathak (UC Berkeley), Parsa Mahmoudieh (UC Berkeley), Guanghao Luo (UC Berkeley), Pulkit Agrawal (UC Berkeley), Dian Chen (UC Berkeley), Fred Shentu (UC Berkeley), Evan Shelhamer (UC Berkeley), Jitendra Malik (UC Berkeley), Alexei A. Efros (UC Berkeley), and Trevor Darrell (UC Berkeley)
Embodied Question Answering .2135. Abhishek Das (Georgia Institute of Technology), Samyak Datta (Georgia Institute of Technology), Georgia Gkioxari (Facebook AI Research), Stefan Lee (Georgia Institute of Technology), Devi Parikh (Facebook AI Research; Georgia Institute of Technology), and Dhruv Batra (Facebook AI Research; Georgia Institute of Technology)

Analysis and Modeling of Faces and Gestures

Recognizing American Sign Language Gestures from Within Continuous Videos .2.145 Yuancheng Ye (The Graduate Center, City University of New York), Yingli Tian (The Graduate Center; The City College), Matt Huenerfauth (Rochester Institute of Technology), and Jingya Liu (City University of New York)
Fine-Grained Head Pose Estimation Without Keypoints .2155
Nataniel Ruiz (Georgia Institute of Technology), Eunji Chong (Georgia
Institute of Technology), and James M. Rehg (Georgia Institute of
Technology)

Generative Adversarial Style Transfer Networks for Face Aging .2.165 Sveinn Palsson (D-ITET), Eirikur Agustsson (D-ITET), Radu Timofte (D-ITET, ETH Zurich Merantix), and Luc Van Gool (D-ITET, ETH Zurich ESAT)
Empirically Analyzing the Effect of Dataset Biases on Deep Face Recognition Systems .2.17.4 Adam Kortylewski (University of Basel), Bernhard Egger (University of Basel), Andreas Schneider (University of Basel), Thomas Gerig (University of Basel), Andreas Morel-Forster (University of Basel), and Thomas Vetter (University of Basel)
Motion Fused Frames: Data Level Fusion Strategy for Hand Gesture Recognition .2.184 Okan Köpüklü (Technical University of Munich), Neslihan Köse (Technical University of Munich), and Gerhard Rigoll (Technical University of Munich)
Clothing Change Aware Person Identification .2.19.3 Jia Xue (Rutgers University), Zibo Meng (University of South Carolina), Karthik Katipally (Philips Research North America), Haibo Wang (Philips Research North America), and Kees van Zon (Philips Research North America)
A Compact Deep Learning Model for Robust Facial Expression Recognition .2202 Chieh-Ming Kuo (National Tsing Hua University Hsinchu), Shang-Hong Lai (National Tsing Hua University Hsinchu), and Michel Sarkis (Qualcomm Technologies Inc. San Diego)
 FACSCaps: Pose-Independent Facial Action Coding with Capsules .221.1 Itir Onal Ertugrul (Carnegie Mellon University, Pittsburgh), László A. Jeni (Carnegie Mellon University, Pittsburgh), and Jeffrey F. Cohn (University of Pittsburgh)
Unraveling Human Perception of Facial Aging Using Eye Gaze .2221 Daksha Yadav (West Virginia University), Naman Kohli (West Virginia University), Ekampreet Kalsi (University of Florida), Mayank Vatsa (IIIT-Delhi), Richa Singh (IIIT-Delhi), and Afzel Noore (Texas A&M University-Kingsville)
Improving Viseme Recognition Using GAN-Based Frontal View Mapping .2229 Dário Augusto Borges Oliveira (IBM Research Rua Tutóia), Andrea Britto Mattos (IBM Research Rua Tutóia), and Edmilson da Silva Morais (IBM Research Rua Tutóia)
Light-Weight Head Pose Invariant Gaze Tracking .2237 Rajeev Ranjan (University of Maryland), Shalini De Mello (NVIDIA), and Jan Kautz (NVIDIA)
Implementing a Robust Explanatory Bias in a Person Re-identification Network .2246 Esube Bekele (National Research Council Fellow Washington), Wallace E. Lawson (Naval Research Laboratory Washington), Zachary Horne (Arizona State University Phoenix), and Sangeet Khemlani (Naval Research Laboratory Washington)
On Detecting Domestic Abuse via Faces .2254 Puspita Majumdar (IIIT Delhi), Saheb Chhabra (IIIT Delhi), Richa Singh (IIIT Delhi), and Mayank Vatsa (India)

Vision with Biased or Scarce Data

Markov Chain Neural Networks .2261. Maren Awiszus (Institut für Informationsverarbeitung Leibniz Universität Hannover) and Bodo Rosenhahn (Institut für Informationsverarbeitung Leibniz Universität Hannover)
A Generative Model for Zero Shot Learning Using Conditional Variational Autoencoders .2269 Ashish Mishra (Indian Institute of Technology Madras), Shiva Krishna Reddy (Indian Institute of Technology Madras), Anurag Mittal (Indian Institute of Technology Madras), and Hema A. Murthy (Indian Institute of Technology Madras)
Endoscope Navigation and 3D Reconstruction of Oral Cavity by Visual SLAM with Mitigated Data Scarcity .2278 Liang Qiu (National University of Singapore) and Hongliang Ren (National University of Singapore)

Computer Vision for Microscopy Image Analysis

Cell Image Segmentation by Integrating Multiple CNNs .2286. Yuki Hiramatsu (Meijo University), Kazuhiro Hotta (Meijo University), Ayako Imanishi (Kyoto University), Michiyuki Matsuda (Kyoto University), and Kenta Terai (Kyoto University)
Large Kernel Refine Fusion Net for Neuron Membrane Segmentation .2293 Dongnan Liu (University of Sydney), Donghao Zhang (University of Sydney), Yang Song (University of Sydney), Chaoyi Zhang (University of Sydney), Heng Huang (University of Pittsburgh), Mei Chen (State University of New York at Albany; Robotics Institute, Carnegie Mellon University), and Weidong Cai (University of Sydney)
Three Dimensional Fluorescence Microscopy Image Synthesis and Segmentation .2302 Chichen Fu (Purdue University West Lafayette), Soonam Lee (Purdue University West Lafayette), David Joon Ho (Purdue University West Lafayette), Shuo Han (Purdue University West Lafayette), Paul Salama (Indiana University-Purdue University Indianapolis), Kenneth W. Dunn (Indiana University Indianapolis), and Edward J. Delp (Purdue University West Lafayette)
Improved Extraction of Objects from Urine Microscopy Images with Unsupervised Thresholding and Supervised U-net Techniques 231.1 Abdul Aziz (SigTuple Technologies Pvt. Ltd), Harshit Pande (SigTuple Technologies Pvt. Ltd), Bharath Cheluvaraju (SigTuple Technologies Pvt. Ltd), and Tathagato Rai Dastidar (SigTuple Technologies Pvt. Ltd)
Multilayer Encoder-Decoder Network for 3D Nuclear Segmentation in Spheroid Models of Human Mammary Epithelial Cell Lines .2320 <i>Mina Khoshdeli (University of Nevada), Garrett Winkelmaier (University</i> <i>of Nevada), and Bahram Parvin (University of Nevada)</i>

Resolution-Enhanced Lensless Color Shadow Imaging Microscopy Based on Large Field-of-View Submicron-Pixel Imaging Sensors 2327 <i>Cheng Yang (Nanjing University, Nanjing, China), Xiaofeng Bu (Nanjing University Nanjing, China), Haowen Ma (Nanjing University Nanjing, China), Limin Zhang (Nanjing University Nanjing, China), Xu Cao (Nanjing University Nanjing, China), Tao Yue (Nanjing University Nanjing, China), Xia Hua (Nanjing University Nanjing, China), and Feng Yan (Nanjing University Nanjing, China)</i>
Sequential Modeling of Deep Features for Breast Cancer Histopathological Image Classification .2335 Vibha Gupta (Indian Institute of Technology Mandi, India) and Arnav Bhavsar (Indian Institute of Technology Mandi, India)
Comparison of Deep Transfer Learning Strategies for Digital Pathology .2343 Romain Mormont (University of Liège), Pierre Geurts (University of Liège), and Raphaël Marée (University of Liège)
 3D Cell Nuclear Morphology: Microscopy Imaging Dataset and Voxel-Based Morphometry Classification Results 2353
 FastSME: Faster and Smoother Manifold Extraction from 3D Stack .2362 Sreetama Basu (Ecole Normale Superieure, France), Elton Rexhepaj (Institut Curie, France), Nathalie Spassky (Ecole Normale Superieure, France), Auguste Genovesio (Ecole Normale Superieure, France), Rasmus Reinhold Paulsen (Technical University of Denmark), and ASM Shihavuddin (Technical University of Denmark)
Localization and Tracking in 4D Fluorescence Microscopy Imagery .237.1 Shahira Abousamra (Stony Brook University), Shai Adar (Ben-Gurion University of the Negev), Natalie Elia (Ben-Gurion University of the Negev), and Roy Shilkrot (Stony Brook University)
Estimation of Sperm Concentration and Total Motility from Microscopic Videos of Human Semen Samples .2380 Karan Dewan (SigTuple Technologies Pvt. Ltd), Tathagato Rai Dastidar (SigTuple Technologies Pvt. Ltd), and Maroof Ahmad (SigTuple

Technologies Pvt. Ltd)

Visual Understanding of Subjective Attributes of Data

Human Action Adverb Recognition: ADHA Dataset and a Three-Stream Hybrid Model
Pay Attention to Virality: Understanding Popularity of Social Media Videos with the Attention Mechanism
Learning Fashion By Simulated Human Supervision
Finding your Lookalike: Measuring Face Similarity Rather than Face Identity
Behavior and Personality Analysis in a Nonsocial Context Dataset
 Ambiance in Social Media Venues: Visual Cue Interpretation by Machines and Crowds
From Apparent to Real Age: Gender, Age, Ethnic, Makeup, and Expression Bias Analysis in Real Age Estimation

Author Index