2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting

Boston, Massachusetts, USA 8-13 July 2018

Pages 1-630

IEEE Catalog Number: ISBN:

CFP18APS-POD 978-1-5386-7103-0

Copyright © 2018 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

 IEEE Catalog Number:
 CFP18APS-POD

 ISBN (Print-On-Demand):
 978-1-5386-7103-0

 ISBN (Online):
 978-1-5386-7102-3

ISSN: 1522-3965

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400

Fax: (845) 758-2633

E-mail: curran@proceedings.com Web: www.proceedings.com

TABLE OF CONTENTS

MO-SP.1A: INNOVATIVE PHASED ARRAY ARCHITECTURES AND BEAMFORMING

TECHNOLOGY
MO-SP.1A.1: RECENT STUDIES ON 4D ANTENNA ARRAYS AND THEIR APPLICATIONS TO
MO-SP.1A.2: MOBILE TESTBED FOR VIDEO-RATE MULTISTATIC MICROWAVE IMAGING ARRAY William Moulder, James Krieger, Janusz Majewski, Charles Coldwell, Pierre-Francois Wolfe, Huy Nguyen, Adam Chapman, Thomas Anderson, Denise Maurais-Galejs, Jeffrey Herd, MIT Lincoln Laboratory, United States
MO-SP.1A.4: DOMINO-TILING IN PHASED ARRAYS THROUGH INNOVATIVE
MO-SP.1A.5: A COMPARISON OF DIGITAL BEAMFORMING AND POWER MINIMIZATION ADAPTIVE
MO-SP.1A.10: ANALOG BEAMFORMING WITH SINGLE-SIDEBAND SUB-TIME-MODULATEDARRAYS Roberto Maneiro-Catoira, Julio Bregains, Jose Antonio Garcia-Naya, Luis Castedo, University of A Coruña, Spain
MO-SP.2A: APPLICATIONS OF ELECTROMAGNETICS IN MEDICINE AND BIOLOGY
MO-SP.2A.1: DYNAMIC RANGE OF AN ACTIVE RADIO SENSOR FOR BIAS-SWITCHED ARRAYS FOR
MO-SP.2A.2: CHALLENGES IN TERAHERTZ IMAGING OF FRESHLY EXCISED HUMAN BREAST TUMORS Tyler Bowman, University of Arkansas, United States; Keith Bailey, Oklahoma State University, United States; Magda El-Shenawee, University of Arkansas, United States
MO-SP.2A.3: CONTINUOUS LONG TERM PATIENT MOTION MONITORING USING ULTRA WIDE
MO-SP.2A.5: A REVIEW OF ADAPTIVE MICROWAVE AND RF PHASED ARRAYS FOR THERMOTHERAPY TREATMENT OF CANCER Alan Fenn, Massachusetts Institute of Technology, United States
MO-SP.2A.7: CELL MORPHOLOGY-BASED CLASSIFICATION IN RED BLOOD CELLS BY
MO-SP.2A.8: EFFICIENCY ANALYZE OF CONFORMAL SCMR SYSTEM FOR WEARABLEAPPLICATIONS

Kun Bao, Stavros Georgakopoulos, Florida International University, United States

MO-SP.2A.10: SENSING THE DEFECT RESPONSE OF CRANIAL VAULT USING RESISTIVELY
MO-A5.1A: MIMO ANTENNA DESIGN
MO-A5.1A.1: TWO ELEMENTS MIMO ANTENNA FOR TABLET SIZE GROUND PLANE WITH
MO-A5.1A.2: A NOVEL FOUR-PORT PATTERN DIVERSITY ANTENNA FOR 4G COMMUNICATIONS
MO-A5.1A.3: DUAL-PORT CONFORMAL PIFA DIVERSITY ANTENNA FOR SMALL CYLINDRICAL
MO-A5.1A.4: A COMPACT MULTIBAND PLANAR MIMO ANTENNA WITH HIGH ISOLATION
MO-A5.1A.5: A PRINTED WIDEBAND MIMO ANTENNA SYSTEM FOR WIRELESS APPLICATION
MO-A5.1A.6: COMPACT MIMO ANTENNA ENABLED BY DGS FOR WLAN APPLICATIONS
MO-A5.1A.7: COMPACT MIMO ANTENNA FOR 5G PORTABLE DEVICE USING SIMPLE
MO-A5.1A.8: AN EIGHT-PORT 5G/WLAN MIMO ANTENNA ARRAY WITH HEXA-BAND OPERATION
MO-A5.1A.9: EIGHT-ANTENNA ARRAY IN THE 5G SMARTPHONE FOR THE DUAL-BAND MIMO
MO-A1.1A: RECONFIGURABLE ANTENNAS FOR MODERN APPLICATIONS
MO-A1.1A.1: HIGH-POWER AND WIDELY-TUNABLE EVANESCENT-MODE CAVITY-BACKED SLOT
MO-A1.1A.2: A RASPBERRY PI CONTROLLED ANTENNA SYSTEM FOR SWITCHABLE
MO-A1.1A.3: BEAM TILTING ANTENNA USING FSS LAYER FOR 5G APPLICATIONS

MO-A1.1A.4: A CIRCULARLY-POLARIZED HORN ANTENNA WITH TUNABLE HANDEDNESS USING	
MO-A1.1A.5: RADIATION CHARACTERISTICS OF A BENT UMBRELLA-SHAPED TRANSMISSION LINE 51 ANTENNA Toru Kawano, National Defense Academy, Japan; Hisamatsu Nakano, Hosei University, Japan	
MO-A1.1A.6: MULTI-BEAM WIDEBAND ANTENNA USEFUL IN MIMO APPLICATIONS	
MO-A1.1A.7: MULTIBAND RECONFIGURABLE MIMO ANTENNA FOR	A
MO-A1.1A.8: A LOW-COST BEAM-SCANNING DIELECTRIC RESONATOR ANTENNA EMPLOYING	A
MO-A1.1A.9: RECONFIGURABLE QUADRIFILAR HELICAL ANTENNA	
MO-A1.2A: LOW FREQUENCY ELECTRICALLY SMALL ANTENNAS	
MO-A1.2A.1: MULTI-PHYSICS GENERATED SMALL DIPOLES IN LOSSY MEDIA	
MO-A1.2A.2: A HIGH-GAIN EXTREMELY LOW-PROFILE ANTENNA FOR LOW-VHF BAND	
MO-A1.2A.3: NOVEL MECHANICAL MAGNETIC SHUTTER ANTENNA FOR ELF/VLF RADIATION	
MO-A1.2A.4: MECHANICAL SUPER-LOW FREQUENCY (SLF) TRANSMITTER USING	
MO-A1.2A.5: MEASURED AND FIELD-BASED THEORETICAL Q OF GRAVITATIONALLY-SMALL	
MO-A1.2A.7: MAGNETIC PENDULUM ARRAYS FOR ULF TRANSMISSION	
MO-A4.1A: PROPAGATION IN OUTDOOR AND URBAN ENVIRONMENTS	
MO-A4.1A.1: PATH LOSS MEASUREMENTS AND MODELS AT 28 GHZ FOR 90% OUTDOOR	
MO-A4.1A.2: COMPARISON OF ROOFTOP- AND GROUND-TO-GROUND URBAN PROPAGATION OF	

MO-A4.1A.3: HIGH-RESOLUTION DIRECTIONAL CHANNEL MEASUREMENTS AT 67 GHZ AND
MO-A4.1A.4: PHYSICAL LAYER SECURITY BASED ON TIME REVERSAL TECHNIQUE FOR URBAN
MO-A4.1A.5: 3D LTE COVERAGE PREDICTION FOR RESIDENTIAL DISTRICT BY RAY TRACING
MO-A4.1A.6: WIRELESS CHANNEL SIMULATION USING GEOMETRICAL MODELS EXTRATED
MO-A4.1A.7: HIGH ACCURACY RANGE ESTIMATION FOR ATSC DTV SIGNAL BASED POSITIONING
MO-A4.1A.8: RF PROPAGATION MEASUREMENTS USING A MOBILE RECEIVER SYSTEM
MO-A4.1A.9: EMITTER LOCATION USING POWER DIFFERENCE OF ARRIVAL
MO-A4.1A.10: ANALYSIS OF EDGE DETECTION FOR THE CLUSTERS IN RADIO PROPAGATION
MO-A4.1A.11: PROPAGATION MODELS: LARGE SCALE AND SITE-SPECIFIC
MO-A1.3A: ANTENNA THEORY I
MO-A1.3A.1: MECHANICAL ANTENNAS: EMERGING SOLUTION FOR VERY-LOW FREQUENCY
MO-A1.3A.2: RADIATION CHARACTERISTICS OF A NEW PLANAR ARRAY
MO-A1.3A.3: FAR-FIELD EQUIVALENCE THROUGH EQUIVALENT CURRENT DISTRIBUTIONS
MO-A1.3A.4: THE CONCEPT OF RECOVERABLE ENERGY
MO-A1.3A.5: EFFECT OF ANTENNA ELEMENT PLACEMENT ON CHASSIS MODES

MO-A1.3A.6: CONSTRUCTIVE ANALYTICAL PHASING (CAP) FOR ARBITRARILY ORIENTED ARRAYS 105 OF LINEARLY POLARIZED ELEMENTS Hossein Mehrpour Bernety, Suresh Venkatesh, David Schurig, University of Utah, United States
MO-A1.3A.7: AVAILABLE UNIVERSE OF INPUT IMPEDANCES FOR THE PROBE-FED CIRCULARLY
MO-A1.3A.8: CHARACTERISTICS OF A MONOPOLE ANTENNA IN THE VICINITY OF A GROUNDED
MO-A1.3A.9: ANALYSIS OF CIRCULAR-RING ANTENNA ARRAY USING ORBITAL ANGULAR
MO-A1.3A.10: A CYLINDRICAL LUNEBERG LENS ANTENNA WITH EXTREMELY WIDE FAN-BEAM113 Zhe Zhang, Shiwen Yang, Yikai Chen, Shiwei Qu, University of Electronic Science and Technology of China, China
MO-A1.4A: MULTI-BAND CIRCULARLY POLARIZED ANTENNAS
MO-A1.4A.1: A DUAL-BAND DUAL-PIN CIRCULARLY POLARIZED ANTENNA FOR 2.45 GHZ AND 5.2
MO-A1.4A.2: DUAL BAND DUAL CIRCULARLY POLARIZED PATCH ANTENNA WITH SMALL
MO-A1.4A.3: DUAL BAND DUAL CIRCULARLY POLARIZED ANTENNA WITH A MEANDERLINE
MO-A1.4A.4: DESIGN OF A COMPACT TRI-BAND OMNIDIRECTIONAL CIRCULARLY POLARIZED
MO-A1.4A.5: A VERY SIMPLE DUAL-BAND DUAL-SENSE CIRCULARLY POLARIZED SQUARE SLOT
MO-A1.6A: LEAKY-WAVE ANTENNAS (I)
MO-A1.6A.1: SIW BASED DIRAC LEAKY-WAVE ANTENNA
MO-A1.6A.2: EMPIRICAL TECHNIQUE FOR MEETING BALANCE CONDITION OF COUPLED-LINE
MO-A1.6A.3: NOVEL BALANCED COUPLED-LINE LEAKY-WAVE ANTENNA WITHOUT

MO-A1.6A.4: SUBSTRATE INTEGRATED PRINTED GAP WAVEGUIDE LEAKY-WAVE ANTENNA
MO-A1.6A.5: HIGHLY-EFFICIENT BACKWARD SCANNING LEAKY WAVE ANTENNA USING RIDGE
MO-A1.6A.6: NOVEL ULTRA-THIN SIW ANTENNA
MO-A1.6A.7: MULTI-PLANE FREQUENCY SCANNING USING A LEAKY-WAVE ANTENNA ARRAY
MO-A1.6A.8: BEAMWIDTH EVALUATION OF FINITE-LENGTH 1-D BIDIRECTIONAL LEAKY-WAVE
ANTENNAS Walter Fuscaldo, Sapienza University of Rome, Italy; David R. Jackson, University of Houston, United States; Alessandro Galli, Sapienza University of Rome, Italy
MO-A3.1A: HYBRID METHODS
MO-A3.1A.1: A MULTISCALE TIME INTEGRATION METHOD FOR COUPLED NONLINEAR
MO-A3.1A.2: FAST SOLUTION OF VOLUME-SURFACE INTEGRAL EQUATIONS FOR THE ANALYSIS
MO-A3.1A.3: HYBRID PHYSICAL OPTICS-MOM-RAY TRACING METHOD FOR THE RCS145 CALCULATION OF ELECTRICALLY LARGE OBJECTS COVERED WITH RADAR ABSORBING MATERIALS
Pierpaolo Usai, Michele Borgese, Filippo Costa, Agostino Monorchio, University of Pisa, Italy
MO-A3.1A.4: TIME-DOMAIN SOLUTION OF VOLUME-SURFACE INTEGRAL EQUATIONS FOR
Xiao Jia Huang, Shang Xi Sun, Zi Yuan Wang, Mei Song Tong, Tongji University, China
MO-A3.1A.5: HYBRID METHOD OF MLFMA-ACA ALGORITHM FOR ANALYSIS OF DIELECTRIC149 ELECTROMAGNETIC SCATTERING Chunbei Luo, Yong Zhang, Hai Lin, Zhejiang University, China
MO-A3.1A.6: OBLIQUE PLANE-WAVE SCATTERING AND SHIELDING ANALYSES OF CYLINDRICAL
MO-A3.1A.7: TARGET DETECTION AND TRACKING ALGORITHM SIMULATION FOR AUTOMOTIVE
MO-A3.1A.8: MEASUREMENT VALIDATION OF HYBRID ELECTROMAGNETIC FIELD ANALYSIS

MO-A3.1A.9: WELL-CONDITIONED FEM-BEM-DDM FOR ELECTROMAGNETIC SCATTERING BY
Ping-Hao Jia, Jun Hu, Rongrong Zhang, Yongpin Chen, Zaiping Nie, University of Electronic Science and Technology of China, China; Qing Huo Liu, Duke University, United States
MO-A3.1A.10: RCS AT HIGH FREQUENCY BAND USING RATIONAL FUNCTIONS
MO-A2.1A: DEVICES BASED ON ELECTROMAGNETIC BANDGAP MATERIALS
MO-A2.1A.1: A COMPACT DUAL-BAND AND DUAL-POLARIZED ELECTROMAGNETIC BAND-GAPN/A STRUCTURE
Fanji Meng, Ying Liu, University of Electronic Science and Technology of China, China; Satish Sharma, San Diego State University, United States
MO-A2.1A.2: COMPACT TRI-BAND MICROSTRIP STUB FILTER USING EMBEDDED MTM-EBGS
MO-A2.1A.3: TRANSFER MATRIX METHOD EXTENSION TO SPACE-TIME MODULATED165 ELECTROMAGNETIC CRYSTALS
Zoé-Lise Deck-Léger, Nima Chamanara, Christophe Caloz, Polytechnique Montréal, Canada
MO-A2.1A.4: EXTREME SUPPRESSION FOR MUTUAL COUPLING BY MEANS OF MINIATURIZED
MO-A1.8A: PLANAR ANTENNA AND ARRAYS WITH CIRCULAR POLARIZATION
MO-A1.8A.1: IMPLEMENTATION OF A NOVEL TWO PORT FOUR ELEMENT RECTANGULAR
MO-A1.8A.2: EFFECTS OF TAPERING THE NEAR-FIELD DISTRIBUTION OF CIRCULARLY171 POLARISED RADIAL LINE SLOT ARRAY ANTENNAS
Mst Nishat Yasmin Koli, Muhammad Usman Afzal, Karu P. Esselle, Macquarie University, Australia; Md Zahidul Islam, Rajshahi University of Engineering and Technology, Bangladesh
MO-A1.8A.3: UNBALANCED-FED RECTANGULAR LOOP ANTENNAS FOR CIRCULAR POLARIZATION 173 Kazuhide Hirose, Takuya Yoshida, Shibaura Institute of Technology, Japan; Hisamatsu Nakano, Hosei University, Japan
MO-A1.8A.4: A CIRCULARLY POLARIZED TRIPLE-FEED MULTI-BEAM ARRAY ANTENNA USING175 PLANAR MAGIC-TS
Thet Paing Phyoe, Eisuke Nishiyama, Ichihiko Toyoda, Saga University, Japan
MO-A1.8A.5: UNIDIRECTIONAL CIRCULARLY POLARIZED SLOT ANTENNA BACKED WITH 177 MINIATURIZED AMC REFLECTOR
Jianxing Li, Huimin Huo, Hongyu Shi, Anxue Zhang, Xi'an Jiaotong University, China
MO-A1.5A: ANTENNAS BASED ON ORIGAMI GEOMETRIES
MO-A1.5A.1: RIGID ORIGAMI BASED RECONFIGURABLE CONICAL SPIRAL ANTENNA
MO-A1.5A.2: AN ORIGAMI INSPIRED CIRCULARLY-POLARIZED FOLDING PATCH ANTENNA ARRAY 181 Steven R. Seiler, Giorgio Bazzan, UES Inc., United States; Edward J. Alanyak, Andrew S. Gilman, Gregory W. Reich, Alexander Cook, Philip R. Buskohl, Air Force Research Laboratory, United States; Kazudo Fuchi, University of Dayton, United States; Sumana Pallampati, Francisco A. Espinal, Deanna Sessions, Gregory H. Huff, Texas A&M University, United States

MO-A1.5A.3: A NEW CLASS OF RECONFIGURABLE ORIGAMI ANTENNAS BASED ON E-TEXTILE
MO-A1.5A.4: RECONFIGURABLE HELICAL ANTENNA BASED ON ORIGAMI NEOPRENE WITH HIGH 185 RADIATION EFFICIENCY Xueli Liu, Shun Yao, Nicholas Russo, Stavros Georgakopoulos, Florida International University, United States
MO-A1.5A.5: A NOVEL DNA INSPIRED MODE AND FREQUENCY RECONFIGURABLE ORIGAMI
MO-A1.7A: ADAPTIVE, ACTIVE, AND SMART ANTENNAS II
MO-A1.7A.1: IMPROVING RELIABILITY IN HYBRID MESH NETWORKS WITH TRIPOLAR
Sakil Chowdhury, Marcia Golmohamadi, Jeff Frolik, University of Vermont, United States
MO-A1.7A.2: HARDWARE EFFICIENT ADAPTIVE BEAMFORMER BASED ON CYCLIC VARIABLE STEP 191 SIZE Shaowei Dai, MingHui Li, Qammer H Abbasi, Muhammad Imran, University of Glasgow, Singapore
MO-A1.7A.3: KERNEL DOA ESTIMATION IN NONUNIFORM ARRAYS
Arjun Gupta, Christos G. Christodoulou, Manel Martínez-Ramón, University of New Mexico, United States; Jose Luis Rojo- Álvarez, Universidad Rey Juan Carlos, Spain
MO-A1.7A.4: TWO-ELEMENT NON-FOSTER ANTENNA-TRANSMITTER ARRAY
MO-A1.7A.5: INTERFERENCE REJECTION WITH TIME MODULATED ARRAY FOR GPS197
APPLICATION Mohammad Hossein Mazaheri, Mohammad Fakharzadeh, Mahmood Akbari, Sharif University of Technology, Iran; George Shaker, Safiedding Safavi-Naeini, University of Waterloo, Canada
MO-A1.9A: PLANAR PASSIVE COMPONENTS AND CIRCUITS
MO-A1.9A.1: A DUAL-BAND QUADRATURE HYBRID COUPLER USING EMBEDDED MTM-EBGS
MO-A1.9A.2: HIGH-SELECTIVITY BALANCED BANDPASS FILTER USING HALF-WAVELENGTH
MO-A1.9A.3: MINIATURIZED BAILEY POWER DIVIDER USING SRRS
MO-A1.9A.4: A FREQUENCY TUNABLE BANDPASS FILTER WITH WIDE TUNABLE RANGE AND

MO-SP.1P: IMPLANTABLE DEVICES FOR WIRELESS BIOMEDICAL TELEMETRY

MO-SP.1P.1: LOOP ANTENNA FOR DEEP IMPLANT POWERING IN AN INTRACRANIAL PRESSURE
MO-SP.1P.2: RESONANCE SENSITIVITY AND QUALITY FACTOR OF IMPLANTABLE LOOP209 ANTENNA LOADED WITH INTERDIGITAL CAPACITOR IN THE CEREBRAL SPINAL FLUID Mohamed Manoufali, Amin Abbosh, University of Queensland, Australia
MO-SP.1P.5: FIELD FOCUSING WITH NOVEL IMPLANTABLE LENS DESIGNS USING 3D211 PRINTING Hossein Mehrpour Bernety, David Schurig, Cynthia Furse, University of Utah, United States
MO-SP.1P.7: TRIBAND METAMATERIAL EMBEDDED IMPLANTABLE ANTENNA FOR
MO-SP.1P.9: DESIGN OF A CAPACITIVELY LOADED IMPLANTABLE LOOP ANTENNA IN THE215 CEREBRAL SPINAL FLUID Mohamed Manoufali, Amin Abbosh, University of Queensland, Australia
MO-SP.1P.10: AN INVESTIGATION ON PROPAGATION CHARACTERISTICS OF IN-BODY RADIO
MO-SP.2P: EMERGING APPROACHES AND FUTURE TRENDS IN ELECTROMAGNETIC INVERSE PROBLEMS
MO-SP.2P.1: COMPRESSIVE PROCESSING IN INVERSE PROBLEMS: CURRENT ADVANCES AND
MO-SP.2P.2: IMAGING OF TWO DIMENSIONAL SCATTERERS USING DESCENT LEARNING221
TECHNIQUE Rui Guo, Xiaoqian Song, Maokun Li, Fan Yang, Shenheng Xu, Tsinghua University, China; Aria Abubakar, Schlumberger, United States
MO-SP.2P.3: DETECTION OF BRAIN STROKES USING MICROWAVE TOMOGRAPHY
MO-SP.2P.4: SOURCE'S SYMMETRIES AND PRIORS: THE EFFECT ON INFORMATION225 CONTENT OF RADIATED fiELD Maria Antonia Maisto, Raffaele Solimene, Rocco Pierri, Università degli studi della Campania Luigi Vanvitelli, Italy
MO-SP.2P.5: A STRUCTURED DETERMINISTIC SAMPLING STRATEGY FOR ARRAY DIAGNOSIS227 FROM FAR-FIELD MEASUREMENTS Wei Li, Weibo Deng, Qiang Yang, Ying Suo, Harbin Institute of Technology, China; Marco Donald Migliore, University of Cassino and Southern Lazio, China
MO-SP.2P.7: A CAPACITY-BASED SENSING MATRIX DESIGN METHOD FOR BLOCK

MO-SP.2P.9: AROUND THE CORNER TERAHERTZ RADAR IMAGING EXPLOITING DIFFUSION
MO-A5.1P: ADDITIVE MANUFACTURING FOR ANTENNA APPLICATIONS
MO-A5.1P.1: ADDITIVE MANUFACTURING OF A CONDUCTIVE POLYMER CAVITY-BACKED
MO-A5.1P.2: FABRICATION OF CONFORMAL LOAD BEARING ANTENNA USING 3D PRINTING
MO-A5.1P.3: ON THE DIELECTRIC PERMITTIVITY OF 3-D PRINTED BIOCOMPOSITE CUBES
MO-A1.1P: MILLIMETER WAVE PHASED ARRAYS
MO-A1.1P.2: SWITCHED FOLDED SLOT PHASED ARRAY ANTENNA FOR MMWAVE 5G MOBILE IN
MO-A1.1P.3: PACKAGING CONSIDERATIONS FOR INTEGRATION OF MM-WAVE PHASED ARRAY
MO-A1.1P.4: WIDEBAND 28 GHZ GROUND REFLECTED DIPOLE ANTENNA AND ARRAY FOR 5G
MO-A1.1P.5: LTCC-BASED PHASED ARRAY ANTENNA FOR 5G MILLIMETER-WAVE APPLICATION IN 245 MOBILE DEVICE Mingming Peng, Anping Zhao, Shenzhen Sunway Communication Co. Ltd, China
MO-A1.1P.6: DUAL BAND CIRCULAR MIMO ANTENNA SYSTEM FOR 5G WIRELESS DEVICES
MO-A1.1P.7: GAIN ENHANCEMENT OF QUASI YAGI ANTENNA USING LENS TECHNIQUE FOR 5G
MO-A1.1P.8: A SUBSTRATE-INTEGRATED FAN-BEAM DIPOLE ANTENNA WITH VARIED FENCE
MO-A1.1P.9: GAIN ENHANCEMENT OF DIELECTRIC RESONATOR ANTENNA USING

MO-A1.1P.10: HIGH-GAIN HIGH-ISOLATION WIDEBAND MIMO ANTENNA FOR 5G
Fei Wang, Zhaoyun Duan, Xin Wang, Qing Zhou, Yubin Gong, University of Electronic Science and Technology of China, China; Ching-Wen Hsue, National Taiwan University of Science and Technology, Taiwan
MO-A1.2P: TRANSMITARRAY ANTENNAS
MO-A1.2P.1: SHAPE SYNTHESIS OF 3-LAYER TRANSMITARRAY ELEMENTS
MO-A1.2P.2: METAL-ONLY TRANSMITARRAY BASED ON C-SHAPED SLOT
MO-A1.2P.3: POLARIZATION CONTROL OF A METAL-ONLY TRANSMITARRAY UNIT-CELL
MO-A1.2P.4: A MULTILAYER UNIT-CELL FOR PERFORATED DIELECTRIC TRANSMITARRAY263 ANTENNAS
Andrea Massaccesi, Paola Pirinoli, Politecnico di Torino, Italy; Yiannis Vardaxoglou, Loughborough University, United Kingdom
MO-A1.2P.5: PRELIMINARY RESULTS ON CONFORMAL TRANSMITARRAY ANTENNAS
MO-A4.1P: PROPAGATION IN ATMOSPHERIC AND IONOSPHERIC ENVIRONMENTS
MO-A4.1P.1: INFLUENCE OF IONOSPHERIC SCINTILLATION ON GNSS SATELLITE
MO-A4.1P.2: RESULTS OF W/V BAND PROPAGATION STUDIES IN ALBUQUERQUE, NM, OVER
MO-A4.1P.3: A K-MEANS CLUSTERING BASED FREQUENCY SHIFT CORRECTION METHOD FOR
MO-A4.1P.4: THE IMPEDANCE CHARACTERISTICS OF AN ELECTRICALLY LONG DIPOLE
MO-A4.1P.5: HF CHANNEL MODEL AT SUNRISE WITH DOMINANT GALACTIC NOISE
MO-A1.3P: FREQUENCY AGILE ANTENNAS
MO-A1.3P.1: A RECONFIGURABLE UWB MULTIPLE-INPUT MULTIPLE-OUTPUT ANTENNA

MO-A1.3P.2: A FREQUENCY-TUNABLE VARACTOR-LOADED SINGLE-LAYER SHORTED RING
MO-A1.3P.3: FLEXIBLE RECONFIGURABLE I-SHAPED FOLDED SLOT ANTENNA FOR WIRELESS
Khalid AlMegbel, King Abdulaziz City for Science and Technology, Saudi Arabia; Saud M. Saeed, Prince Sattam bin Abdulaziz University, Saudi Arabia; Hussein Shaman, King Abdulaziz City for Science and Technology, Saudi Arabia; Constantine Balanis, Arizona State University, United States; Waleed Alomar, King Abdulaziz City for Science and Technology, Saudi Arabia
MO-A1.3P.4: RECONFIGURABLE NOTCH-BAND UWB ANTENNA WITH RF-TO-DC RECTIFIER FOR283 DYNAMIC RECONFIGURABILITY
Abdul Quddious, Muhammad Ali Babar Abbasi, Photos Vryonides, Symeon Nikolaou, Frederick University Nicosia, Cyprus; Marco A. Antoniades, University of Cyprus, Cyprus; Baptiste Manhaval, Patrick Chan, UWINLOC, France
MO-A1.3P.5: UWB MONOPOLE ANTENNA WITH RECONFIGURABLE NOTCH BANDS BASED ON285
METAMATERIALS RESONATORS Bachir Belkadi, Zoubir Mahdjoub, Mohammed Lamine Seddiki, Djillali liabes university, Algeria; Mourad Nedil, Université du Québec en Abitibi-Témiscamingue, Canada
MO-A1.3P.6: REVERSIBLY RECONFIGURABLE LIQUID METAL PATCH ANTENNA USING A
Vivek Bharambe, Ishan D. Joshipura, Hudson R. Ayers, Michael D. Dickey, Jacob J. Adams, North Carolina State University, United States
MO-A1.3P.7: RECONFIGURABLE PATCH ANTENNA WITH LIQUID METAL TUNING SLOTS AND 3D289 PRINTED MICROFLUIDICS
Lingnan Song, Yahya Rahmat-Samii, University of California, Los Angeles, United States
MO-A1.3P.8: 3D DIRECTION-OF-ARRIVAL ESTIMATION USING A WIDEBAND VECTOR ANTENNA
MO-A1.3P.9: MILLIMETER-WAVE DUAL-PLANE BEAM-SWITCHING ANTENNA BASED ON
MO-A1.3P.10: A MINIATURIZED RECONFIGURABLE UHF ANTENNA
Fatima AlZahraa AsadAllah, Hussam Abdul Khalek, Bassel Abou Ali Modad, Jad Aboul Hosn, Joseph Costantine, Rouwaida Kanj, American University of Beirut, Lebanon; Youssef Tawk, Notre Dame University, Lebanon
MO-A1.4P: APPLICATIONS-ORIENTED ELECTRICALLY SMALL ANTENNAS
MO-A1.4P.1: ULTRA-MINIATURE LOADED LOOP ANTENNA FOR VHF PAGER
MO-A1.4P.2: AN ELECTRICALLY SMALL ON-CHIP ANTENNA SCALED DOWN TO
MO-A1.4P.3: SMALL SIZE ANTENNAS MOUNTABLE ON METTALIC GAS CYLINDERS
MO-A1.4P.4: GAIN ENHANCEMENT OF THREE-QUARTER WAVELENGTH INVERTED L-SHAPED

MO-A1.4P.5: ULTRA COMPACT TRUNCATED GROUND MONOPOLE ANTENNA FOR DCS 1800/ PCS
Shameena V.A, Cochin University of Science and Technology, India; Sreejith Nair, Govt. College Chittur, Palakkad, India; Manoj M, Mohanan P, CUSAT, India
MO-A1.4P.6: INVERTED-F ANTENNA RADIATION EFFICIENCY ENHANCEMENT BASED ON A
MO-A1.4P.7: MULTI-ARM DIPOLE FOR COMPACT WEARABLE ANTENNAS
MO-A1.4P.8: ELETRICALLY-SMALL RECTENNA WITH HUYGENS RADIATION PATTERN FOR311 WIRELESS POWER TRANSFER APPLICATIONS Wei Lin, Richard Ziolkowski, University of Technology Sydney, Australia
MO-A1.4P.9: USING ELECTRICALLY-SMALL HPEM ANTENNA ARRAY ELEMENTS TO DIVIDE
MO-A1.4P.10: BROADBAND CIRCULARLY POLARIZED PRINTED ANTENNA WITH QUAD-CROSSED
MO-A5.4P: RFID ANTENNA DESIGN
MO-A5.4P.1: NEAR-FIELD ANTENNA DESIGN FOR UHF RFID SYSTEM
MO-A5.4P.2: MULTI-BEAM RADIATIONS FROM PHASED ARRAY OF ANTENNAS EXCITED BY
MO-A5.4P.3: CIRCULARY POLARIZED ANTENNA FOR RFID APPLICATIONS
MO-A5.4P.4: TUNABLE FOLDED-PATCH UHF RFID TAG ANTENNA DESIGN USING THEORY OF
MO-A5.4P.5: A NOVEL NEARFIELD READER ANTENNA FOR UHF RFID APPLICATION
MO-A5.4P.6: A WIDEBAND ANTENNA FOR BURIED RFID APPLICATIONS
MO-A5.4P.7: A SIMPLE APERTURE COUPLED CIRCULAR PATCH ANTENNA WITH CP RADIATION

MO-A5.4P.8: COMPACT CIRCULAR POLARIZATION ANTENNA BASED ON SLOT STRUCTURE FOR
MO-A5.4P.9: A NOVEL NFC ANTENNA FOR METAL COVER SMARTPHONE APPLICATIONS
MO-A1.5P: CIRCULARLY-POLARIZED MICROSTRIP ANTENNAS
MO-A1.5P.1: CIRCULARLY POLARIZED SMALL-FOOTPRINT HYBRID RING-PATCH STACKED
MO-A1.5P.2: K-BAND CROSS-APERTURE COUPLED CIRCULARLY POLARIZED DUAL FREQUENCY
MO-A1.5P.3: STUDY ON 12/21-GHZ DUAL-CIRCULARLY POLARIZED RECEIVING ANTENNA FOR
MO-A1.5P.4: AN EFFECT OF VIA-HOLES BARRIERS ON CIRCULARLY POLARIZED PATCH
MO-A1.5P.5: A BROADBAND CIRCULAR POLARIZED MICROSTRIP ANTENNA BASED ON ARTIFICIAL 343 MAGNETIC CONDUCTOR Wei Li, Bowen Cai, Ying Suo, Harbin Institute of Technology, China
MO-A1.5P.6: FEASIBILITY STUDY OF K-BAND E-SHAPED CIRCULARLY POLARIZED MICROSTRIP
MO-A1.5P.7: MECHANICAL TENSION EFFECTS ON CYLINDRICAL PROBE-FED CIRCULARLY
MO-A1.5P.8: MULTILAYER CIRCULARLY POLARIZED PLANAR APERTURE-COUPLED ANTENNA
MO-A1.5P.9: A RESEARCH FOR MINIATURIZED CIRCULAR POLARIZATION ANTENNA
MO-A1.5P.10: A CIRCULARLY POLARIZED MAGNETO-ELECTRIC DIPOLE LEAKY WAVE ANTENNA
MO-A5.2P: MIMO ANTENNA CONCEPTS
MO-A5.2P.1: CELLULAR ANTENNA PERFORMANCE IMPACT ON MIMO IN VEHICLE

MO-A5.2P.2: FSS BASED RADIATION PATTERN DECORRELATOR FOR MIMO ANTENNA
MO-A5.2P.3: CHARACTERIZATIONS OF MIMO ANTENNAS USING MULTIPLEXING EFFICIENCY357 Xiaoming Chen, Jiazhi Tang, Shitao Zhu, Anxue Zhang, Xi'an Jiaotong University, China
MO-A5,2P.4: DUAL-BAND ANTENNA DECOUPLING DESIGN WITH STEPPED IMPEDANCE LOADED
MO-A5.3P: ADVANCES IN ON-CHIP ANTENNAS AND ANTENNA/SYSTEM INTEGRATION TECHNIQUES
MO-A5.3P.1: ON-CHIP ANTENNA TEST STRUCTURE DESIGN WITH REDUCED SENSITIVITY TO
Duixian Liu, Timothy Dickson, Alberto Valdes-Garcia, IBM, United States
MO-A5.3P.2: GAIN AND EFFICIENCY ENHANCEMENT OF A 77 GHZ ON-CHIP ANTENNA THROUGH
MO-A5.3P.3: COMPARISON OF ANTENNA PATTERNS FROM ACTIVE AND PASSIVE
MO-A5.3P.4: A 60-GHZ INTEGRATED SLOT LOOP ANTENNA IN 0.13-μM BICMOS TECHNOLOGY
MO-A5.3P.5: COMPACT 60GHZ ON-CHIP ANTENNA IN 65NM CMOS TECHNOLOGY WITH
MO-A4.2P: PROPAGATION IN TRAFFIC ENVIRONMENT
MO-A4.2P.1: ANGULAR SPREAD AND DENSITY FUNCTION OF SPHERICAL WAVES
MO-A4.2P.2: COHERENCE TIME AND DOPPLER SPREAD ANALYSIS OF THE V2V CHANNEL IN
MO-A4.2P.3: INTEGRATION OF WIRELESS SENSOR NETWORKS IN INTELLIGENT
MO-A4.2P.4: INFLUENCE OF DIFFERENT ANTENNA LOCATIONS ON CHANNEL

MO-A4.2P.5: RAY-TRACING SIMULATION AND ANALYSIS FOR AIR-TO-GROUND CHANNEL IN379 RAILWAY ENVIRONMENT
Lei Ma, Ke Guan, Danping He, Guangkai Li, Siyu Lin, Bo Ai, Zhangdui Zhong, Beijing Jiaotong University, China
TU-UK.1A: MEDICAL DEVICES AND HUMAN EFFECTS
TU-UK.1A.6: UNWANTED RF ENERGY COUPLING DURING ELECTROCAUTERY: AN IN-VITRO381 TONSILLECTOMY STUDY
Vigyanshu Mishra, Maria Koenigs, Ohio State University, United States; Tendy Chiang, Ohio State University (AND) Nationwide Children's Hospital, United States; Asimina Kiourti, Ohio State University, United States
TU-UK.1A.8: RF-BASED BREAST SURFACE ESTIMATION - REGISTRATION WITH REFERENCE383 IMAGING MODALITY
Peter Lawrence, Angie Fasoula, Luc Duchesne, MVG Industries, France
TU-UK.1A.9: EFFICACY OF MAGNETIC AND CAPACITIVE HYPERTHERMIA ON HEPATOCELLULAR 385 CARCINOMA
Chien-Chang Chen, Jean-Fu Kiang, National Taiwan University, Taiwan
TU-A5.1A: ULTRAWIDEBAND ANTENNA SYSTEMS
TU-A5.1A.1: HIGH-DIRECTIVTY BROADBAND SIMULTANEOUS TRANSMIT AND RECEIVE (STAR)387 ANTENNA SYSTEM
Prathap Valale Prasannakumar, Mohamed Elmansouri, Dejan Filipovic, University of Colorado Boulder, United States
TU-A5.1A.2: A COMPACT, BROADBAND, TWO-PORT SLOT ANTENNA SYSTEM FOR FULL-DUPLEX389 APPLICATIONS
Seyed Mohammad Amjadi, Kamal Sarabandi, University of Michigan, United States
TU-A5.1A.3: INTERFERENCE MITIGATION FOR 5G MILLIMETER-WAVE COMMUNICATIONS
TU-A5.1A.4: UWB RADAR SENSOR DEVELOPMENT USING DRONE ARMS FOR SENSING
TU-A5.1A.5: A NEW WIDE BAND ANTENNA FOR WIRELESS COMMUNICATION
TU-A5.1A.6: UPPER BOUND STUDY OF 5G RF EMF EXPOSURE
Bo Xu, KTH Royal Institute of Technology, Sweden; Mats Gustafsson, Lund University, Sweden; Shuai Shi, KTH Royal Institute of Technology, Sweden; Zhinong Ying, Sony Mobile Communications, Sweden; Sailing He, KTH Roayl Institute of Technology, Sweden
TU-A5.1A.7: A MINIATURIZED DUAL UWB QUASI-YAGI BASED MIMO ANTENNA SYSTEM USING A399 DEFECTED GROUND STRUCTURE
Syed Shahan Jehangir, Mohammad Sharawi, King Fahd University of Petroleum and Minerals, Saudi Arabia
TU-A5.1A.8: DESIGN AND SIMULATION OF FIXED PHYSICAL LENGTH PLANAR SPOOF SURFACE
Muhammed Abdullah Unutmaz, Mehmet Unlu, Ankara Yildirim Beyazit University, Turkey
TU-A5.1A.9: A MONOSTATIC 2-D ASYNCHRONOUS POSITIONING SYSTEM BASED ON ANGLE OF 403 ARRIVAL ESTIMATION USING ULTRA-WIDEBAND PULSES
Zhongtao Zhu, Xiaozhang Zhu, Yuxuan Chen, University of Electronic Science and Technology of China, China; Jiang Dai, Kunchen Technology Company, Limited, China; Zhiqin Zhao, Zaiping Nie, University of Electronic Science and Technology of China, China; Qing Huo Liu, Duke University, United States

TU-A5.1A.10: WIDEBAND TRANSCEIVER FRONT-END INTEGRATED WITH VIVALDI ARRAY405 ANTENNA FOR 5G MILLIMETER-WAVE COMMUNICATION SYSTEMS
Xiang Wang, Xiao-Wei Zhu, Chao Yu, Chen-Feng Li, Peng-Fei Liu, Xue-Song Shi, Southeast University, China
TU-SP.1A: ADVANCES IN COMMERCIAL ELECTROMAGNETIC SIMULATION TOOLS
TU-SP.1A.1: CAD DATA SELECTION AND SIMPLIFICATION TECHNIQUES FOR EM AUTOMOTIVE
TU-SP.1A.2: RECENT ADVANCES OF FEKO AND WINPROP
TU-SP.1A.4: OVERVIEW OF HYBRID SOLVER IN HFSS
TU-SP.1A.5: NEW GENERATION OF WIPL-D IN-CORE MULTI-GPU SOLVER
TU-SP.2A.1: TOWARDS INTEGRATED ACTIVE ANTENNAS FOR 5G MM-WAVE APPLICATIONS AT
TU-SP.2A.2: AMC PACKAGED – BUTLER MATRIX FOR MILLIMETER WAVE BEAMFORMING
TU-SP.2A.3: FLATNESS ENHANCEMENT OF GAP WAVEGUIDE SLOT ARRAYS USING A
TU-SP.2A.4: RIDGE GAP WAVEGUIDE QUASI – TEM HORN ANTENNA FOR KA-BAND APPLICATIONS
TU-SP.2A.6: EMPIRICAL ANALYSIS FORMULAE OF MICROSTRIP RIDGE GAP WAVEGUIDE
TU-SP.2A.7: GENERATION OF MM-WAVE HIGHER ORDER OAM MODES USING FLAT PHASE425 PLATES
Hemanth Gaddam, Michael Kolacki, Patanjali V. Parimi, SUNY, Oswego, United States
TU-SP.2A.8: MICROSTRIP RIDGE GAP WAVEGUIDE HYBRID COUPLER AT 60 GHZ
TU-A2.1A: METAMATERIAL LENSES AND OTHER APPLICATIONS
TU-A2.1A.1: ENHANCING RESOLUTION OF MICROWAVE NDE OF COMPOSITES USING
TU-A2.1A.2: THREE COLOR CORRECTION WITH METASURFACE-BACKED GRADIENT-INDEX
TU-A2.1A.3: SPACE-TIME FOCUSING USING A DISPERSIVE AXICON

TU-A2.1A.4: GENERATION OF DUAL-POLARIZED DUAL-MODE OAM RADIO BEAMS THROUGH435 TRANSMIT-ARRAY LENS
Xudong Bai, Yuntao Sun, Fanwei Kong, Weizhong Yan, Yanting Lv, Shanghai Scientific Instrument Factory, China; Weiren Zhu, Chong He, Xianling Liang, Junping Geng, Ronghong Jin, Shanghai Jiao Tong University, China
TU-A2.1A.5: 1-BIT RECONFIGURABLE UNIT CELL FOR PROGRAMABLE TRANSMIT-ARRAY LENS IN 437
C-BAND Xudong Bai, Yuntao Sun, Fanwei Kong, Weizhong Yan, Yanting Lv, Shanghai Scientific Instrument Factory, China; Weiren Zhu, Chong He, Xianling Liang, Junping Geng, Ronghong Jin, Shanghai Jiao Tong University, China
TU-A2.1A.6: IMPEDANCE MATCHING METAMATERIALS COMPOSED OF ELC AND NB-SRR
TU-A2.1A.7: A METAMATERIAL ELECTROMAGNETIC WAVE ABSORBER BASED ON RESISTIVE
TU-A2.1A.8: ULTRA-THIN METALENS GENERATING COVERGING VORTEX BEAM IN MICROWAVE 443
REGION Yueyi Yuan, Kuang Zhang, Xumin Ding, Qun Wu, Harbin Institute of Technology, China; Badreddine Ratni, Shah Nawaz Burokur, LEME, UPL, Univ Paris Nanterre, France
TU-A2.1A.9: VORTEX-BEAM EMITTER BASED ON SPOOF SURFACE PLASMON POLARITONS
TU-A2.1A.10: EXPLOITING INVERSE SCATTERING METHODOLOGIES TO DESIGN ARTIFICIAL
MATERIALS Roberta Palmeri, Martina Teresa Bevacqua, Andrea Francesco Morabito, Tommaso Isernia, Università Mediterranea di Reggio Calabria, Italy
TU-A1.1A: MULTI-BAND MOBILE ANTENNAS
TU-A1.1A.1: DESIGN OF A MULTIBAND LTE MIMO ANTENNA SYSTEM INTEGRATED IN ITS REAL 447 ENVIRONMENT
Lamia Sadaoui, Georges Kossiavas, Robert Staraj, Leonardo Lizzi, Université Cote d'Azur, CNRS, LEAT, France
TU-A1.1A.2: DESIGN OF A DUAL-FREQUENCY RECTANGULAR LOOP ANTENNA PLACED ON A
TU-A1.1A.3: COMPACT DUAL - BAND FLEXIBLE ANTENNA FOR WLAN/WI - FI APPLICATIONS
Reshma Lakshmanan, Mridula Shanta, Mohanan Pezholil, Cochin University of Science and Technology, India
TU-A1.1A.4: RECONFIGURABLE SLOT ANTENNA DESIGN FOR 5G SMARTPHONE WITH METAL 453 CASING
Peng Yang, University of Electronic Science and Technology of China, Institute of Electronic and Information Engineering of UESTC in Guangdong, China; Kuixi Yan, Feng Yang, University of Electronic Science and Technology of China, China; Shaoying Huang, Singapore University of Technology and Design (SUTD), Singapore; L.Y. Zeng, Institute of Electronic and Information Engineering of UESTC in Guangdong, China
TU-A1.1A.5: DUAL-LOOP ANTENNA WITH BAND-STOP CIRCUIT FOR GPS/BLUETOOTH455 METAL-RIMMED SMARTWATCH APPLICATIONS
Yi Yan, Jun Ouyang, Abubakar Sharif, Qiang Wang, Yong-Ling Ban, University of Electronic Science and Technology of China, China

TU-A1.1A.7: A QUAD-BAND COMPACT INVERTED-F MIMO ANTENNA FOR USB DONGLE
TU-A1.1A.8: A COMPACT DUAL-BAND MIMO SLOT ANTENNA FOR WLAN APPLICATIONS
TU-A1.1A.9: TRIPLE-BAND LOOP ANTENNA FOR 5G/WLAN UNBROKEN-METAL-RIMMED
TU-A1.1A.10: A DUAL-BAND TRANSPARENT COPLANAR PATCH ANTENNA FOR WLAN SYSTEMS
TU-A1.2A: RECONFIGURABLE ARRAYS, REFLECTARRAYS, TRANSMITTARAYS AND THEIR ELEMENTS
TU-A1.2A.1: A KA-BAND FREQUENCY RECONFIGURABLE CIRCULARLY POLARIZED ANTENNA
TU-A1.2A.2: 6×6 ARRAY OF FOUR-ARM SPIRAL ANTENNAS FOR HIGH-GAIN SATELLITE RECEIVER 469 APPLICATIONS AT LOW ELEVATION Hengyi Zhou, Arpan Pal, Amit Mehta, Swansea University, United Kingdom; Hisamatsu Nakano, Hosei University, Japan
TU-A1.2A.3: ENHANCED GAIN TUNABLE TWO ELEMENTS ANTENNA ARRAY BASED ON GRAPHENE
TU-A1.2A.4: A BEAM-SCANNING ARRAY ANTENNA FOR LPWAN BASE STATION
TU-A1.2A.5: LOW-LOSS COMPACT RE-CONFIGURABLE REFLECTARRAY ELEMENT
TU-A1.2A.6: A WIDE-BAND DUAL-POLARIZED FREQUENCY-RECONFIGURABLE SLOT-RING
TU-A1.2A.7: A LOW COST REFLECT ARRAY FOR NEAR-FIELD MILLIMETER-WAVE BEAM
TU-A1.2A.8: DESIGN OF A 1-BIT RECONFIGURABLE TRANSMITARRAY ELEMENT USING AN
TU-A1.2A.9: A MULTI-BIT RECONFIGURABLE TRANSMITARRAY DESIGN APPROACH USING
TU-A1.2A.10: BEAM RECONFIGURABLE ANTENNA BASED ON HOLOGRAPHIC METASURFACES

TU-A1.3A: ADAPTIVE, ACTIVE, AND SMART ANTENNAS I

TU-A1.3A.1: A PARAMETRIC AMPLIFIER SLOT ANTENNA
TU-A1.3A.2: DUAL-POLARIZED ANTENNA ARRAY WITH INTEGRATED LOW NOISE AMPLIFIER INTO 489 THE LIGHTWEIGHT ANTENNA COMPOSITE STRUCTURE Pawel Kabacik, Arkadiusz Byndas, Mariusz Hofman, Tomasz Wasik, Wrocław University of Science and Technology, Poland
TU-A1.3A.3: MANIPULATING THE RADIATION PATTERN OF PATCH ANTENNAS BY EXPLOITING
TU-A1.3A.4: MODE-BASED MIMO ANTENNA WITH POLARIZATION AND PATTERN DIVERSITY FOR
TU-A1.3A.6: SPECTRAL AND SPATIAL UPLINK INTERFERENCE FILTERING
TU-A1.3A.7: CIRCULARLY POLARIZED PATCH ANTENNA WITH SECTOR RADIATION PATTERN
TU-A1.3A.8: 3D PATTERN OPTIMIZATION USING PSO FOR AN IRREGULAR DUAL-LAYER
TU-A1.3A.9: ACTIVE ANTENNA
TU-A1.3A.10: RADIATION PATTERN RECONFIGURABLE ANTENNA FOR MIMO SYSTEMS WITH
TU-A1.4A: SLOT AND SLOT-FED ARRAYS
TU-A1.4A.1: HIGH GAIN LEFT HAND CIRCULAR POLARIZED MILLIMETER-WAVE RADIAL LINE 505 SLOT ANTENNA WITH LOW SIDE LOBE LEVEL Abdullah Attar, Abdel Razik Sebak, Concordia University, Canada
TU-A1.4A.2: CROSS-POLARIZATION REDUCTION OF A NARROW WALL SLOTTED WAVEGUIDE
TU-A1.4A.3: A NOVEL DUAL CIRCULARLY-POLARIZED WAVEGUIDE ANTENNA ARRAY
TU-A1.4A.4: INTEGRATED VS SEPARATED RADOMES FOR SLOTTED-WAVEGUIDE ANTENNAS511 Stanislav Sekretarov, Dmytro Vavriv, Institute of Radio Astronomy of the National Academy of Sciences of Ukraine, Ukraine
TU-A1.4A.5: HIGH GAIN SLOTTED WAVEGUIDE FED MICROSTRIP ANTENNA ARRAY AT KA-BAND

TU-UA.1A: ADVANCED ANTENNA TECHNOLOGIES

TU-UA.1A.2: LOW LOSS AND HIGH ELECTRICAL INSULATION NEAR FIELD ANTENNA COUPLER 515 Alejandro Niembro-Martin, Emmanuel Dreina, Schneider Electric, France
TU-UA.1A.3: THE EFFECT OF PHASE CONTINUITY ON SYNCHRONOUS ANTENNA TUNING
TU-UA.1A.4: 6-10 GHZ CIRCULARLY-POLARIZED MULTISTATIC ARRAY FOR STANDOFF
TU-UA.1A.6: LOW-PROFILE TRANSMITARRAY ANTENNA WITH SINGLE SLOT SOURCE AND
TU-UA.1A.7: DUAL-POLARIZED OPEN-ENDED WAVEGUIDE WITH SQUINTED BEAM FOR X-BAND
TU-UA.1A.8: UAV-BASED ANTENNA MEASUREMENT AND DIAGNOSTICS FOR CIRCULARLY
TU-UA.1A.9: STUDY OF A WATER-IMMERSED ORBITAL ANGULAR MOMENTUM CIRCULAR
TU-A3.1A: ADVANCES IN ELECTROMAGNETIC OPTIMIZATION
TU-A3.1A.1: DEALING WITH COMPLEXITY IN ELECTROMAGNETICS THROUGH THE
OF AIRBORNE RADOMES Andrea Massa, Marco Salucci, University of Trento, Italy
OF AIRBORNE RADOMES
OF AIRBORNE RADOMES Andrea Massa, Marco Salucci, University of Trento, Italy TU-A3.1A.2: A PIXEL-BASED OPTIMIZATION METHOD FOR THE DESIGN OF OPTICALLY
OF AIRBORNE RADOMES Andrea Massa, Marco Salucci, University of Trento, Italy TU-A3.1A.2: A PIXEL-BASED OPTIMIZATION METHOD FOR THE DESIGN OF OPTICALLY
OF AIRBORNE RADOMES Andrea Massa, Marco Salucci, University of Trento, Italy TU-A3.1A.2: A PIXEL-BASED OPTIMIZATION METHOD FOR THE DESIGN OF OPTICALLY

TU-A3.1A.7: MACHINE LEARNING FOR MULTIOBJECTIVE EVOLUTIONARY OPTIMIZATION IN541 PYTHON FOR EM PROBLEMS Anatoliy Boryssenko, AE Partnership, United States; Naftali Hercovici, Raytheon, United States
TU-A3.1A.8: FLAT BEAM OPTIMIZATION OF 1-BIT REFLECTARRAY BY MEANS OF SOCIAL
TU-A3.1A.9: A PSO BASED ON SA FOR THE SPARSE LINEAR ARRAY SYNTHESIS WITH MULTIPLE
TU-A4.3A: PROPAGATION IN UNDERGROUND ENVIRONMENT
TU-A4.3A.1: UNCERTAINTY QUANTIFICATION OF VECTOR PARABOLIC EQUATION BASED
TU-A4.3A.2: ENABLING ACCURATE MODELING OF WAVE PROPAGATION IN COMPLEX TUNNEL
TU-A4.3A.3: BIT ERROR RATE PERFORMANCE OF FD-RELAY IN OLOS MINE ENVIRONMENTS 551 Kazi Mustafizur Rahman, Nadir Hakem, Université du Québec en Abitibi-Témiscamingue, Canada
TU-A4.3A.4: A NEW WAY TO INTEGRATE PHYSICS-BASED CHANNEL MODELS IN
TU-A4.3A.5: INVESTIGATION OF ROUGH SURFACES FOR PROPAGATION MODELING IN CAVES
TU-A4.3A.6: "ELECTROMAGNETIC VISION": MACHINE INTELLIGENCE MODELS OF RADIOWAVE
TU-A4.3A.7: UWB OFF-BODY CHANNEL CHARACTERIZATION IN A MINE ENVIRONMENT
TU-A4.3A.8: AN ACCELERATION ALGORITHM FOR COLLISION DETECTION IN RAY-TRACING
TU-A4.3A.9: PROPAGATION ANALYSIS OF WIRELESS-SIGNALS IN A SINGLE- AND MULTI-LAYER
TU-A4.1A: ADVANCES IN SENSING
TU-A4.1A.5: OPTIMIZING THE INFORMATION-THEORETIC PARTITIONING OF SIMULTANEOUS

TU-A4.2A: SYNTHETIC APERTURE RADAR IMAGING AND SIMULATION

TU-A4.2A.1: CLUTTER-SUPPRESSED, SUBSURFACE INTERFEROMETRIC SAR IMAGING OF
TU-A4.2A.2: SHORT RANGE SAR IMAGING FOR 2D MICRO-DEFORMATION DETECTION
TU-A4.2A.3: SYNTHETIC APERTURE RADAR IMAGING ON LUNAR SURFACE WITH OBSERVATORY 571 ON EARTH Po-Chih Chen, Jean-Fu Kiang, National Taiwan University, Taiwan
TU-A4.2A.4: NUMERICAL SIMULATION AND ANALYSES OF SAR IMAGES FROM MOVING SHIPS
TU-A4.2A.5: WIDEBAND ECHO SIMULATION AND ITS APPLICATION TO SAR IMAGE OF COMPLEX
TU-A5.1P: ANTENNA DESIGN FOR ABLATION AND ADVANCED BIOMEDICAL APPLICATION
TU-A5.1P.1: MULTI-TARGET FOCO FOR HEAD&NECK HYPERTHERMIA TREATMENT PLANNING: A 577 FEASIBILITY STUDY Gennaro Giovanni Bellizzi, Università Mediterranea di Reggio Calabria, Italy; Tomas Drizdal, Erasmus MC - Daniel den Hoed Cancer Center Rotterdam, Netherlands; Lorenzo Crocco, IREA, Consiglio Nazionale delle Ricerche, Napoli, Italia;, Italy; Gerard C. van Rhoon, Erasmus MC - Daniel den Hoed Cancer Center Rotterdam, Netherlands; Tommaso Isernia, Università Mediterranea di Reggio Calabria, Italy; Margarethus M. Paulides, Erasmus MC - Daniel den Hoed Cancer Center Rotterdam, Netherlands
TU-A5.1P.2: PRINTED COIL ANTENNA FOR WIRELESS CAPSULE ENDOSCOPIC
TU-A5.1P.5: COMPACT CONFORMAL SLOT ANTENNA FOR HYPERTHERMIA APPLICATIONS
TU-A5.1P.6: MULTI-ANTENNA SAR ESTIMATION IN LINEAR TIME
TU-A5.1P.7: A CONFORMAL ANTENNA WITH POLARIZATION DIVERSITY FOR WIRELESS
TU-A5.1P.8: A HIGHLY SENSITIVE MICROWAVE BIOSENSOR FOR SINGLE BIOLOGICAL CELL
TU-A5.1P.9: DESIGN OF MATCHING LAYERS FOR INCREASING THE ELECTRICAL FIELD

TU-A5.1P.10: PERMITTIVITY AND CONDUCTIVITY ESTIMATION FOR HYPERTHERMIA
TU-A5.2P: DESIGN AND IMPLEMENTATION OF ADVANCED 3D MANUFACTURING TECHNIQUE FOR MILLIMETER-WAVE ANTENNAS
TU-A5.2P.1: A W-BAND CURVED APERTURE HORN ANTENNA WITH CONSISTENT RADIATION593 PATTERNS
Jake Cazden, Muhannad Al-Tarifi, Ljubodrag Boskovic, Dejan Filipovic, University of Colorado Boulder, United States
TU-A5.2P.2: PRINTED W-BAND LUNEBURG LENS FOR BEAMFORMING APPLICATIONS
TU-A5.2P.3: HIGH-GAIN PATCH-FED 3D-PRINTING FRESNEL ZONE PLATE LENS ANTENNA FOR
Pei-Ling Chi, Chi-Hsien Pao, Ming-Hui Huang, Tao Yang, National Chiao Tung University, Taiwan
TU-A5.2P.4: A PRINTED CONICAL BEAM ANTENNA FOR MILLIMETER-WAVE APPLICATIONS
TU-A5.2P.5: WIDEBAND CIRCULARLY-POLARIZED 3D ANTENNA ARRAY FOR MILLIMETER-WAVE
TU-A5.2P.6: HIGH GAIN DISC RESONATOR ANTENNA ARRAY WITH CPW COUPLED FOR THZ
TU-A5.2P.7: A DUAL-CIRCULARLY POLARIZED COMPACT FEED HORN AT 5G
TU-A5.2P.8: MILLIMETER-WAVE TOROIDAL LENS-ARRAY ANTENNAS EXPERIMENTAL
Alexander Maltsev, Artem Lomayev, Andrey Pudeyev, Ilya Bolotin, Intel Corporation, Russia; Olesya Bolkhovskaya, Valentin Seleznev, University of Nizhny Novgorod, Russia
TU-A5.2P.9: AN ULTRA-WIDEBAND FERMI TAPERED SLOT ANTENNA WITH
TU-A5.2P.10: A WIDEBAND MILLIMETER-WAVE BIDIRECTIONAL CIRCULARLY POLARIZED
TU-SP.1P: MODERN ADVANCES IN ELECTROMAGNETIC IMAGING, COMPRESSIVE SENSING AND RADAR
TU-SP.1P.2: MULTIVIEW IMAGING WITH REAL-TIME MICROWAVE CAMERA FROM KNOWN

TU-SP.1P.4: REAL BEAM, VOLUMETRIC RADAR IMAGING AT 340 GHZ FOR SECURITY
TU-SP.1P.5: ADAPTIVE ARRAY RADAR IMAGING OF A HUMAN BODY FOR VITAL SIGN
TU-SP.1P.6: A COMPRESSIVE MILLIMETER-WAVE INTERFEROMETRIC IMAGER FOR
TU-SP.1P.8: DETERMINING THE DIELECTRIC PERMITTIVITY AND THICKNESS OF A
Mahdiar Sadeghi, Elizabeth Wig, Carey Rappaport, Northeastern University, United States TU-SP.1P.9: MM-WAVE AND THZ ACTIVE ELECTROMAGNETIC SYSTEMS ON CHIP:
TU-SP.1P.10: ROBUST BCS-BASED DIRECTION-OF-ARRIVAL AND BANDWIDTH ESTIMATION OF
TU-SP.2P: WIDEBAND ANTENNA AND PHASED ARRAYS FOR PERFORMANCE AND PHYSICAL LAYER SECURITY IN MOBILE WIRELESS 5G
TU-SP.2P.1: PERFORMANCE CHARACTERIZATION OF MONOLITHICALLY INTEGRATED MMW
TU-SP.2P.2: DEVELOPMENT OF 28GHZ BAND MASSIVE MIMO ANTENNA RF FRONTEND629
MODULE FOR 5G Satoshi Yamaguchi, Hikaru Watanabe, Hideharu Yoshioka, Yasuo Morimoto, Hideyuki Nakamizo, Koji Tsutsumi, Shintaro Shinjo, Shigeru Uchida, Akihiro Okazaki, Toru Fukasawa, Naofumi Yoneda, Mitsubishi Electric Corporation, Japan
TU-SP.2P.4: PCB BASED UWB MM-WAVE SMART CAPPED BOWTIE ARRAY FOR 5G
COMMUNICATION SYSTEMS Jian Yang, Sadegh Mansouri Moghaddam, Ashraf Zaman, Zhongxia Simon He, Vessen Vassilev, Chalmers University of Technology, Sweden
TU-SP.2P.5: DUAL-BAND CAVITY-BACKED DIPOLE ANTENNA FOR MILLIMETER-WAVE
COMMUNICATIONS Bin Yu, Shanghai University, China; Xitong Wu, Xiaoyang Ma, Speed Wireless Technology Inc., United States; Guangli Yang, Shanghai University, SICS, China
TU-SP.2P.6: A TRANSPARENT DUAL-POLARIZED ANTENNA ARRAY FOR 5G SMARTPHONE
APPLICATIONS Manoj Stanley, Yi Huang, University of Liverpool, United Kingdom; Hanyang Wang, Hai Zhou, Huawei Technology (UK), United Kingdom; Ahmed Alieldin, Sumin Joseph, University of Liverpool, United Kingdom
TU-SP.2P.7: 37-39 GHZ VERTICALLY-POLARIZED END-FIRE 5G ANTENNA ARRAY FEATURING
Junho Park, Pohang University of Science and Technology, Korea (South); Dooseok Choi, Samsung Electronics, Korea (South); Wonbin Hong, Pohang University of Science and Technology, Korea (South)

TU-SP.2P.8: WIDEBAND ANTENNAS AND PHASED ARRAYS FOR ENHANCING CYBERSECURITY IN
TU-SP.2P.9: A MULTIPORT 5G BASE-STATION ANTENNA USING SERIES-FED PATCH ANTENNA
TU-A2.1P: METAMATERIALS FOR ANTENNAS
TU-A2.1P.1: DESIGN OF A SPLIT-RING RESONATOR BASED MICROSTRIP SENSOR FOR
TU-A2.1P.2: MINIATURIZED MICROSTRIP PATCH ANTENNA USING MAGNETO-DIELECTRIC
TU-A2.1P.3: HIGH DIRECTIVE LOOP ANTENNA FOR LOW-PROFILE APPLICATIONS
TU-A2.1P.4: ANALYSIS OF MICROSTRIP ANTENNAS ON METAMATERIAL SUBSTRATE USING
TU-A2.1P.5: ANTENNA COMPOSED OF META- AND NATURAL-MATERIAL LOOPS
TU-A2.1P.6: DUAL-BAND MUSHROOM ANTENNA WITH TWO CONCENTRIC CIRCLES
TU-A2.1P.7: RADIALLY ARRAYED CP METAMATERIAL LINES
TU-A2.1P.8: A WIDEBAND HORIZONTAL POLARIZED OMNIDIRECTIONAL LOOP ANTENNA
TU-A2.1P.9: PARAMETRIC INVESTIGATIONS AND DEMONSTRATION OF A METASURFACE-COATED 659 ULTRA-WIDEBAND MONOPOLE Zhi Hao Jiang, Wei Hong, Southeast University, China
TU-A1.1P: DUAL-BAND AND MULTI-BAND ANTENNAS (I)
TU-A1.1P.1: A ROBUST AND SYSTEMATIC APPROACH TO MULTIBAND ANTENNA DESIGN FOR
TU-A1.1P.2: A MULTI-BAND SRR AND STRIP LOADED SLOT ANTENNA

TU-A1.1P.3: A TRI-BAND ANTENNA WITH BROADBAND REDUCED RCS AND ENHANCED
TU-A1.1P.5: A MICROSTRIP GRID ARRAY ANTENNA FOR DUAL BAND APPLICATIONS
TU-A1.1P.6: MULTIMODE MULTI-CONSTELLATION GNSS ANTENNA
TU-A1.1P.7: DECOUPLED DUAL-BAND SLOT ANTENNA WITH BIDIRECTIONAL PATTERNS FOR
TU-A1.1P.8: MULTIBAND ANTENNA DESIGN FOR AMBIENT ENERGY HARVESTING BASED ON RF
TU-A1.1P.9: DESIGN OF A NOVEL QUADRUPLE BAND-NOTCHED UWB ANTENNA
TU-A1.1P.10: PRINTED QUASI YAGI ANTENNA WITH CLOSELY SPACED AND THICK DIRECTORS
TU-A5.3P: RFID DESIGN AND IMPLEMENTATION ISSUES
TU-A5.3P.1: DESIGN AND INTEGRATION OF ANTENNAS FOR LAUNCHING RF SIGNALS IN
TU-A5.3P.2: ON RFID TAG DETECTION INSIDE METAL PIPES
TU-A5.3P.3: DUAL-LAYER CIRCULARLY POLARIZED SPLIT RING RESONATOR INSPIRED
TU-A5.3P.4: RF ENERGY HARVESTING SYSTEM INTEGRATING A PASSIVE UHF RFID TAG AS A
TU-A5.3P.5: SMALL EPIDERMAL UHF RFID LOOP ANTENNA FOR PASSIVE ORAL CAVITY
TU-A5.3P.6: A COMPACT AMC-BASED NOVEL MONOPOLE ANTENNA FOR RFID APPLICATIONS
TU-A5.3P.7: DESIGN OF A WIDEBAND WEARABLE PLANAR UHF RFID TAG ANTENNA ATTACHED TO 691 MULTILAYERED HUMAN BODY Dan Wang, Yun Jing Zhang, Jia Ying Lv, Mei Song Tong, Tongji University, China
TU-A5.3P.8: LOW-COST CONFORMAL UHF RFID TAG ANTENNA FOR PLASTIC WATER BOTTLES

TU-A5.3P.9: A RECTANGULAR MICROSTRIP PATCH ANTENNA USED FOR STRUCTURAL HEALTH
TU-A5.3P.10: STUDY OF AN ACCURATE PHASE-BASED LOCALIZATION METHOD FOR
TU-A4.1P: ADVANCES IN INVERSE SCATTERING TECHNIQUES
TU-A4.1P.1: MULTI-PARAMETER MICROWAVE INVERSE SCATTERING WITH GROUP SPARSITY 697 CONSTRAINTS
Guanbo Chen, Pratik Shah, Mahta Moghaddam, University of Southern California, United States
TU-A4.1P.2: LEARNING NONLINEARITY OF MICROWAVE IMAGING THROUGH DEEP LEARNING
TU-A4.1P.3: AN INNOVATIVE LEARNING-BY-EXAMPLES METHOD FOR REAL-TIME ELECTRICAL
TU-A4.1P.4: SPARSITY AND COHERENCE IN INVERSE PROBLEMS - FROM 1D TO 2D
TU-A4.1P.5: SOME CONSIDERATIONS ON THE PHYSICAL MEANING OF ORTHOGONALITY
TU-A4.1P.6: BEAM DOMAIN FORMULATION FOR TOMOGRAPHIC INVERSE SCATTERING. PART I:
TU-A4.1P.7: BEAM DOMAIN FORMULATION FOR TOMOGRAPHIC INVERSE SCATTERING. PART II:
TU-A4.1P.9: AN EQUIVALENT DISTORTED BORN ITERATIVE METHOD TO SOLVE INVERSE
TU-A1.2P: ANTENNA FEEDS AND MATCHING CIRCUITS (I)
TU-A1.2P.1: IMPEDANCE MATCHING OF A LARGE LOOP ANTENNA INSIDE A CIRCULAR
TU-A1.2P.2: WAVEGUIDE-FED ANTIPODAL VIVALDI ANTENNA USING AN ANTIPODAL FINLINE
TU-A1.2P.3: CIRCULARLY POLARIZED COMPACT RANGE FEED WITH 30 DB POLARIZATION

TU-A1.3P.8: CROSS-CORRELATION GREEN'S FUNCTION FOR INTERACTION BETWEEN
TU-A1.3P.9: A CPW FED TRAPEZOIDAL FRACTAL PATCH ANTENNA FOR UWB APPLICATIONS
TU-A1.3P.10: PARALLEL PLATE VLF MECHANICAL ANTENNA MECHANICAL AMPLIFICATION AND
TU-A4.2P: PROPAGATION IN INDOOR ENVIRONMENT
TU-A4.2P.1: COMPARISON OF CLUSTERING EFFECT IN SPACE-DELAY DOMAIN AT 5.8 GHZ
TU-A4.2P.2: MULTIPATH MITIGATION USING WEIGHT SUPPRESSION FOR EQUALIZATION IN
TU-A4.2P.3: HUMAN BODY SHADOWING AT 26.4 AND 66.5 GHZ IN AN INDOOR ENVIRONMENT
TU-A4.2P.4: TIME DISPERSION INDOOR CHANNEL CHARACTERIZATION IN THE 8-12 GHZ
TU-A4.2P.5: INDOOR LOCALIZATION METHOD USING PATHLOSS-DISTANCE RELATIONSHIP
TU-A4.2P.6: DEEP-SUB-WAVELENGTH MAGNETOQUASISTATIC INDOOR NAVIGATION SENSOR
TU-A4.2P.7: BACKSCATTER MODEL FOR LOW-FREQUENCY MAGNETO-QUASISTATIC FIELDS IN
TU-A4.2P.8: 28 GHZ CHANNEL MEASUREMENTS IN HIGH MULTIPATH, INDOOR
WE-A2.1A: APPLICATIONS OF METASURFACES
WE-A2.1A.1: NONLOCAL METASURFACES PERFORMING ANALOG MATHEMATICAL OPERATIONS

WE-A2.1A.2: EXTENDING THE BREWSTER EFFECT TO ARBITRARY ANGLE AND POLARIZATION77: USING BIANISOTROPIC METASURFACES Guillaume Lavigne, Christophe Caloz, Polytechnique Montréal, Canada
WE-A2.1A.3: MICROWAVE REFLECTING FOCUSING METASURFACE BASED ON WATER
WE-A2.1A.4: PHASE DISCRETIZATION INFLUENCE ON THE PERFORMANCE OF FOCUSING
WE-A2.1A.5: AN ULTRA-THIN WIDEBAND LINEAR TO CIRCULAR POLARIZATION CONVERTER
WE-A1.2A: DUAL-BAND AND MULTI-BAND ANTENNAS (II)
WE-A1.2A.1: A COMPACT DUAL-BAND ANTENNA BASED ON SIW TECHNOLOGY
WE-A1.2A.2: DESIGN AND TESTING OF FLEXIBLE KOCH SNOWFLAKE DIPOLE ANTENNA
WE-A1.2A.3: ANALYZING PRACTICAL ISSUES IN SAR MEASUREMENTS OF MULTIPLE-ANTENNA
WE-A1.2A.4: CPW-FED MULTIBAND ANTENNA FOR VARIOUS WIRELESS COMMUNICATIONS
WE-A1.2A.5: DESIGN OF A MULTIBAND FEED ANTENNA FOR ORTHOGONAL POLARIZATION
WE-A1.2A.6: L-BAND PATCH ANTENNA WITH INTEGRATED KA-BAND SIW SLOT ARRAY
WE-A1.2A.7: ACCELERATED DESIGN OPTIMIZATION OF ANTENNA STRUCTURES USING ADAPTIVE 79: RESPONSE SCALING Slawomir Koziel, Sigmar Unnsteinsson, Reykjavik University, Iceland
WE-A1.2A.8: DUAL-MATCHING FOR SINGLE RESONANCE MINIATURIZED ANTENNA FOR IOT
WE-A1.2A.9: DESIGN AND DEVELOPMENT OF A COMPACT DUAL CP EIGHT BAND PLANAR LOG
WE-A1.2A.10: DUAL-BAND NOTCHED ULTRA-WIDEBAND MICROSTRIP ANTENNA WITH

WE-A5.1A: APPLICATIONS OF MILLIMETER-WAVE, TERAHERTZ AND OPTICAL ANTENNAS

WE-A5.1A.1: GRAPHENE-BASED SPIRAL NANOANTENNA FOR INTRABODY COMMUNICATION AT
WE-A5.1A.2: ELLIPTICAL MONOPOLE ANTENNA ON INP SUBSTRATE FOR SUB-THZ RTD-BASED
WE-A5.1A.4: FABRICATION AND CHARACTERIZATION OF PLASMONIC THIN-FILM TERAHERTZ
WE-A5.1A.5: ENHANCEMENT OF INTRA-CHIP TRANSMISSION BETWEEN WIRELESS
WE-A5.1A.6: EFFECTS OF GLOB TOP ON MMWAVE BOND WIRE ANTENNAS
WE-A5.1A.7: DESIGN AND CHARACTERIZATION OF ONE-SIDED DIRECTIONAL SLOT ANTENNA
WE-A5.1A.8: DUAL POLARIZED METASURFACE BASED ABSORBER FOR SUB MILLIMETRIC / THZ811 APPLICATIONS Ali Abdelsallam, Arab Academy for Science and Technology, Egypt; Mahmoud A. Abdalla, Military Technical College, Egypt; Abdelhamid Gaafar, Arab Academy for Science and Technology, Egypt
WE-A5.1A.9: RADIATION PATTERN CHARACTERIZATION OF TERAHERTZ PHOTOCONDUCTIVE
WE-A5.1A.10: RECONFIGURABLE TERAHERTZ ANTENNA DESIGN USING ACTIVE METAMATERIAL N/A Ramesh Reddy Chirrayyagari, Vijay Kumar, VIT University, India
WE-A1.3A: HIGH DIRECTIVITY BROADBAND ANTENNAS AND ARRAYS
WE-A1.3A.1: POLYSTRATA® X/KU/K/KA-BAND, DUAL-POLARIZED, TIGHTLY COUPLED DIPOLE
WE-A1.3A.2: NON-UNIFORMLY FED BROADBAND CTS ARRAY FOR SIDE LOBE LEVEL
WE-A1.3A.3: ENHANCED BANDWIDTH PERFORMANCE OF SLOTTED ANTENNA ARRAY

WE-A1.3A.4: MILLIMETER-WAVE BROADBAND MULTI-BEAM END-FIRE DUAL CIRCULARLY
WE-A1.3A.5: A BROADBAND DUAL-POLARIZED CAPPED BOW-TIE 2×2 ANTENNA ARRAY FOR 28 GHZ 825 BAND IN 5G SYSTEMS Runqi Wu, Zhengting Liu, Youwei Zhou, Xin Wang, Jungang Yin, Hunan University, China; Jian Yang, Chalmers University of Technology, Sweden
WE-A1.3A.6: RADOME ENHANCEMENT TECHNIQUE FOR HIGH-POWER WIDEBAND
WE-A1.3A.7: WIDEBAND DIELECTRIC-LOADED VENETIAN-BLIND POLARIZER FOR A SHORT F/D
WE-A1.3A.8: TRANSVERSE PERMITTIVITY GRADIENT (TPG) SUPERSTRATES OR LENS: A
WE-A1.3A.9: HIGH-EFFICIENCY SQUARE-APERTURE HORN ANTENNA WITH A LINEAR SPLINE
WE-A1.3A.10: A WIDEBAND DIPOLE ANTENNA WITH VERTICAL PLATES
WE-A1.4A: FREQUENCY INDEPENDENT ANTENNAS
WE-A1.4A.1: EXPLOITING POLARIZATION WOBBLE IN SINUOUS ANTENNAS FOR THE
WE-A1.4A.2: OPTIMIZATION OF LPDA ANTENNAS WITH AXIAL TWIST
WE-A1.4A.3: BROADBAND PRINTED LOG-PERIODIC ANTENNA WITH COAXIAL FEED
WE-A1.4A.4: A SIX-OCTAVE WIDEBAND AND LOW PROFILE LOG-PERIOD MONOPOLE ENDFIRE
WE-A1.4A.5: A PLANAR COMPACT HELICAL LOG-PERIODIC ARRAY
WE-A1.4A.6: PERFORMANCE OF A SPIRAL ANTENNA SYSTEM FOR WIDEBAND SENSING AND
WE-A1.4A.7: IMPLEMENTATION OF A SELF-MATCHED 40:1 TWO ARM ARCHIMEDEAN SPIRAL849

WE-A1.4A.8: ANALYSIS OF ARCHIMEDEAN SPIRAL ANTENNA FED BY HECKEN AND EXPONENTIAL 851 MICROSTRIP BALUNS
Eduardo Sakomura, Daniel Ferreira, Ildefonso Bianchi, Daniel Nascimento, Technological Institute of Aeronautics, Brazil
WE-A1.4A.9: COMPACT PLANAR TWO-ARM COMPOUND SPIRAL ANTENNA FOR L-/X-BAND
Eduardo Sakomura, Daniel Ferreira, Ildefonso Bianchi, Daniel Nascimento, Technological Institute of Aeronautics, Brazil
WE-A1.4A.10: A DESIGN OF THE PARACHUTE CONFORMAL ANTENNA
WE-A1.5A: POLARIZATION RECONFIGURABLE ANTENNAS
WE-A1.5A.1: A PATTERN AND POLARIZATION RECONFIGURABLE LIQUID METAL HELICAL
Shubham Singh, Jim Taylor, Hengyi Zhou, Arpan Pal, Amit Mehta, Swansea University, United Kingdom; Hisamatsu Nakano, Hosei University, Japan; Paul Howland, DSTL, United Kingdom
WE-A1.5A.2: A POLARIZATION-AGILE STUB-LOADED SQUARE PATCH ANTENNA WITH PROXIMITY 859 COUPLED FEED
Hsinju Chen, Shih-Yuan Chen, National Taiwan University, Taiwan
WE-A1.5A.3: ELECTRONICALLY POLARIZATION-RECONFIGURABLE RECTANGULAR DIELECTRIC 861 RESONATOR ANTENNA Beijia Liu, Jinghui Qiu, Nannan Wang, Hua Zong, Hongjun Chu, Harbin Institute of Technology, China
WE-A1.5A.4: A QUAD-POLARIZATION RECONFIGURABLE OMNIDIRECTIONAL ANTENNA
WE-A1.5A.5: FREQUENCY AND POLARIZATION CIRCULAR RECONFIGURABLE MICROSTRIP
WE-SP.1A: FUNCTIONAL MATERIAL PLATFORMS ENABLING EXOTIC SCATTERING PHENOMENA
WE-SP.1A.2: FUNCTIONAL ALL-DIELECTRIC METASURFACES FOR EFFICIENT MANIPULATION867 OF ELECTROMAGNETIC WAVES
Polina Kapitanova, Andrey Sayanskiy, ITMO University, Russian Federation; Andrey Miroshnichenko, University of New South Wales Canberra, Australia; Pavel Belov, ITMO University, Russia
WE-SP.1A.6: UNIQUE CHARACTERSITICS AND APPLICATIONS OF SYSTEMS WITH EXCEPTIONAL
POINTS OF DEGENERACY Mohamed Y. Nada, Mohamed Othman, Farshad Yazdi, Dmitry Oshmarin, Ahmed F. Abdelshafy, Filippo Capolino, University of California, Irvine, United States
WE-SP.1A.8: POLARIZABILITY AND LIGHT SCATTERING BY SUBWAVELENGTH GRADED-INDEX871 PLASMONIC SPHERES
Dimitrios Tzarouchis, Ari Sihvola, Aalto University, Finland
WE-SP.1A.9: METAMATERIAL-INSPIRED ELECTRICALLY SMALL PLATFORMS: ENHANCED
Richard Ziolkowski, University of Technology Sydney, Australia
WE-SP.1A.10: DESIGN AND OPTIMIZATION OF RADIATION PATTERN RECONFIGURABLE
College London, United Kingdom; Mario F. Pantoja, University of Granada, Spain

WE-SP.2A: EM PROPAGATION AND PREDICTION IN NON-STANDARD ATMOSPHERE SUPPORTED BY FIELD MEASUREMENTS

WE-SP.2A.1: DUCTING CONDITIONS DURING CASPER-WEST FIELD CAMPAIGN
WE-SP.2A.2: ESTIMATION OF EVAPORATION DUCT AND SURFACE-BASED DUCT PARAMETERS
WE-SP.2A.3: CASPER WEST EVAPORATION DUCT HEIGHT INVERSION USING LATPROP-RADAR
WE-SP.2A.4: SENSITIVITY OF NEAR-SHORE ELECTROMAGNETIC PROPAGATION TO THE
WE-SP.2A.5: EVALUATING THE USE OF DIFFERENT FLUX-GRADIENT FUNCTIONS IN NAVSLAM
WE-SP.2A.6: VARIABILITIES OF EVAPORATION DUCTS IN A NEAR-SHORE COASTAL
WE-A5.2A: BIOMEDICAL APPLICATIONS OF ANTENNAS IN IMAGING AND DETECTION
WE-A5.2A.1: A FAST METHOD TO ESTIMATE THE TOTAL DELIVERED POWER OF A 2-CHANNEL
WE-A5.2A.2: EVALUATING EFFECT OF CALIBRATION FACTOR FOR LEAD COMPUTATIONAL
WE-A5.2A.3: ON THE OPTIMIZATION OF DISTRIBUTED MAGNETIC TRAPS IN MRI COILS
WE-A5.2A.4: EVALUATION OF EXPERIMENTAL MICROWAVE RADAR-BASED IMAGES: EVALUATION 895 CRITERIA Declan O'Loughlin, Martin Glavin, Edward Jones, Martin O'Halloran, National University of Ireland Galway, Ireland
WE-A5.2A.5: DIELECTRIC PROPERTY BASED CLASSIFICATION OF HEPATIC MALIGNANCIES

WE-A5.2A.6: EFFECT OF ELECTRODE GEOMETRY ON THE LEAD ELECTROMAGNETIC MODEL899 AND RF-INDUCED HEATING Mikhail Kozlov, Max Planck Institute for Human Cognitive and Brain Sciences, Germany; Wolfgang Kainz, U.S. FDA, CDRH, United States
WE-A5.2A.7: TERAHERTZ IMAGING OF TRANSGENIC MURINE BREAST CANCER TUMORS901 Tyler Bowman, University of Arkansas, United States; Keith Bailey, Oklahoma State University, United States; Magda El-Shenawee, University of Arkansas, United States
WE-A5.2A.8: EVALUATION OF SPECIFIC ABSORPTION RATES WITH HIGH RESOLUTION HUMAN
WE-A5.2A.9: CONTRAST-ENHANCED THERMOACOUSTIC IMAGING FOR BREAST TUMOR
WE-A5.2A.10: DESIGN OF THERMOACOUSTIC MONITORING SYSTEM FOR HYPERTHERMIA
WE-A2.2A: RCS MANAGEMENT AND CLOAKING
WE-A2.2A.1: ELECTROMAGNETIC CLOAKING FOR ANTENNA ARRAYS
WE-A2.2A.2: ACTIVE SURFACE CLOAKING WITH PATCH ANTENNAS
WE-A2.2A.3: SCATTERING CONTROL AND CAMOUFLAGE THROUGH METASURFACES
WE-A2.2A.4: LOW-OBSERVABLE REFLECTORS USING PERFECT PULSES
WE-A2.2A.6: DOPPLER CLOAKING BASED ON TIME-VARYING METAMATERIALS: THEORY AND
Davide Ramaccia, Filiberto Bilotti, Alessandro Toscano, Roma Tre University, Italy; Dimitrios Sounas, University of Texas at Austin, United States; Andrea Alù, Roma Tre University, Italy
WE-A2.2A.7: GRAPHENE-BASED PERFECT ABSORBERS: SYSTEMATIC DESIGN AND HIGH
WE-A2.2A.8: COMPLEX SOURCES, GAUSSIAN BEAMS, AND TRANSFORMATION OPTICS921 Hayrettin Odabasi, Eskisehir Osmangazi University, Turkey; Kamalesh Sainath, Dong-Yeop Na, Fernando Teixeira, ElectroScience Laboratory/The Ohio State University, United States
WE-A2.2A.9: METAGRATINGS FOR PERFECT ANOMALOUS REFRACTION
WE-A2.2A.10: EXPERIMENTAL VERIFICATION OF PERFECT ANOMALOUS REFLECTION VIA

WE-A5.3A: ADDITIVELY MANUFACTURED ANTENNAS AND STRUCTURES
WE-A5.3A.1: ADDITIVELY MANUFACTURED VERTICALLY INTERCONNECTED ON-PACKAGE
WE-A5.3A.2: FOLDING, TESSELLATION, AND DEPLOYMENT OF AN ORIGAMI-INSPIRED
WE-A5.3A.3: ULTRA WIDEBAND DIELECTRIC ROD ANTENNA ADVANCEMENTS THROUGH
WE-A5.3A.4: EXPERIMENTAL RESULTS OF A COMPRESSIVE REFLECTOR ANTENNA PRODUCING
WE-A5.3A.5: 3D MIMO DUAL-BAND ANTENNA ON PAPER SUBSTRATE FOR WLAN APPLICATIONS
WE-A5.3A.6: A SUBMILLIMETER WAVE PARABOLIC REFLECTOR BY ADDITIVE MANUFACTURING
WE-A5.3A.7: ADDITIVE-MANUFACTURING-ENABLED AIR-FILLED SUBSTRATE INTEGRATED
WE-A5.3A.8: IMPROVING THE RADIATION EFFICIENCY OF LIQUID METAL ANTENNA WITH
WE-A5.3A.9: SPACE TRANSFORMATION FOR VORTEX BEAM GENERATION
WE-A1.7A: ANTENNA FEEDS AND MATCHING CIRCUITS (II)
WE-A1.7A.1: BILINEAR TRANSFORM APPROACH FOR WIDEBAND DIGITAL NON-FOSTER
WE-A1.7A.2: BALANACED LOADED TRANSMISSION LINES APPLIED TO HYBRID COUPLERS

Longyue Qu, Haiyan Piao, Hanyang University, Korea (South); Hyung-Hoon Kim, Kwangju Women's University, Korea (South); Hyeongdong Kim, Hanyang University, Korea (South)

SMARTWATCH APPLICATIONS

WE-A1.7A.3: INTEGRATED GPS ANTENNA WITH CIRCULAR POLARIZATION FOR METAL-RIMMED 949

WE-A1.7A.4: SERIES FEED NETWORK FOR POWER DISTRIBUTION CONTROL IN THE
WE-A1.7A.5: PRINTED DIPOLE INTEGRATED WITH MINIMAL BALUN
WE-A1.7A.6: A MULTI-OBJECTIVE INVASIVE WEED OPTIMIZATION FOR BROAD BAND
WE-A1.7A.7: A UNI-PLANAR FEEDING NETWORK FOR MONOPULSE TRACKING RADAR
WE-A1.7A.8: BANDWIDTH ENHANCEMENT FOR PARALLEL FEEDING NETWORKS BY
WE-A1.7A.9: A RECONFIGURABLE FEEDER FOR COMBINATIONAL SWITCHED-BEAM NETWORK961 Ghoo Kim, Jin-Woo Kim, Soo-Chang Chae, Jong-Won Yu, Korea Advanced Institute of Science and Technology (KAIST), Korea (South)
WE-A1.7A.10: DESIGN OF A WIDEBAND UNEQUAL FILTERING POWER DIVIDER USING RING
WE-A1.1A: METASURFACE AND METAMATERIAL ANTENNAS
WE-A1.1A.1: POLARIZATION RECONFIGURABLE HOLOGRAPHIC ARTIFICIAL IMPEDANCE
Subramanian Ramalingam, Constantine Balanis, Craig Birtcher, Arizona State University, United States WE-A1.1A.2: MULTILAYERED AXIALLY MODULATED CYLINDRICAL METASURFACES
WE-A1.1A.3: SIDELOBE SUPRESSION IN MODULATED SURFACE REACTANCE ANTENNAS
WE-A1.1A.4: MODULATED METASURFACE ANTENNAS DESIGN BASED ON GENERALIZED
WE-A1.1A.5: A METAMATERIAL BROADWALL WAVEGUIDE SLOT FILTERING ANTENNA FOR SAR
WE-A1.6A: PATTERN RECONFIGURABLE ANTENNAS
WE-A1.6A.1: PATTERN RECONFIGURABLE ANTENNA LOADED WITH FREQUENCY SELECTIVE
WE-A1.6A.2: RADIATION PATTERN AGILE ANTENNA FOR SMART IOT GATEWAYS

WE-A1.6A.5: BACK-TO-BACK MAGNETIC DIPOLE ANTENNAS WITH PATTERN	, 979
Hye-Won Jo, Ghoo Kim, Jong-Sang Yoo, Jong-Won Yu, Korea Advanced Institute of Science and Technology (KAIST), Korea (South)	
WE-A1.6A.4: PLANAR WIDE-ANGLE SCANNING PERIODIC SPARSE PHASED ARRAY USING PATTERN RECONFIGURABLE ANTENNA Fei Yan, Runliang Xia, The 38th Research Institute of China Electronics Technology Group Corporation, China	. 981
WE-A1.6A.5: SPOOF SURFACE PLASMON POLARITONS PATTERN RECONFIGURABLE ANTENNAFOR WIDE-ANGLE COVERAGE Kaijie Zhuang, Junping Geng, Xianling Liang, Weiren Zhu, Chong He, Yuliang Liang, Maohua Zhu, Ronghong Jin, Shanghai Tong University, China	
WE-A2.1P: WAVE AND POLARIZATION CONTROL WITH METASTRUCTURES	
WE-A2.1P.1: MANIPULATING OPTICAL CHIRALITY IN THE NEAR-FIELD OF PLASMONIC	. 985
WE-A2.1P.2: A CHIRAL META-MIRROR ENABLED LINEAR AND NONLINEAR CHIROPTICAL	2, 5;
WE-A2.1P.3: HIGH GAIN OFF-BODY LINEAR TO CIRCULAR POLARIZATION BASED ON	
WE-A2.1P.4: TOPOLOGICALLY-PROTECTED ONE-WAY LEAKY WAVES Francesco Monticone, Seyyed Ali Hassani Gangaraj, Cornell University, United States	. 991
WE-A2.1P.5: CREATING A SYNTHETIC SENSE OF LENGTH BY ELECTROMECHANICAL	, 993
WE-A2.1P.6: METASURFACE PARTICLE WITH INDEPENDENT TRANSMISSION AND REFLECTIONFULL PHASE COVERAGE Ashutosh Patri, Guillaume Lavigne, Christophe Caloz, Polytechnique Montréal, Canada	. 995
WE-A2.1P.7: INTERFERENCE IN ROTATING STRUCTURES AND METAMATERIALS	. 997
WE-A2.1P.8: NEGATIVE REFRACTION BASED ON GUIDED-MODE ASSISTED META-GRATINGS	
WE-A2.1P.9: MINIATURIZATION OF WAVEGUIDE STRUCTURES BY COUPLED TRANSMISSION	1001
WE-A2.1P.10: CHARACTERIZATION OF MULTIPLE-LAYER ANISOTROPIC METASURFACES BASED	1003

WE-A1.1P: MULTI-BAND PLANAR ANTENNAS AND ARRAYS

WE-A1.1P.1: OPTIMIZATION OF A DUAL-BAND MICROSTRIP ANTENNA ARRAY USING GENETIC
WE-A1.1P.2: TOWARDS THE IMPLEMENTATION OF A DUAL-FREQUENCY DUAL-POLARIZATION
WE-A1.1P.3: A NOVEL DUAL BAND ANTENNA DESIGN FOR WIFI APPLICATIONS USING GENETIC
WE-A1.1P.4: A DUAL-BAND DUAL-POLARIZED MICROSTRIP ANTENNA ARRAY WITH WIDEBAND1011 AND HIGH ISOLATION FOR KU-BAND Jing Wang, Wei Wang, Aimeng Liu, Meng Guo, Harbin Engineering University, China
WE-A1.1P.5: A SIMPLE TRI-BAND PROXIMITY COUPLING FED COMPACT ANTENNA FOR 2.7GHZ,
WE-A1.1P.6: QUAD BAND MONOPOLE ANTENNA FOR IOT APPLICATIONS
WE-A1.1P.7: A DUAL-BAND METAMATERIAL SUPERSTRATE FOR ANTENNA GAIN ENHANCEMENT 1017 Zain Haider, Muhammad Umar Khan, Hammad M. Cheema, National University of Sciences and Technology (NUST), Pakistan
WE-A1.1P.8: ENHANCED GAIN MULTIPORT SHARED APERTURE ANTENNA FOR S/X-BAND
WE-A1.1P.9: COPLANAR WAVEGUIDE (CPW)-FED COMPACT DUAL BAND ANTENNA FOR
WE-A1.1P.10: TWO ELEMENT LOOP-LOADED PRINTED DIPOLE ARRAY FOR DUAL-BAND
WE-A5.1P: MULTI-LAYER FABRICATION AND DESIGN TECHNIQUES FOR MILLIMETER- WAVE ANTENNAS
WE-A5.1P.1: CIRCULARY-POLARIZATED SUBSTRATE-INTEGRATED DISCRETE LENS USING
WE-A5.1P.2: EMPTY SUBSTRATE INTEGRATED WAVEGUIDE ANTENNA ARRAY
WE-A5.1P.3: PLANAR SIW HORN ANTENNA WITH IMPROVED MATCHING AT 94 GHZ
WE-A5.1P.4: MINIATURIZED MULTIBEAM ARRAY ANTENNA BASED ON E-PLANE BUTLER MATRIX 1031 Ji-Wei Lian, Yong-Ling Ban, You-Quan Wu, Le-Hao Zhong, University of Electronic Science and Technology of China, China

WE-A5.1P.5: A 94 GHZ ARRAY ANTENNA FOR 45° LINEAR POLARIZATION IN LTCC TECHNOLOGY
WE-A5.1P.6: A 120 GHZ STEP-PROFILED HORN ANTENNA IN LTCC
WE-A5.1P.7: A 300-GHZ STEP-PROFILED CORRUGATED HORN ANTENNA ARRAY
WE-A5.1P.8: W-BAND HIGH-PERFORMANCE CAVITY-BACKED SLOT ANTENNA ARRAY WITH
WE-A1.2P: OMNIDIRECTIONAL UWB ANTENNAS - I
WE-A1,2P.1: ULTRA-WIDEBAND MONOPOLE WITH STACKED FSS REFLECTORS FOR
WE-A1,2P.2: A NEW GOSPER ISLAND FRACTAL UWB MONOPOLE ANTENNA WITH ENHANCED
WE-A1.2P.3: CPW-FED HEXAGONAL MODIFIED SIERPINSKI CARPET FRACTAL ANTENNA FOR
WE-A1.2P.4: A NOVEL WIDEBAND ANTENNA WITH ADDED BOTTOM RECTANGULAR SLABS FOR
WE-A1.2P.5: NOVEL COMPACT HYBRID MONOPOLE ASA ANTENNA
WE-A1.2P.6: OPTIMIZATION OF STEPPED PATCH ANTENNA FOR ULTRA-WIDEBAND
WE-A1.2P.7: A MINIATURIZED PLANAR ULTRA-WIDEBAND ANTENNA
WE-A1.2P.8: BROADBAND MODIFIED ELLIPTICAL RING QUASI-ISOTROPIC ANTENNA
WE-A2.2P: MEASUREMENT OF ELECTROMAGNETIC MATERIAL PROPERTIES
WE-A2.2P.1: ULTRA-WIDE BAND (10 MHZ- 26 GHZ) PERMEABILITY MEASUREMENTS OF

University, United States

WE-A2.2P.2: MEASUREMENT OF PCB SURFACE FINISHES FOR SUBSTRATE CHARACTERIZATION	1059
WE-A2.2P.3: MICROSTRIP TIME DOMAIN TRANSMISSION (TDT) APPLICATION FOR MOISTURE 1 SOIL MEASUREMENTS	061
Manuel Ricardo Pérez Cerquera, Diego Mendez Chaves, Pontificia Universidad Javeriana, Colombia	
WE-A2.2P.4: SINGLE-FREQUENCY MATERIAL CHARACTERIZATION USING A MICROWAVE1 ADAPTIVE REFLECT-ARRAY	. 1063
Weite Zhang, Jose Angel Martinez-Lorenzo, Northeastern University, United States	
WE-A2.2P.5: NON-CONTACT RF CHARACTERIZATION OF REINFORCED CARBON FIBER	1065
WE-A2.2P.6: TERAHERTZ TIME-DOMAIN PULSED SPECTROSCOPY OF HUMAN BREAST CANCER 1 FISSUES	.067
Tyler Bowman, University of Arkansas, United States; Keith Bailey, Oklahoma State University, United States; Magda El- Shenawee, University of Arkansas, United States	
WE-A2.2P.7: MEASUREMENT OF NONLINEAR DIELECTRIC BEHAVIOUR OF SEMICONDUCTOR1	1069
MATERIAL UNDER MICROWAVE FIELD Yong Gao, En Li, Gaofeng Guo, University of Electronic Science and Technology of China, China	
WE-A2.2P.8: A MICROWAVE REFLECTION METHOD TO DETERMINE THE COMPLEX	.071
WE-A2.2P.9: A CORRECTION FOR FREE-SPACE METHOD BY CONSIDERING DISPERSION OF	1073
GAUSSIAN BEAM Yunpeng Zhang, En Li, Chong Gao, Yong Gao, University of Electronic Science and Technology of China, China	.075
WE-A2.2P.10: ATTENUATION MEASUREMENT OF THE DIELECTRIC ROD USING PARALLEL	1075
WE-A1.3P: ANTENNA THEORY III	
WE-A1.3P.1: STANDING WAVE CONSIDERATIONS IN THE LINK MODEL OF 60 GHZ	l 077
WE-A1.3P.2: ANALYSIS OF AN ULTRA-WIDEBAND RIDGED HORN ANTENNA BASED ON	l 079
	1004
WE-A1.3P.3: A METHOD FOR REDUCING THE INFLUENCE OF THE LIMITED GROUND AND	.081
WE-A1.3P.4: EXACT CHARACTERIZATION OF SPATIAL CORRELATION WITH ARBITRARY Q-POWER N WALUES OF COSINE DISTRIBUTION Affum Emmanuel Ampoma, Guangjun Wen, Yongjun Huang, Oteng G. Kwame, Obour Agyekum K. OB, University of Electron Science and Technology of China, China	

WE-A1.3P.5: BOW TIE ANTENNA WITH METAMATERIAL LOADING FOR SELECTIVE DIRECTIVITY 1085 AND IMPROVED GAIN Ajay Naik, Ryan Adams, Unviersity of North Carolina at Charlotte, United States
WE-A1.3P.6: SIMULATION DESIGN OF A BROADBAND DUAL-POLARIZED MINKOWSKI FRACTAL
WE-A1.3P.7: THE DESIGN AND ANALYSIS OF A COMPACT DIRECTIONAL ANTENNA COMPOSED
WE-A1.3P.8: A CAVITY-INTEGRATED SELF-POLARIZING METHOD FOR CIRCULARLY POLARIZED 1091 FABRY-PEROT ANTENNA DESIGN Fan Wu, Kwai Man Luk, City University of Hong Kong, China
WE-A1.3P.9: DRIFT-FREE RANGE, VELOCITY, AND ACCELERATION SENSING VIA
WE-SP.1P: GAP WAVEGUIDE TECHNOLOGY FOR MILLIMETER WAVE ANTENNA DESIGN
WE-SP.1P.1: TEM H-PLANE HORN ANTENNA BASED ON TEM PRINTED GAP WAVEGUIDE
WE-SP.1P.2: SINGLE-LAYER DUAL-BAND SUBARRAY FOR 20/30 GHZ USING GAP WAVEGUIDE
WE-SP.1P.3: DESIGN OF A LOW OUTPUT-PHASE ERROR RIDGE-GAP COUPLER FOR ANTENNA
WE-SP.1P.5: SIMPLE AND BROADBAND TRANSITION BETWEEN RECTANGULAR WAVEGUIDE1101 AND GROOVE GAP WAVEGUIDE FOR MM-WAVE APPLICATIONS Abbas Vosoogh, Ashraf Uz Zaman, Jian Yang, Chalmers University of Technology, Sweden
WE-SP.1P.6: E-BAND HIGH GAIN GAP WAVEGUIDE SLOT ARRAY ANTENNA WITH ETSI CLASS-III
WE-SP.1P.8: SPACE MAPPING DESIGN OF GAP WAVEGUIDE FILTERS
WE-SP.1P.9: MILLIMETER-WAVE COMPONENTS BASED ON GAP WAVEGUIDE USING ADDITIVE1107 MANUFACTURING Adrián Tamayo-Domínguez, José-Manuel Fernández-González, Manuel Sierra-Castañer, Universidad Politécnica de Madrid, Spain
WE-SP.1P.10: INVESTIGATION ON BALANCED DOUBLE-SIDED GAP WAVEGUIDE FOR W-BAND1109 APPLICATIONS
Hao Wang, Yu Quan, Yan Wang, Jianyin Cao, Nanjing University of Science and Technology, China; Shuang Liu, University of Electronic Science and Technology of China, China

WE-SP.2P: CHARACTERISTIC MODES 2.0 -- FROM FUNDAMENTAL LIMITS TO 5G ANTENNA SYSTEMS

WE-SP.2P.1: DESIGN OF HIGH-GAIN ANTENNAS FOR 5G SYSTEMS USING CHARACTERISTIC1111 MODES
Daniel Santillán-Haro, Eva Antonino-Daviu, Daniel Sánchez-Escuderos, Miguel Ferrando-Bataller, Universitat Politècnica de València, Spain
WE-SP.2P.2: BEAMFORMING CONCEPT FOR MULTI-BEAM ANTENNAS BASED ON
Nikolai Peitzmeier, Dirk Manteuffel, Leibniz University of Hannover, Germany
WE-SP,2P.3: DETERMINING CHARACTERISTIC MODE METRICS OF INTEREST FOR
WE-SP.2P.4: DESIGN OF A TRIPLE-MODE WIDEBAND ANTENNA USING THEORY OF
WE-SP.2P.5: SMART ANTENNAS MOUNTED ON COMPLEX PLATFORMS BY USING
WE-SP.2P.7: METHODOLOGY FOR QUANTIFYING METAMATERIAL STORED ENERGY USING1121 THEORY OF CHARACTERISTIC MODE Ozuem Chukwuka, Divitha Seetharamdoo, M. Hassanein Rabah, Hedi Sakli, IFSTTAR, University of Lille Nord de France, France
WE-SP.2P.8: INTERPRETATION OF ANTENNA SCATTERING PHENOMENA WITH THE AID OF
WE-SP,2P.9: CHARACTERISTIC MODE ANALYSIS OF THIN DIELECTRIC OBJECTS USING THE1125 IMPEDANCE BOUNDARY CONDITION Qi Wu, Beihang University, China
WE-SP.2P.10: SCATTERING CONTROL USING ADVANCED CHARACTERISTIC MODE THEORIES1127 Liwen Guo, Jiacheng Zhao, Chenghui Wang, Yikai Chen, Shiwen Yang, University of Electronic Science and Technology of China, China
WE-A5.2P: ANTENNA AND SYSTEM DESIGN FOR BRAIN IMAGING AND NEUROLOGICAL MONITORING
WE-A5.2P.1: IMPROVED PROBES FOR FULLY-PASSIVE WIRELESS RECORDING OF NEURAL1129 ACTIVATION
Carolina Moncion, Satheesh Bojja-Venkatakrishnan, Jorge Riera Diaz, John L. Volakis, Florida International University, United States
WE-A5.2P.2: A QUANTITATIVE STUDY OF A NEW RF-COIL FOR 7 TESLA SMALL-ANIMAL IMAGING1131 Anna Hurshkainen, Anton Nikulin, Irina Melchakova, Pavel Belov, ITMO University, Russia; Stefan Enoch, Redha Abdeddaim, Aix-Marseille University, France; Stanislav Glybovski, ITMO University, Russia

WE-A5.2P.3: A PASSIVE MULTI-CHANNEL BRAIN IMPLANT FOR WIRELESS NEUROPOTENTIAL
WE-A5.2P.4: INflUENCE OF RADIATION PATTERN IN THE PERFORMANCE OF BIO-RADAR
WE-A5.2P.5: SUBJECT-SPECIFIC, HELMET-RESTRAINT, RF COILS FOR AWAKE, NON-HUMAN
WE-A5.2P.6: ONGOING DEVELOPMENTS TOWARDS THE REALIZATION OF A MICROWAVE
WE-A5.2P.7: COMPACT AND LOW-COST MICROWAVE HELMET BRAIN SCANNER FOR
WE-A5,2P.8: WIDEBAND ANTENNAS FOR MICROWAVE BRAIN STROKE IMAGING
WE-A5.2P.9: FLEXIBLE ANTENNA ON HIGH PERMEABILITY SUBSTRATE FOR
WE-A4.1P: MICROWAVE REMOTE SENSING
WE-A4.1P.1: AN EXPERIMENTAL PILOT STUDY OF CRANBERRY CROP YIELD ESTIMATION
WE-A4.1P.2: WIDEBAND AUTOCORRELATION RADIOMETER RECEIVER FOR RAPID THICKNESS
WE-A4.1P.3: EFFECT OF THE SURFACE ROUGHNESS OF THE WATER AND ICE BOUNDARY ON
WE-A4.1P.4: KA-BAND RADIOMETER SYSTEM DESIGN INCORPORATED WITH SIW SLOT
WE-A4.1P.5: ATMOSPHERIC INTEGRATED WATER VAPOR ESTIMATION THROUGH MICROWAVEN/A PROPAGATION MEASUREMENTS ALONG GROUND-TO-AIR RADIO LINKS

Alberto Toccafondi, Federico Puggelli, Matteo Albani, University of Siena, Italy; Luca Facheris, Fabrizio Cuccoli, University of Florence, Italy; Giovanni Macelloni, Francesco Montomoli, National Research Council, Italy; Alessio Cucini, Francesco Mariottini, Wavecomm srl, Italy; Luigi Volpi, Ride The Wave srl, Italy; Devis Dei, Florence Engineering srl, Italy; Marco Gai,

Laboratori Victoria srl, Italy

WE-A3.1P: FINITE DIFFERENCE TIME DOMAIN METHODS

WE-A3.1P.1: FAST FDTD METHOD FOR LARGE-SCALE LAYOUT EXTRACTION AND ANALYSIS OF1157 INTEGRATED CIRCUITS Li Xue, Dan Jiao, Purdue University, United States
WE-A3.1P.2: QUALITY FACTOR COMPUTATION IN TIME DOMAIN FOR CYLINDRICAL OPTICAL1159 CAVITIES Lilli Kuen, Rolf Schuhmann, Technische Universitaet Berlin, Germany
WE-A3.1P.3: ANALYSIS OF THE PML PERFORMANCE ON SPHERICAL FDTD GRIDS
WE-A3.1P.4: EXPLICIT AND UNCONDITIONALLY STABLE FDTD WITH ANALYTICAL METHOD1163 FOR IDENTIFYING UNSTABLE MODES Kaiyuan Zeng, Dan Jiao, Purdue Unversity, United States
WE-A3.1P.5: NOVEL UNCONDITIONALLY STABLE ADI-FDTD METHOD WITH LOW NUMERICAL1165
DISPERSION Jinchao Ding, Zhiqin Zhao, Yaohui Yang, Xiaoxiang Ding, University of Electronic Science and Technology of China, China; Qing Huo Liu, Duke University, United States
WE-A3.1P.6: REFLECTION ANALYSIS OF SPHERICAL FDTD ABSORBING BOUNDARY1167 CONDITIONS
Mohammed Hadi, Atef Elsherbeni, Colorado School of Mines, United States; Ravi Bollimuntha, Melinda Piket-May, University of Colorado Boulder, United States
WE-A3.1P.7: MULTIPHYSICS SIMULATION OF HIGH-SPEED GRAPHENE-BASED
WE-A3.1P.8: ANALYSIS OF WAVES PROPAGATION ON MAGNETIZED GRAPHENES USING SURFACE1171 BOUNDARY CONDITION FDTD
Kai Wang, Wei Shao, Tu-Lu Liang, Bing-Zhong Wang, University of Electronic Science and Technology of China, China
WE-A3.1P.9: A HYBRID SUB-GRIDDING FDTD METHOD ANALYZING WAVE PROPAGATION IN
WE-A3.1P.10: FEATURE EXTRACTION AND CLASSIFICATION OF BURIED LANDMINE SIGNALS
WE-A1.4P: NOVEL REFLECTARRAY DESIGN APPROACHES
WE-A1.4P.1: VIRTUAL SOURCE MODEL FOR RAY-BASED ANALYSIS OF FOCUSED WAVE
WE-A1.4P.2: OVERCOMING FEASIBILITY CONSTRAINTS IN REFLECTARRAY DESIGN BY
WE-A1.4P.3: ITERATIVE PHASE CORRECTION TECHNIQUE FOR DESIGN OF

WE-A1.4P.4: DIRECT OPTIMIZATION OF QUASI-PERIODIC SURFACES IN MULTI-REFLECTOR
WE-A1.4P.6: DESIGN OF FLAT DIELECTRIC REFLECTARRAYS USING STATE-OF-THE-ART
WE-A1.4P.7: SIMPLE FREQUENCY CHARACTERISTIC EVALUATION OF SHAPED-BEAM DESIGN
WE-A1.4P.8: A W-BAND SINGLE-LAYER METAL-ONLY ARRAY ANTENNA WITH TWO FOCAL PLANES1189. Yu Dang, Jiaran Qi, Hongmei Li, Harbin Institute of Technology, China
WE-A1.4P.9: DESIGN OF A DOUBLE-LAYER DIELECTRIC-ONLY TRANSMITARRAY ANTENNA FOR1191 THZ APPLICATION Yang Liu, Hongjian Wang, Xingchao Dong, National Space Science Center, Chinese Academy of Sciences, China
WE-A5.3P: WEARABLE AND IMPLANTABLE ANTENNAS AND RADIATING SYSTEMS
WE-A5.3P.1: A DEEPLY IMPLANTABLE CONFORMAL ANTENNA FOR LEADLESS PACING
WE-A5.3P.2: CIRCULAR-POLARIZED TEXTILE BASED ANTENNA FOR WEARABLE BODY AREA1195 NETWORKS Idellyse Martinez, Douglas H. Werner, Pennsylvania State University, United States
WE-A5.3P.3: FAST ESTIMATION OF WIRELESS CHARGING SYSTEM IN A LARGE TISSUE1197 Nathan Jeong, Qualcomm, United States; Elias Wilken-Resman, University of Illinois, United States; Bill Von Novak, Qualcomm, United States
WE-A5.3P.4: A BIOLOGICAL TESTBED FOR IMPLANTED ANTENNAS USING LAYERED PORCINE1199 TISSUE Zachary Deneris, Cynthia Furse, University of Utah, United States
WE-A5.3P.5: DESIGN AND HUMAN TRIALS OF MICROWAVE NONINVASIVE BLOOD GLUCOSE
TH-A5.1A: APPLICATIONS OF MILLIMETER-WAVE AND 5G ANTENNA SYSTEMS
TH-A5.1A.1: MILLIMETER-WAVE WIDEBAND ARRAY FOR VEHICLE TO VEHICLE
TH-A5.1A.2: MMWAVE ANTENNA GAIN SWITCHING TO MITIGATE INDOOR BLOCKAGE
TH-A5.1A.3: 60-GHZ ARRAY ANTENNA FOR MM-WAVE 5G WEARABLE APPLICATIONS

TH-A5.1A.4: HIGH PERFORMANCE DUAL POLARIZED NEAR-FIELD PROBE AT V-BAND FOR
TH-A5.1A.5: A WEARABLE ANTENNA FOR MMWAVE IOT APPLICATIONS
TH-A5.1A.6: PLANAR QUASI-YAGI ANTENNA FOR FUTURE 5G AND WIGIG APPLICATIONS
TH-A5.1A.7: A DUAL-BAND HEXAGON MONOPOLE ANTENNA FOR 28 AND 38 GHZ
TH-A5.1A.8: APPLICATION OF CONVOLUTIONAL NEURAL NETWORK IN TARGET DETECTION OF 1217 MILLIMETER WAVE IMAGING Hua Zong, Lifei Bao, Beijia Liu, Jinghui Qiu, Harbin Institute of Technology, China
TH-A5.1A.9: AN ELECTRICALLY SMALL SEMI-CIRCULAR MONOPOLE ANTENNA FOR BROADBAND 1219 5G COMMUNICATIONS Hidayat Ullah, Farooq A. Tahir, Research Institute of Microwave and Millimeter Wave Studies, National University of Sciences and Technology (NUST), Pakistan
TH-A5.1A.10: VIVALDI-INSPIRED LOGARITHMIC SPIRAL ANTENNA FOR 28 GHZ 5G
TH-SP.1A: NEXT GENERATION SPACE ANTENNAS
TH-SP.1A.1: ANTENNAS FOR DEEP SPACE: DESIGN AND TECHNOLOGY CHALLENGES
TH-SP.1A.2: ALL-METAL DUAL-FREQUENCY CIRCULARLY POLARIZED HIGH GAIN ANTENNA FOR 1225 POTENTIAL EUROPA LANDER Nacer Chahat, Brant Cook, Polly Estabrook, NASA-JPL/Caltech, United States
TH-SP.1A.3: EFFICIENT HIGH POWER MICROWAVE ABSORBER BOXES
TH-SP.1A.4: ANALYSIS OF AIRBORNE ANTENNAS USING HYBRID COMPUTATIONAL
TH-SP.1A.5: TRI-BAND RECONFIGURABLE ORIGAMI HELICAL ARRAY
TH-SP.1A.8: A ULTRA-LIGHT HIGH GAIN CIRCULARLY-POLARIZED ANTENNA ARRAY FOR

TH-SP.1A.9: SIDE LAUNCHED DUAL CIRCULARLY POLARIZED MONOPULSE TRACKING FEED
TH-SP.2A.2: RF MEMS SWITCH FOR RECONFIGURABLE RF-FRONT END WITH IMPROVED
TH-SP.2A.5: POWER-DEPENDENT BANDSTOP FILTERS FOR WIDE-BANDWIDTH, HIGH-SPEED
TH-SP.2A.6: SIMULTANEOUS TRANSMIT AND RECEIVE SYSTEM WITH 1 GHZ RF
TH-SP.2A.7: UWB TO C AND WLAN BAND RECONFIGURABLE YAGI-YUDA ANTENA
TH-SP.2A.8: EXTREME APERTURE ANTENNAS: RADIATING AND ELECTRICAL PERFORMANCE
TH-SP.2A.9: CONSIDERING A COMPACT SIW FILTER FOR THE LIGHTER CUBE-SATELLITE
TH-SP.2A.10: PLANAR KA-BAND SATCOM TX-ANTENNA COMPOSED OF VACUUM CASTED PLASTIC 1249 SUB-ARRAY MODULES Pia Bergtholdt, Roman Gieron, Simona Bruni, IMST GmbH, Germany; Juergen Letschnik, Technical University of Munich, Germany; Simon Otto, IMST GmbH, Germany
TH-A2.1A: ANALYSIS OF METAMATERIALS AND METASURFACES
TH-A2.1A.1: FIRST-PRINCIPLE VERSUS NRW RETRIEVAL OF METAMATERIAL-INSERT
TH-A2.1A.2: EFFECTIVE CONSTITUTIVE PARAMETERS EVALUATION FOR META-MATERIALS WITH 1253 HIGHLY INTERACTION FIELDS Chen Firestein, Reuven Shavit, Ben-Gurion University of the Negev, Israel
TH-A2.1A.3: STUDY OF THE ANGULAR SPECTRUM OF A BIANISOTROPIC REFRACTIVE
TH-A2.1A.5: EXPLICIT EXTRACTION OF EFFECTIVE POLARIZABILITIES OF BIANISOTROPIC

TH-A2.1A.6: WIENER-HOPF ANALYSIS OF THE SCATTERING BY A TWO DIMENSIONAL PERIODIC
TH-A2.1A.7: PARAMETRIC ANALYSIS OF VERTICALLY ORIENTED METAMATERIALS FOR
TH-A2.1A.8: CHARACTERIZATION OF GRAPHENE-BASED WAVEGUIDE CAPACITANCE FOR
TH-A2.1A.9: WAVE-MATTER INTERACTION ANALYSIS OF METAMATERIAL UNIT IMMERGED IN
TH-A2.1A.10: SIW BASED SPLIT RING RESONATOR EVALUATION USING CHARACTERISTIC MODE N/A ANALYSIS Maryam Shahbakhsh, Javad Ahmadi-Shokouh, University of Sistan and Baluchestan, Iran
TH-A1.1A: WIDEBAND SLOT ANTENNAS
TH-A1.1A.1: COUPLED HALF-MODE CAVITY-BACKED SLOT ANTENNA FOR IR-UWB IN
TH-A1.1A.2: MINIATURIZED STEPPED OPEN SLOT ANTENNA FOR UWB APPLICATIONS
TH-A1.1A.3: WIDEBAND COMPACT SLOT ANTENNA BASED ON TRIPLE-RESONANCE SUBSTRATE
TH-A1.1A.4: TAPERED LOW PROFILE UWB DIRECTIVE ANTENNA FOR RADAR AND SENSING
TH-A1.1A.5: BROADBAND CPW-FED SLOT ANTENNA USING SUPERFORMULA
TH-A1.1A.6: A FLEXIBLE HIGH GAIN WIDE-BAND ANTENNA FOR WIRELESS AND WEARABLE
TH-A1.1A.7: COMPACT AND WIDEBAND CP SLOT ANTENNA WITH RECTANGULAR SLOTS AND

TH-A1.1A.8: A WIDEBAND DOUBLE CIRCULARLY POLARIZED SLOT ANTENNA WITH
TH-A1.1A.9: A MINIATURIZED LOW PROFILE LINEAR-POLARIZED UWB ANTENNA WITH
Juelin Liu, Junping Geng, Xianling Liang, Weiren Zhu, Chong He, Kun Wang, Yunxiao Xu, Ronghong Jin, Shanghai Jiao Tong University, China
TH-A1.1A.10: A SUBSTRATE INTEGRATED WAVEGUIDE TAPERED SLOT ANTENNA FOR
TH-A1.2A: PLANAR ANTENNAS FOR WIRELESS APPLICATIONS
TH-A1.2A.1: DESIGN OF SMALL GPS ANTI-JAM ANTENNA
TH-A1.2A.2: COMPACT DUAL POLARIZATION 4X4 MIMO MULTI-BEAM BASE STATION ANTENNAS
TH-A1.2A.3: DESIGN AND PERFORMANCE ANALYSIS OF A PURELY TEXTILE PROXIMITY FED
TH-A1.2A.4: 5.2 GHZ TEXTILE ANTENNA FOR BIOLOGICAL MONITORING SYSTEM
TH-A1.2A.5: A NOVEL MEANDER LINE RFID READER ANTENNA FOR UHF NEAR-FIELD
TH-A1.2A.6: A V-BAND PATCH ARRAY FOR DRONE RADAR
TH-A1.2A.7: LOSS-CHARACTERIZATION AND GUIDELINES FOR EMBROIDERY OF CONDUCTIVE
TH-A1.2A.8: COMPACT PLANAR ANTENNA SYSTEM FOR FULL-DUPLEX WIRELESS APPLICATIONS 1303 Tanner Douglas, Kamal Sarabandi, University of Michigan, United States
TH-A1.2A.9: A COPRIME ARRAY OF PATCH ANTENNAS FOR DOA ESTIMATION IN MOBILE
TH-A1.2A.10: A WIDEBAND DIRECTIONAL MM-WAVE ANTENNA FOR MICRO-DEFORMATION

TH-A3.1A: RECENT ADVANCES IN THE FINITE ELEMENT METHOD

TH-A3.1A.1: NUMERICAL CHERENKOV RADIATION EFFECTS FROM GRID DISPERSION IN
TH-A3.1A.2: DIRECT METHODS FOR UNSYMMETRIC BLOCKWISE SPARSE MATRICES:
TH-A3.1A.3: LARGE-SCALE SCATTERING ANALYSIS OF ARBITRARY OBJECTS IN A STRATIFIED
TH-A3.1A.4: GEOMETRIC MULTIGRID PRECONDITIONING IN VOXEL-BASED FINITE ELEMENT
TH-A3.1A.5: BROADBAND AND SPARSE FINITE-ELEMENT FORMULATION FREE OF
TH-A3.1A.6: A POSTERIORI ELEMENT-WISE ERROR QUANTIFICATION FOR FEM SOLVERS
TH-A3.1A.7: AN EFFICIENT TRANSIENT EM SOLVER WITH DYNAMIC P-ADAPTATION AND
TH-A3.1A.8: THE MULTIOBJECTIVE DELAUNAY TESSELLATION OPTIMIZATION ALGORITHM AND 1323 ITS APPLICATIONS IN ELECTROMAGNETICS Ronald Jenkins, Douglas H. Werner, Pennsylvania State University, United States
TH-A3.1A.9: DISPERSION ANALYSIS OF ELECTRON BERNSTEIN WAVES IN MAGNETIZED WARM
TH-A3.1A.10: ON THE TREATMENT OF STRONGLY SINGULAR INTEGRALS OVER FLAT
TH-A4.1A: PROPAGATION
TH-A4.1A.1: SIMPLE TRANSMISSION LINE MODEL FROM RET RESULTS FOR PROPAGATION
Roshanak Zabihi, Rodney Vaughan, Simon Fraser University, Canada TH-A4.1A.2: EXTENDING WAVEGUIDE MODE THEORY BASED PROPAGATION MODELS TO
TH-A4.1A.3: COMPARATIVE STUDY OF THREE DETERMINISTIC RADIO PROPAGATION MODELS

TH-A4.1A.4: MODELING FOCUSED RAY SCATTERING BY A PENETRABLE DIELECTRIC SLAB
TH-A4.1A.5: ELECTROMAGNETIC SCATTERING FROM MULTI-LAYER DIELECTRIC MEDIA WITH
TH-A4.1A.6: ESTIMATION OF SCATTERING AND ATTENUATION OF A RANDOM DISTRIBUTION OF 1341 METALLIC WIRES USING RADIATIVE TRANSFER David Geroski, Kamal Sarabandi, University of Michigan, United States
TH-A4.1A.7: COMPARISON OF MEASURED GROUND PENETRATING RADAR RESPONSE OF SOIL
TH-A4.1A.8: ANALYSIS OF SCATTERING ON ARCTIC SEA ICE IN C-BAND WITH LAYERED MEDIUM 1345 FORMULATION OF SURFACE VOLUME SURFACE ELECTRIC FIELD INTEGRAL EQUATION Shucheng Zheng, Reza Gholami, Dustin Isleifson, David Barber, Vladimir Okhmatovski, University of Manitoba, Canada
TH-A4.1A.9: SPREADING AND WANDER OF PARTIALLY COHERENT BEAMS PROPAGATING IN THE
TH-A4.1A.10: HOURLY VARIATION OF GASEOUS ATTENUATION IN TROPICAL STATION
TH-A4.1A.11: PROPAGATION CHARACTERISTICS OF HIGH POWER MICROWAVE IN RECTANGULAR 1339 WAVEGUIDE FILLED WITH TIME-VARYING PLASMA Xiaoyu Han, Junhong Wang, Meie Chen, Zhan Zhang, Zheng Li, Yujian Li, Beijing Jiaotong University, China
TH-A1.3A: OMNIDIRECTIONAL UWB ANTENNAS - II
TH-A1.3A.1: A WIDE BANDWIDTH LOW-PROFILE TOP-LOADED PYRAMIDAL ANTENNA
TH-A1.3A.2: DESIGN OF A WIDEBAND RESISTIVELY LOADED VEE DIPOLE FED BY AN
TH-A1.3A.3: A ULTRA-WIDEBAND MONOCONE ANTENNA WITH CERAMIC LOADING
TH-A1.3A.4: LOG-PERIODIC DIPOLE ANTENNAS USING WIRELESS LAN -CHARACTERISTICS 1357 Haruo Kawakami, Former Sophia University, Japan
TH-A1.3A.5: NEW AMC GROUND PLANE FOR 28 GHZ BROADBAND ANTENNA
TH-A1.3A.6: A NOVEL CPW-FED PATCH ANTENNA FOR ULTRA WIDE BAND RADAR
TH-A1.3A.7: DESIGN OF AN UHF RFID TAG ANTENNA WITH A PAPER SUBSTRATE

Chenghui Wang, Yikai Chen, Shiwen Yang, University of Electronic Science and Technology of China, China
TH-A1.4A: MITIGATION AND CONTROL OF MUTUAL COUPLING IN ANTENNA ARRAYS
TH-A1.4A.1: MUTUAL COUPLING REDUCTION BETWEEN TWO CLOSELY SPACED PIFAS
TH-A1.4A.2: ULTRA-WIDEBAND COMPACT CIRCULARLY POLARIZED ANTENNA USING COUPLED 1369 DIPOLES
Dushyant Kumar Sharma, Gopi S. Reddy, Patanjali V. Parimi, SUNY, Oswego, United States
TH-A1.4A.3: MUTUAL COUPLING REDUCTION BETWEEN TWO CIRCULAR PATCHES USING
TH-A1.4A.4: TWO ELEMENTS SELF-COMPLEMENTARY MIMO ANTENNAS FOR WIDEBAND
TH-A1.4A.5: MUTUAL COUPLING REDUCTION OF A PRINTED DUAL ELEMENT ANTENNA
TH-A1.4A.6: SYNTHESIS OF DIPOLE ANTENNA ARRAY FOR PERFORMANCE ENHANCEMENT
TH-A1.4A.7: A PARASITIC DECOUPLING TECHNIQUE FOR TWO ANTENNAS
TH-A1.4A.8: MUTUAL COUPLING REDUCTION IN A T/R ARRAY WITH T-RESONATE CAVITY EBG
Tianqi Jiao, Harbin Engineering University, China; Zhengyu Peng, Texas Tech University, United States; Shengyuan Luo, Harbin Engineering University, China; Yingsong Li, Harbin Engineering University & Chinese Academy of Science, China; Changzhi Li, Texas Tech University, United States
TH-A1.4A.9: QUAD-IFA MIMO ANTENNAS USING SELF-CURING DECOUPLING TECHNIQUE
TH-A1.4A.10: A DUAL-FREQUENCY ANTENNA ARRAY WITH MUTUAL COUPLING REDUCTION VIA
TH-A2.2A: TECHNIQUES AND MODELS FOR ELECTROMAGNETIC FIELD MEASUREMENTS
TH-A2.2A.1: A HIGH-RESOLUTION APPROACH TO EXTRACT THE THE EMISSIONS FROM A

TH-A1.3A.8: DESIGN OF A COMPACT WIDEBAND DUAL-POLARIZED BASE-STATION ANTENNA WITH 1365

STABLE RADIATION PATTERNS

TH-A2.2A.2: RECONSTRUCTION OF FIELD INSIDE DIELECTRIC OBJECTS FOR NONINVASIVE
TH-A2.2A.3: LOW FREQUECY SURFACE PLASMON WAVES ON METAL STRUCTURED SURFACE
TH-A2.2A.4: ANALYSIS OF ELECTROMAGNETIC INTERFERENCE IN ELECTRIC VEHICLE CABLES
TH-A2.2A.5: MULTIMODE POSITIONING USING COMMON AND DIFFERENCE MODE LOOP
TH-A2.2A.6: DEVELOPMENT OF TUNABLE BREAST TISSUE PHANTOMS FOR TERAHERTZ
TH-A2.2A.7: ON THE DESIGN OF GRAPHENE SURFACE PLASMON RESONANCE SENSORS FOR
TH-A2.2A.9: THIN METALLIC COATINGS ON CARBON FIBER FOR ENHANCED MM-WAVE
TH-A2.2A.10: ACCURATE METHOD FOR MEASURING THE CHARACTERISTIC PARAMETERS AND
TH-A1.5A: REFLECTARRAY ANTENNAS FOR ADVANCED SYSTEM APPLICATIONS
TH-A1.5A.1: SIW-BASED REFLECTARRAY ANTENNAS WITH SHARP GAIN SELECTIVITY AND LARGE 1405 BANDWIDTH Jiawei Zang, University of California, Davis, United States; Eduardo Carrasco, Universidad Politécnica de Madrid, Spain; Xuetian Wang, Beijing Institute of Technology, China; José A. Encinar, Universidad Politécnica de Madrid, Spain; Alejandro Alvarez-Melcon, Universidad Politécnica de Cartagena, Spain; J. Sebastian Gomez-Diaz, University of California, Davis, United States
TH-A1.5A.2: DESIGN OF A BIFOCAL DUAL REFLECTARRAY SYSTEM WITH PARABOLIC MAIN

TH-A1.5A.3: A MULTIBEAM PARABOLIC REFLECTARRAY FOR ONBOARD TX AND RX SATELLITE 1409

Antonio Pino, Yolanda Rodriguez-Vaqueiro, Borja Gonzalez-Valdes, Marcos Arias, Universidade de Vigo, Spain; Daniel Martinez-de-Rioja, José A. Encinar, Universidad Politécnica de Madrid, Spain; Giovanni Toso, European Space Agency,

ANTENNAS AT THE KA BAND

Netherlands

TH-A1.5A.4: CASSEGRAIN REFLECTARRAY ANTENNAS USING HIGHER ORDER ORBITAL ANGULAR14 MOMENTUM MODES COMBINED AND CANCELLED IN NEAR FIELD Woo Jin Byun, ETRI, Korea (South); Yong Heui Cho, Mokwon University, Korea (South)	111
TH-A1.5A.5: A REFLECTIVE METASURFACE FOR GENERATING ORBITAL ANGULAR MOMENTUM	113
TH-A1.5A.6: THZ NEAR FIELD FOCUSING USING CASSEGRANIAN CONFIGURATION FOR EM14 SIDE-CHANNEL DETECTION Prateek Juyal, Sinan Adibelli, Alenka Zajic, Georgia Institute of Technology, United States	115
TH-A1.5A.7: TIGHTLY-PACKED CROSSED-DIPOLE ARRAY FOR L-BAND SATELLITE	
TH-A1.5A.8: ARRAY ELEMENT NUMBER EFFECTS ON SYSTEM G/T FOR SINGLE PLANE	119
TH-A1.5A.9: IMPROVING A MONOSTATIC RADAR SYSTEM FOR 3D STANDOFF HUMAN BODY	121
TH-A1.5A.10: AN ULTRA-WIDEBAND MODIFIED APERTURE-COUPLED MILLIMETER-WAVE	123
TH-A5.1P: 3D PRINTED ANTENNAS AND STRUCTURES	
TH-A5.1P.1: 3D PRINTED HYBRID RIGID-FLEX COAXIAL-LIKE TRANSMISSION LINE	125
TH-A5.1P.2: DESIGN OF A NOVEL ISOTROPIC 3D DIPOLE	127
TH-A5.1P.3: 3D PRINTED LOW COST FOLDED REFLECTARRAY	129
TH-A5.1P.4: 3D PRINTED ANTENNA-ON-PACKAGE WITH NEAR-ISOTROPIC RADIATION PATTERN	
TH-A5.1P.5: A 3D PRINTED TUNABLE PHASE SHIFTER	133
TH-A5.1P.6: A 3D PRINTED CAVITY BACKED 2X4 SLOTTED WAVEGUIDE ANTENNA ARRAY	135
TH-A5.1P.7: THE EFFECT OF LOCATIONS ON THE 3-D PRINTING BED SURFACE FOR	

TH-A5.1P.8: A KU-BAND WIDEBAND 3-D PRINTED INTERDIGITAL BANDPASS FILTER FREE OF
TH-A5.1P.9: MONOLITHIC 3-D PRINTED SPHERICAL-RESONATOR-BASED OLYMPIC-TOPOLOGY
TH-SP.1P: ADVANCES IN STEERING THE BEAM OF HIGH GAIN ANTENNAS
TH-SP.1P.1: BEAM SCANNING METASURFACE ANTENNAS
TH-SP.1P.2: WIDE-ANGLE MECHANICAL SCANNING TRANSMIT-ARRAYS FOR SATELLITE KA-BAND 1445 USER TERMINALS Sérgio A. Matos, Instituto de Telecomunicações, IST, Instituto Universitário de Lisboa, (ISCTE-IUL), Portugal; Jorge R. Costa, Instituto de Telecomunicações, Portugal; Eduardo Lima, Parinaz Naseri, Carlos A. Fernandes, Instituto de Telecomunicações, IST Universidade de Lisboa, Portugal; Nelson Fonseca, ESA Antenna and Sub-Millimeter Wave Section, Portugal
TH-SP.1P.3: HIGH-GAIN BEAM STEERING BY NEAR-FIELD PHASE TRANSFORMATION - AN
TH-SP.1P.4: LOW SCAN LOSS BIFOCAL KA-BAND TRANSPARENT TRANSMITARRAY ANTENNA
TH-SP.1P.5: INNOVATIVE CTS ANTENNA ARCHITECTURE FOR BEAM RECONFIGURATION IN
TH-SP.1P.6: THE LOSSLESS, RESONANT, MINIMUM SCATTERING APPROXIMATION FOR FAST
TH-SP.1P.7: A SILICON-BASED BEAM-STEERING TAPERED ANTENNA ARRAY FOR W-BAND
TH-SP.1P.8: UNDERSTANDING THE ELEMENT-GAIN PARADOX FOR RECEIVING ARRAYS USING
TH-SP.1P.10: A MAGNETO-ELECTRIC DIPOLE HIGH-EFFICIENCY 60GHZ RIDGE GAP

TH-SP.2P: MILLIMETER AND SUBMILLIMETER WAVE METASURFACES FOR RADAR AND COMMUNICATION SYSTEMS

TH-SP.2P.1: COMPUTATIONAL MILLIMETER-WAVE SPOTLIGHT IMAGING USING	61
University, United States	
TH-SP.2P.2: ASTERISK METASURFACE AT 193 THZ	63
TH-SP.2P.3: PLANAR DUAL-BAND LINEAR TO CIRCULAR POLARIZATION CONVERTER USING	65
Youngno Youn, Wonbin Hong, Pohang University of Science and Technology, Korea (South)	
TH-SP.2P.4: RECONFIGURABLE REFLECTIVE METASURFACE FOR LINEAR TO CIRCULAR	67
TH-SP.2P.5: TUNABLE PIEZO-ACTUATED METASURFACES FOR MILLIMETER-WAVE AND THZ140 ANTENNAS	69
Alexandros Feresidis, Muhammad Rabbani, James Churm, University of Birmingham, United Kingdom	
TH-SP.2P.9: A NOVEL FSS STRUCTURE WITH GREAT INSENSITIVITY TO INCIDENT ANGLES	71
TH-SP.2P.10: SOURCE EFFECT ON NEAR-FIELD MULTI-BEAM-SPLITTING IN FABRY-PEROT	73
TH-A2.1P: DESIGN OF METAMATERIALS AND METASURFACES	
TH-A2.1P.1: A UNIT CELL FOR BIANISOTROPIC HUYGENS' METASURFACE DESIGNS	75
TH-A2.1P.2: TIME-DOMAIN RESPONSES OF WAVEFORM-SELECTIVE METASURFACES	77
TH-A2.1P.3: PAIRED METASURFACES FOR AMPLITUDE AND PHASE CONTROL OF WAVEFRONTS	79
TH-A2.1P.4: FOCAL INTENSITY DISTRIBUTION MANIPULATION WITH HUYGENS METAMIRROR148 Xumin Ding, Zhuochao Wang, Kuang Zhang, Xuemai Gu, Wu Qun, Harbin Institute of Technology, China	81
TH-A2.1P.5: FIELD OPTIMIZATION FOR SCALAR METASURFACE DESIGNS FOR ANOMALOUS	83
TH-A2.1P.6: MULTIFUNCTIONAL ALL-DIELECTRIC METASURFACES	85
TH-A2.1P.7: DIPOLAR MODEL FOR METAMATERIAL IMAGING SYSTEMS	87

Ahmed F. Abdelshafy, Mohamed Othman, Dmitry Oshmarin, Mohamed Y. Nada, Filippo Capolino, University of California, Irvine, United States
TH-A2.1P.9: A GRAPHENE BASED BANDWIDTH ENHANCED METAMATERIAL ABSORBER USING
TH-A5.2P: CHIPLESS RFID
TH-A5.2P.1: APPLICATION-ADAPTABLE CHIPLESS RFID TAG
TH-A5.2P.2: CHIPLESS RFID TAGS' IDENTIFICATION ALGORITHM BY USING AN EIGENMODE
TH-A5.2P.3: NON-CONTACT MATERIAL MONITORING BY USING DEPOLARIZING CHIPLESS
TH-A5.2P.4: LOW COST FOLDED CHIPLESS TAG FOR MILLIMETER-WAVE APPLICATIONS
TH-A5.2P.5: HIGH CAPACITY ENCODED H-SHAPED RESONATOR FOR UWB CHIPLESS RFID TAG
TH-A1.2P: RADIATION PATTERN ENHANCEMENT FOR PLANAR ANTENNAS AND ARRAYS
TH-A1.2P.1: MINIATURIZED ANTENNA WITH HIGH GAIN AND LOW SIDE-LOBE FOR
TH-A1.2P.2: 4D ANTENNA ARRAY OF UWB VIVALDI ELEMENTS WITH LOW SIDE LOBES AND 1505 HARMONIC SUPPRESION
Alberto Reyna, Autonomous University of Tamaulipas, Mexico; Marco Antonio Panduro, CICESE Research Center, Mexico; Luz Idalia Balderas, Autonomous University of Tamaulipas, Mexico
TH-A1.2P.3: GAIN AND SIDE LOBE LEVEL ENHANCEMENT OF ARRAY ANTENNAS USING
TH-A1.2P.4: LOW CROSS POLARIZATION TRIANGLE MAGNETIC DIPOLE ANTENNA FOR
TH-A1.2P.5: SIDELOBE LEVEL IMPROVEMENT IN A FREQUENCY SCANNING ANTENNA AT1511 KA-BAND
Mohammadreza Ranjbar Naeini, University of Wisconsin-Madison, United States; Mohammad Fakharzadeh, Sharif University of Technology, Iran

TH-A2.1P.8: EXCEPTIONAL POINTS OF DEGENERACY IN A LINEAR ARRAY OSCILLATOR WITH1489

GAIN AND LOSS BALANCE

TH-A1.2P.6: MILLIMETER WAVE MICROSTRIP FED SLOT ARRAY ANTENNA WITH PMC
TH-A1.2P.7: AN ANGLED-DIPOLE ANTENNA WITH ANGLED DIRECTORS FOR WIDE-ANGLE 1515 SCANNING
Ju-Ik Oh, In-June Hwang, Ghoo Kim, Jong-Won Yu, Korea Advanced Institute of Science and Technology (KAIST), Korea (South)
TH-A1.2P.8: CROSS POLARIZATION REDUCTION IN PATCH ANTENNA USING DGS
TH-A1.2P.9: BROADBAND AND HIGH GAIN LOW-PROFILE ANTENNA WITH METASURFACE
TH-A1.2P.10: MICROSTRIP-TO-PROBE FED MICROSTRIP ANTENNA TRANSITION
TH-A5.3P: CHARACTERISTIC MODE ANALYSIS AND APPLICATIONS
TH-A5.3P.1: CHARACTERISTIC MODE ANALYSIS OF SLOT LOADING IN MICROSTRIP PATCH 1523 ANTENNA
Sandip Ghosal, Arijit De, Ajay Chakrabarty, Indian Institute of Technology, India; Raed Shubair, Massachusetts Institute of Technology, United States
TH-A5.3P.2: MULTILEVEL FAST MULTIPOLE ALGORITHM ENHANCED CHARACTERISTIC MODE
TH-A5.3P.3: CHARACTERISTIC MODE SIMULATION OF GENERAL COMPOSITE MATERIAL BODIES 1527 Chao-Fu Wang, National University of Singapore, Singapore
TH-A5.3P.4: MIMO ANTENNA ELEMENTS EFFECT ON CHASSIS MODES
TH-A5.3P.5: CHASSIS DIVERSITY ANTENNA COMPARISON
TH-A5.3P.6: WIDEBAND ANTENNA-ISOLATION IMPROVEMENT USING PHOTONICS FOR STAR
TH-A5.3P.7: ISOLATION ENHANCEMENT OF MIMO ANTENNAS USING BILATERAL CEBG
STRUCTURES Mohamed El-Sewedy, TRC Center, Egypt; Mahmoud A. Abdalla, Military Technical College, Egypt; Ahmed Abdelraheem, Purdue University, United States
TH-A5.3P.8: INVESTIGATING THE EFFECT OF MUTUAL COUPLING ON SPATIAL CORRELATION
TH-A5.3P.9: DESIGN OF WEARABLE DUAL-ANTENNA SYSTEM BASED ON THEORY OF
TH-A4.2P: PROPAGATION II
TH-A4.2P.1: ON THE DESIGN OF CONFORMAL RADOMES FOR BEAM-SHAPING OF ANTENNAS 1541 Pengfei Zhang, Pan Li, Xidian University, China; Raj Mittra, University of Central Florida, United States

TH-A4.2P.2: ROUGH SURFACE ANALYSIS FOR SHORT-RANGE ULTRA-BROADBAND THZ
TH-A4.2P.3: A STOCHASTIC VOLUME SCATTERING APPROACH BASED ON
TH-A4.2P.4: CHANNEL MEASUREMENT IN SEAWATER BY USING 2.4 GHZ-LOW-POWER
TH-A4.2P.5: DESIGN OF WIDEBAND CIRCUIT ANALOG ABSORBER WITH IMPROVED OBLIQUE
TH-A4.2P.6: PSEUDO-CYCLIC ENHANCEMENT MECHANISMS IN A DISCRETE RANDOM
TH-A4.2P.7: STUDY OF DIFFRACTION AT 30 GHZ, 140 GHZ, AND 300 GHZ
TH-A4.2P.8: SAR IMAGING OF HYPERSONIC PLATFORM BASED ON PHASE SCREEN METHOD
TH-A4.2P.9: EARTH-SPACE PATH CLOUD ATTENUATION DISTRIBUTION STUDY
TH-A4.2P.10: TOTAL ATTENUATION OF SATELLITE SIGNAL ON EARTH-SPACE LINK IN WEST
TH-A1.3P: INNOVATIVE MODELING AND ADVANCED ANALYSIS TECHNIQUES OF MUTUAL COUPLING EFFECTS
TH-A1.3P.1: SIMULTANEOUSLY MATCHING A N-PORT NETWORK
TH-A1.3P.2: EFFECTS OF ELECTROMAGNETIC MODELING METHODS ON COVERAGE
TH-A1.3P.3: ON THE MODELING OF ANTENNA ARRAYS FOR MASSIVE MIMO SYSTEMS
TH-A1.3P.4: TRIPLE-LAYER COMPLEMENTARY FSS FOR THE MUTUAL COUPLING REDUCTION

TH-A1.3P.5: RIGOROUS MODAL ANALYSIS OF ELECTROMAGNETIC COUPLING BETWEEN CIRCULAR HORNS Jiaran Qi, Rui Wang, Jinghui Qiu, Harbin Institute of Technology, China; Lantu Guo, China Research Institute of Radiowave Propagation, China	1569
TH-A1.3P.6: TX/RX ANTENNA SYSTEM FOR FULL-DUPLEX APPLICATION	1571
TH-A1.3P.7: SPARSE DIRECTION-OF-ARRIVAL ESTIMATION WITH DIRECTIVE COPRIME ARRAYS	
TH-A1.3P.8: A SIMPLE DIRECTION FINDING COMPENSATION METHOD OF SURFACE-MOUNTED	1575
TH-A1.3P.9: A NEW DECOUPLING METHOD FOR MASSIVE MIMO ANTENNAS	1577
TH-A1.3P.10: HOW LOW DOES MUTUAL COUPLING NEED TO BE FOR MIMO ANTENNAS	1579
TH-A3.1P: OPTIMIZATION METHODS IN ANTENNA DESIGNS	
TH-A3.1P.1: COMPARISON OF OPTIMIZATION APPROACHES FOR DESIGNING NONUNIFORM HELICAL ANTENNAS Jelena Dinkić, Dragan Olćan, Antonije Djordjević, University of Belgrade, Serbia; Alenka Zajić, Georgia Institute of Technolo United States	
TH-A3.1P.2: OPTIMIZATION OF THIN MULTILAYER MAGNETIC RADAR ABSORBERS	1583
TH-A3.1P.3: SURROGATE-ASSISTED MULTI-OBJECTIVE ANTENNA DESIGN WITH	1585
TH-A3.1P.4: EFFECT OF INTRODUCTION OF HYPOTHESES IN ANTENNA OPTIMIZATION:	
TH-A3.1P.5: MULTI-OBJECTIVE DESIGN OF ANTENNAS USING VARIABLE-FIDELITY EM	1589
TH-A3.1P.6: PSO-DRIVEN SYNTHESIS OF REALISTIC TIME MODULATED ARRAYS WITH	1591
TH-A3.1P.7: OPTIMIZATION OF REACTIVELY LOADED REFLECTARRAYS VIA SEMIDEFINITE	

TH-A3.1P.8: APPLICATION OF THE CROSS-ENTROPY METHOD TO ELECTROMAGNETIC
TH-A3.1P.9: A STATISTICAL METHOD FOR THE PROJECT AND ANALYSIS OF A YAGI ANTENNA
TH-A1.4P: MICROSTRIP ANTENNAS, CIRCUITS, ANALYSIS, DESIGN
TH-A1.4P.1: STRUCTURAL ANALYSIS OF U-SLOT LOADED MICROSTRIP PATCH USING THEORY
TH-A1.4P.2: STRIPLINE-FED PATCH ANTENNA WITH LONG-TERM RELIABLE CONDUCTIVE VIAS
TH-A1.4P.3: MULTI-PORT DUAL POLARIZED INTEGRATED PATCH ANTENNA FOR RF DETECTION
TH-A1.4P.4: NEW APPROACH OF TE/TM MODE BASED RECTANGULAR MICROSTRIP PATCH
TH-A1.4P.5: A COMPACT SINGLE LAYER ORTHOGONAL POLARIZED YAGI-LIKE DIRECTIONAL
TH-A1.4P.6: TOWARDS EMBROIDERED TEXTILE ANTENNA SYSTEMATIC DESIGN AND ACCURATE 1609 MODELING: RECTANGULAR PATCH ANTENNA CASE STUDIES Lingnan Song, Daisong Zhang, Yahya Rahmat-Samii, University of California, Los Angeles, United States
TH-A1.4P.7: COMPACT MEANDER MAGNETIC DIPOLE ANTENNA FOR WIDE-ANGLE SCANNING
TH-A1.4P.8: LEAKY WAVE ANTENNA ARRAY USING COMPLEMENTARY DUAL-STUB RADIATING
TH-A1.4P.9: DUAL-CIRCULAR POLARIZED ANTENNA LATTICE WITH ODD NUMBER OF RADIATING 1615 ELEMENTS AND INTEGRATED FEEDING NETWORK Izabela Slomian, Slawomir Gruszczynski, Artur Rydosz, Krzysztof Wincza, AGH University of Science and Technology, Poland
TH-A1.4P.10: DIELECTRIC RESONATOR ANTENNA WITH AMC FOR LONG RANGE AUTOMOTIVE
TH-A5.4P: ANTENNA THEORY AND DESIGN FOR BIOMEDICAL APPLICATIONS
TH-A5.4P.1: UWB ANTENNA FOR MEDICAL IMAGE

TH-A5.4P.2: HARMONICS-BASED RFID SENSOR BASED ON GRAPHENE FREQUENCY
TH-A5.4P.3: DUAL-BAND TAPERED SLOT ANTENNA FOR INTEGRATED BIOMEDICAL SYSTEM
TH-A5.4P.4: THIN SUBSTRATE NARROW SLOT WITH LESS BACK RADIATION
TH-A5.4P.5: COMPACT ANTENNA FOR LOW FREQUENCY APPLICATIONS
TH-A1.5P: REFLECTARRAY ANTENNAS WITH NOVEL ELEMENTS
TH-A1.5P.1: OFFSET-FED METAL-ONLY REFLECTARRAY ANTENNA DESIGN USING 3D-CROSS
TH-A1.5P.2: EFFICIENT AND ACCURATE MODELING OF REFLECTARRAY UNIT CELLS USING
TH-A1.5P.3: METAL ONLY SPIRAL SLOT REFLECTARRAY ELEMENT OPERATING AT 66 GHZ
TH-A1.5P.4: A METAL-ONLY REFLECTARRAY ANTENNA ELEMENT WITH WIDE ANGULAR
TH-A1.5P.5: LOW-LOSS REFLECTARRAY ANTENNA COMPOSED OF SINGLE-LAYER SLOTS
TH-A1.5P.6: REFLECTARRAY ANTENNA DESIGN USING HEXAGONAL SHAPE UNIT CELLS FOR 5G
TH-A1.5P.7: GA-PRODUCED REFLECTARRAY ELEMENTS HAVING ARBITRARY
TH-A1.5P.8: SINGLE LAYER DUAL-BAND 'PHOENIX' REFLECTARRAY UNIT CELL WITH
TH-A1.5P.9: ANALYSIS OF NESTED DOUBLE SPLIT RING RESONATOR FOR LINEARLY

TH-A1.5P.10: NEW TECHNIQUES FOR THE EVALUATION OF ANTENNA PERFORMANCES IN
TH-A4.1P: SATELLITE COMMUNICATION TECHNOLOGY
TH-A4.1P.1: WHEN DEPLOYABLE SPACECRAFT ANTENNAS DON'T
TH-A4.1P.2: IMPROVED MEASURED SOURCE ANTENNA REPRESENTATION IN SATELLITE
TH-A4.1P.3: A MILLIMETER-WAVE PERFORATED FRESNEL ZONE PLATE LENS USING ADDITIVE
TH-A1.1P: SMALL ANTENNA THEORY
TH-A1.1P.1: GENERALIZED QUASI-STATIC ELECTROMAGNETIC FIELDS
TH-A1.1P.2: FURTHER OBSERVATIONS ON THE SHAPE SYNTHESIS OF CLOSELY-SPACED
TH-A1.1P.3: DEMONSTRATION OF RADIATION EFFICIENCY IMPROVEMENT OF A MINIATURE
TH-A1.1P.4: STUDY OF THE RESONANT FREQUENCIES OF AN ELECTRICALLY SMALL
TH-A1.1P.5: CUTTING THE CORD: A BUTTON-SIZED RECTENNA FOR WIRELESS PATIENT
TH-A5.5P: VEHICULAR ANTENNAS AND ELECTROMAGNETICS
TH-A5.5P.1: VIRTUAL DRIVE TEST FOR VEHICLE ANTENNA EVALUATION
TH-A5.5P.2: THE CONCEPT OF AN AIRBORNE VLF TRANSMITTER WITH VERTICAL ELECTRIC
TH-A5.5P.3: RIME-DIPOLE ACCOMMODATION ABOARD JUICE
TH-A5.5P.4: ROLL-TO-ROLL PRINTED TRANSPARENT APPLIQUE ANTENNAS

TH-A5.5P.5: ANTENNA PLACEMENT OPTIMIZATION FOR VEHICLE-TO-VEHICLE	1673
Eamon Whalen, Aseim Elfrgani, C.J. Reddy, Rejeesh Rajan, Altair Engineering Inc., United States	
FR-SP.1A: 3-D PRINTED ANTENNAS AND COMPONENTS FOR PRACTICAL RF APPLICATIONS	
FR-SP.1A.1: CO-DESIGN OF ANTENNA AND ILLUMINATION SYSTEMS	1675
Chi-Yuk Chiu, Yujie Zhang, Shanpu Shen, Ross D. Murch, Hong Kong University of Science and Technology, China	
FR-SP.1A.2: AN INKJET-PRINTED ORIGAMI-BASED FREQUENCY SELECTIVE SURFACE WITH	1677
FR-SP.1A.3: DEVELOPMENT OF A TEXTILE ANTENNA USING A CONTINUOUS SUBSTRATEINTEGRATING THE GROUND PLANE	1679
Caroline Loss, Rita Salvado, Universidade da Beira Interior, Portugal; Ricardo Gonçalves, Pedro Pinho, Instituto de Telecomunicações - Aveiro, Portugal	
FR-SP.1A.4: A COMPACT WIDEBAND MONOPULSE FEED CLUSTER IMPLEMENTED VIA 3-D METAL PRINTING	1681
Guan-Long Huang, Shenzhen University, China; Chow-Yen-Desmond Sim, Feng Chia University, Taiwan; Tao Yuan, Shenzi University, China	hen
FR-SP.1A.5: FULLY PRINTED VO2 SWITCH BASED RECONFIGURABLE PIFA ANTENNA	
FR-SP.1A.6: 3D-PRINTED PHASE CONTROLLED FOCUSING METALENS AT 1550 NM	1685
FR-SP.1A.7: COMPACT WAVEGUIDE-TO-MICROSTRIP TRANSITION WITH EMBEDDED POWERDIVIDER FOR MMWAVE ANTENNA ARRAY APPLICATIONS Hesheng Lin, Yaowen Hsu, Yicheng Lin, National Taiwan University, Taiwan	1687
FR-SP.1A.9: MONOLITHIC STEREOLITHOGRAPHY 3-D PRINTED MICROWAVE PASSIVEWAVEGUIDE DEVICES Jin Li, Guanlong Huang, Tao Yuan, Shenzhen University, China	1689
FR-A5.1A: MILLIMETER-WAVE BEAMFORMING SYSTEMS AND PHASED ARRAYS FOR	5G
FR-A5.1A.1: LOW-COST WIDE-BAND V-BAND PATCH ANTENNA ON FR4 PCB	Jorge
FR-A5.1A.2: SIMPLE HIGH GAIN 60 GHZ ANTENNA	1693
FR-A5.1A.3: DEVELOPMENT OF APERTURE-COUPLED PATCH ARRAY ANTENNAS AT 60 GHZ FOR 5G APPLICATIONS Xiaoliang Sun, José-Manuel Fernández-González, Manuel Sierra-Pérez, Universidad Politécnica de Madrid, Spain	1695
FR-A5.1A.4: A LENSING CASE FOR THE 5G HANDSET ANTENNAS	

FR-A5.1A.5: A 60-GHZ YAGI-UDA CIRCULAR ARRAY ANTENNA WITH OMNI-DIRECITIONAL PATTERN 1699 FOR MILLIMETER-WAVE WBAN APPLICATIONS Seongkyu Lee, Jaehoon Choi, Hanyang University, Korea (South)
FR-A5.1A.6: A HIGH-GAIN LARGE-SCANNING 60 GHZ VIA-FED PATCH PHASED ARRAY ANTENNA
FR-A5.1A.7: EFFICIENT 60 GHZ ANTENNA BASED ON OPEN-END MICROSTRIP LINE FRINGING 1703 FIELDS
Yazan Al-Alem, Ahmed A. Kishk, Concordia University, Canada
FR-A5.1A.8: 60-GHZ POLARIZATION-DIVERSITY COMPACT PHASED ARRAY ANTENNA
FR-A2.1A: METASURFACES FOR ANTENNAS
FR-A2.1A.1: DESIGN OF A RECONFIGURABLE METASURFACE ANTENNA FOR DYNAMIC1707 NEAR-FIELD FOCUSING
Okan Yurduseven, Duke University, United States; Thomas Fromenteze, University of Limoges, France; David Smith, Duke University, United States
FR-A2.1A.2: MULTIPLE BEAM FORMING USING SPHERICAL METASURFACES
FR-A2.1A.3: DEMONSTRATION OF 3D PRINTED HEXAGONAL HIGH GAIN SHORT BACKFIRE1711 ANTENNA WITH HARD EM WALLS
Erik Lier, Thomas Hand, Edward Pierson, Lockheed Martin, United States; Daniel Binion, Douglas H. Werner, Pennsylvania State University, United States
FR-A2.1A.4: HIGH APERTURE EFFICIENCY 2D CENTER-FED TRANSMISSION-LINE-GRID
Ayman Dorrah, George V. Eleftheriades, University of Toronto, Canada
FR-A2.1A.5: WIDEBAND POLARIZATION RECONFIGURABLE ANTENNA WITH METASURFACE
FR-A1.1A: REFLECTOR ANTENNAS
FR-A1.1A.1: A KA-BAND DUAL-POL MONOPULSE SHAPED REFLECTOR ANTENNA
FR-A1.1A.2: HIGH-PERFORMANCE REFLECTOR ANTENNA DESIGN FOR THE TROPICS MISSION
FR-A1.1A.3: OFFSET-FED REFLECTOR ANTENNA WITH LATERAL FEED DISPLACEMENT FOR THE 1721 MIRATA SATELLITE
Idahosa Osaretin, William Blackwell, R. Vincent Leslie, MIT Lincoln Laboratory, United States; Philip Langlois, Smiths Interconnect, United States
FR-A1.1A.4: REALIZATION OF LOW-RCS PARABOLIC REFLECTOR ANTENNA USING CURVED 3-D
FR-A1.1A.6: NOVEL METAL ONLY, LOW PROFILE, HIGH GAIN STEPPED REFLECTOR ANTENNAS

FR-A1.1A.7: DUAL POLARIZATION, DUAL RESONANT REFLECTARRAY ELEMENT FOR
FR-A1.1A.8: INNOVATIVE MULTI-FEED-PER-BEAM REFLECTOR ANTENNA FOR SPACE-BORNE
FR-A1.1A.10: DESIGN OF THE EARTH STATION ANTENNA FOR KOREA AUGMENTATION SATELLITE 1731 SYSTEM Sohyeun Yun, Cheonsig Sin, ETRI, Korea (South)
FR-A1.2A: BANDWIDTH ENHANCEMENT FOR PLANAR ANTENNAS AND ARRAYS
FR-A1.2A.1: BROADBAND LOW-PROFILE DIPOLE ANTENNA WITH PARASITIC PATCHES AND
FR-A1.2A.2: BROADBAND PATCH ANTENNA WITH NARROW WIDTH GROUND PLANE
FR-A1.2A.3: A SINGLE-LAYER SERIES-FED MICROSTRIP ARRAY WITH ENHANCED BANDWIDTH
FR-A1.2A.4: A HEART-LIKE UNIDIRECTIONAL MILLIMETER-WAVE ANTENNA
FR-A1.2A.5: A BROADBAND RHCP/LHCP SIW-INTEGRATED PATCH ARRAY ANTENNA FOR MM-WAVE 1741 APPLICATIONS Wael Abdel-Wahab, University of Waterloo, Canada; Ying Wang, University of Ontario Institute and Technology, Canada; Hussam Al-Saedi, University of Waterloo, Canada; Hesham A. Mohamed, Electronics Research Institute, Egypt; Safieddin Safavi-Naeini, University of Waterloo, Canada
FR-A1.2A.6: DUAL-STUB LOADED MICROSTRIP LINE-FED MULTI-SLOT PRINTED ANTENNA FOR
FR-A1.2A.8: LOW PROFILE, RESONANCE FREE UWB UHF DIPOLE ARRAY WITH INTEGRATED
FR-A1.2A.9: STEPPED IMPEDANCE RESONATOR BASED UNIPLANAR DIPOLE ANTENNA WITH
FR-UB.2A: RADIO WAVE PROPAGATION AND SCATTERING EFFECTS
FR-UB.2A.8: EXTRACTION OF TARGET SCATTERING CENTERS USING ROBUST-FFAST

ROUGH SURFACE WALLS Xingqi Zhang, Costas D. Sarris, University of Toronto, Canada
FR-UB.2A.10: FULL WAVE SOLUTIONS OF MULTIPLE SCATTERING USING VECTOR
FR-A1.3A: DIRECTIONAL UWB ANTENNAS I
FR-A1.3A.1: EXPONENTIALLY TAPERED TEM HORN ANTENNA WITH DIELECTRIC SUPPORT FOR
FR-A1.3A.2: ANTIPODAL UWB VIVALDI ANTENNA WITH PSEUDOELEMENT AND NOTCHED
FR-A1.3A.3: BEAM PATTERN MEASUREMENT ON OFFSET GREGORIAN REFLECTOR MOUNTED 1759 WITH A WIDEBAND ROOM TEMPERATURE RECEIVER FOR THE SQUARE KILOMETRE ARRAY
Jonas Flygare, Bhushan Billade, Magnus Dahlgren, Miroslav Pantaleev, Jens Dahlström, Bo Wästberg, Onsala Space Observatory, Chalmers University of Technology, Sweden; Gary Hovey, Richard Hellyer, Rob Messing, Bruce Veidt, Gordon Lacy, Mohammad Islam, DRAO, NRC-CNRC, Canada
FR-A1.3A.4: MODIFIED BALANCED ANTIPODAL VIVALDI ANTENNAS WITH
FR-A1.3A.6: MULTIPLE DIRECTIONAL RADIATION PATTERNS, INTEGRATED ANTENNA FOR
FR-A1.3A.7: A BROADBAND CIRULARLY POLARIZED DIRECTIONAL ANTENNA APPLIED ON
FR-A1.3A.8: A NOVEL THREE-LAYER LINEARLY POLARIZED WIDEBAND TRANSMITARRAY
FR-A1.3A.9: A LOW PROFILE HIGH GAIN METASURFACE BACKED DIRECTIONAL
FR-A1.3A.10: WIDEBAND DUAL POLARIZATIONS FEED FOR RADIOMETER
FR-A5.2A: RECENT ADVANCES IN MOBILE ANTENNAS
FR-A5.2A.1: COMPACT CIRCULARLY-POLARIZED SIW EDGE-RADIATING ANTENNA FOR

FR-A5.2A.2: DIFFERENTIAL FED BILATERAL SLOTLINE DIPOLE ON FLEXIBLE PCB FOR
FR-A5.2A.3: INTERNAL DUAL-RESONANCE HIGH-GAIN 1.5 WAVELENGTH LOOP ANTENNA FOR
FR-A5.2A.4: SINGLE-FEED DUAL-EXCITATION SLOT ANTENNA FOR THE LTE TABLET DEVICE
FR-A5.2A.5: BROADBAND, WIDE-BEAM ANTENNA FOR BASE STATION APPLICATIONS
FR-A5.2A.6: A COMPACT ANTENNA FOR IOT APPLICATIONS OPERABLE EVEN IN CLOSE
FR-A5.2A.7: SAMSUNG SMART ANTENNA TECHNOLOGY(SSAT) USING THE CLOSED-LOOP AUTO
FR-A5.2A.8: A NOBEL 4G AND 5G ANTENNA SOLUTION FOR FUTURE SMARTPHONES
FR-A5.2A.9: WIDEBAND EQUIVALENT CIRCUIT MODEL FOR SMARTPHONE ANTENNAS BASED ON 1787 CHARACTERISTIC MODES Henning Hartmann, Nikolai Peitzmeier, Dirk Manteuffel, Leibniz University of Hannover, Germany
FR-A5.2A.10: DIRECTION FINDING OF ULTRA-WIDEBAND SIGNALS USING DIRECT RF SAMPLING
FR-A4.1A: ADVANCES IN MICROWAVE IMAGING TECHNIQUES
FR-A4.1A.1: A NOVEL GLOBAL OPTIMIZATION TECHNIQUE FOR MICROWAVE IMAGING BASED
FR-A4.1A.2: MILLIMETER-WAVE SYNTHETIC APERTURE FOCUSING FOR PACKAGING
FR-A4.1A.3: SYNTHETIC APERTURE RADAR IMAGING OF THE INTERIOR OF COMETS USING
FR-A4.1A.4: PHASE RETRIEVAL IN FREQUENCY-DIVERSE IMAGING

FR-A4.1A.5: MICROWAVE-INDUCED THERMOACOUSTIC IMAGING USING COMPRESSIVE
FR-A4.1A.6: PHYSICAL OPTICS SIMULATION OF A THZ STANDOFF IMAGING SYSTEM
FR-A4.1A.7: ACHIEVING RANGE RESOLUTION IN HOLOGRAPHIC IMAGING USING SINGLE
FR-A4.1A.8: ROBUST IMAGE RETRIEVAL FROM PHASELESS DATA
FR-A4.1A.9: BLOCK-DIVISION BASED EXTRAPOLATION FOR RESOLUTION ENHANCED RADAR
FR-A4.1A.10: MICROWAVE IMAGING USING FREQUENCY-DIVERSE SCATTERING OF A RANDOM
FR-A5.3A: THEORETICAL CHANNEL MODELS AND VERIFICATIONS
FR-A5.3A.1: A FUNCTIONAL UNDERSTANDING OF THE ROTAC USING THE CAVITY GREEN'S
FR-A5.3A.2: PLANE WAVE SYNTHESIS IN A RECONFIGURABLE OVER-THE-AIR CHAMBER
FR-A5.3A.3: WAVEFRONT SHAPING OF FADING RAYLEIGH CHANNELS ENABLES PERFECT
FR-A5.3A.4: NON-COOPERATIVE, NON-LINE OF SIGHT GEOLOCATION OF RADIO EMITTERS
FR-A5.5A: ADVANCES IN MILLIMETER-WAVE ANTENNAS AND RADIATING SYSTEMS
FR-A5.5A.1: ISOLATION ENHANCEMENT IN WIFI DUAL-BAND TWO PIFAS FOR COMPACT SIZE
FR-A5.5A.2: A 60-GHZ GAIN ENHANCED VIVALDI ANTENNA ON-CHIP
FR-A5.5A.3: BEAM STEERING OF SERIES-FED PATCH ARRAY USING FREQUENCY AND PHASE

FR-A5.5A.4: SUB-ARRAY DESIGN OF A CAVITY-LOADED E-BAND PARTIALLY-CORPORATE FED 1825 WAVEGUIDE SLOT ARRAY
Congda Hu, Miao Zhang, Xiamen University, China; Jiro Hirokawa, Tokyo Institute of Technology, Japan; Qing Huo Liu, Duke University, United States
FR-A5.5A.5: A DESIGN OF DUAL-BAND CIRCULARLY POLARIZED MILLIMETER-WAVE 1827 MICROSTRIP ANTENNA
Huakang Chen, Zhizhong Zhang, Fang Lei, Chongqing University of Posts and Telecommunications, China
FR-A1.4A: LEAKY-WAVE ANTENNAS BASED ON SIW
FR-A1.4A.1: CONFORMAL CONTINUOUS TRANSVERSE STUB ANTENNA BASED ON SIW 1829 TECHNOLOGY FOR 5G APPLICATIONS
Abdessalem Talbi, Mourad Nedil, Université du Québec en Abitibi-Témiscamingue, Canada; Khelifa Hettak, Senior Researcher/Communications Research Centre, Canada
FR-A1.4A.2: LEAKY-WAVE ANTENNA BASED ON MODIFIED APERTURE HALF-MODE SUBSTRATE
FR-A1.4A.3: BACKWARD TO FORWARD BEAM SCANNING LEAKY-WAVE ANTENNA BASE ON
FR-A3.1A: PARALLEL AND HARDWARE ACCELERATION METHODS
FR-A3.1A.1: PARALLEL NON-UNIFORM MLFMA FOR MULTISCALE ELECTROMAGNETIC1837 SIMULATION
Stephen Hughey, Hasan Metin Aktulga, Vikram Melapudi, Balasubramaniam Shanker, Michigan State University, United States; Mingyu Lu, West Virginia University Institute of Technology, United States; Eric Michielssen, University of Michigan, United States
FR-A3.1A.2: BRUTE-FORCE GPU ACCELERATED EVALUATION OF DIPOLE-DIPOLE INTERACTIONS 1839 Alexander Paulus, Thomas F. Eibert, Technical University of Munich, Germany
FR-A3.1A.3: SUPERCOMPUTING FOR FULL-WAVE TOMOGRAPHIC IMAGE RECONSTRUCTION IN
FR-A3.1A.4: MODELLING THE INTERACTION OF THZ WAVES WITH BREAST CANCER TISSUES
FR-UB.4A: LOW NOISE AND PERIODIC DEVICES
FR-UB.4A.4: PHASED ANTENNA ARRAY DESIGN USING SHUFFLED FROG-LEAPING ALGORITHM
FR-UB.4A.5: FREQUENCY-RECONFIGURABLE QUASI-YAGI ANTENNA 1847 Abdurahman Hmouda, Tayeb Denidni, INRS-EMT, Québec Université, Canada
FR-UB.4A.6: MAXIMUM-BANDWIDTH SYNTHESIS OF MONOPULSE ARRAY ANTENNAS WITH

FR-UB.4A.7: RECONFIGURABLE SWITCHED-BEAM ANTENNA USING CYLINDRICAL BOW TIE 1851 FSS WINDOW
Muamba Mukendi Leingthone, Hakem Nadir, Université de Québec en Abitibi-Témiscamingue and underground communications research laboratory (LRTCS), Canada
FR-UB.4A.8: WIDE-ANGLE SCANNING PHASED ARRAY BASED ON A MICROSTRIP MAGNETIC
FR-A2.2A: CLOAKING STRUCTURES
FR-A2.2A.1: TIME-VARYING METAMATERIAL DOPPLER CLOAK: APPLICATIONS TO INVISIBILITY 1855 AND ANTENNAS
Davide Ramaccia, Filiberto Bilotti, Alessandro Toscano, Roma Tre University, Italy; Dimitrios Sounas, Andrea Alù, University of Texas at Austin, United States
FR-A2.2A.2: EXPLOITING ELECTROMAGNETIC CLOAKING TO DESIGN COMPACT
Stefano Vellucci, Roma Tre University, Italy; Alessio Monti, Mirko Barbuto, Niccolò Cusano University, Italy; Alessandro Toscano, Filiberto Bilotti, Roma Tre University, Italy
FR-A2.2A.3: EFFECT OF GEOMETRICAL PARAMETERS OF A WIDTH MODULATED MICROSTRIP
FR-A2.2A.4: TOWARDS WAVEFORM-SELECTIVE CLOAKING DEVICES EXPLOITING
Stefano Vellucci, Roma Tre University, Italy; Alessio Monti, Mirko Barbuto, Niccolò Cusano University, Italy; Alessandro Toscano, Filberto Bilotti, Roma Tre University, Italy
FR-A5.4A: COMMUNICATION TECHNOLOGY
FR-A5.4A.1: A NOVEL PASSIVE RFID TEMPERATURE SENSOR
FR-A5.4A.2: ISOLATION IMPROVEMENT OF CYLINDRICAL MILLIMETER-WAVE REPEATERS 1865 USING A REACTIVE IMPEDANCE SURFACE
Bradley Allen, Jaegeun Ha, Nathan Jastram, Dejan Filipovic, University of Colorado Boulder, United States; Scott Rudolph, U.S. Naval Research Laboratory, United States
FR-A5.4A.3: A NOVEL L-CRLH BASED COMPACT WIDE BAND FILTERED POWER DIVIDER FOR 1867 WLAN APPLICATIONS
Norhan Abdelhady, Ahmed Hussien, Ahmed Daw, MSA University, Egypt; Mahmoud A. Abdalla, Military Technical College, Egypt
FR-A5.4A.4: MULTIBAND PIFA ANTENNA FOR MOBILE HANDHELD DEVICES
FR-A1.5A: LEAKY WAVE ANTENNAS BASED ON FABRY-PEROT STRUCTURES
FR-A1.5A.1: REFRACTIVE INDEX ENGINEERING IN 3D PRINTED DIELECTRIC SUBSTRATES FOR
Badreddine Ratni, Shah Nawaz Burokur, LEME, UPL, Univ Paris Nanterre, France; Gérard-Pascal Piau, AIRBUS, France; André de Lustrac, C2N, CNRS, Univ. Paris-Sud, Université Paris-Saclay, France

FR-A2.1P.5: A NESTED-SPRING METAMATERIAL UNIT CELL FOR BROADBAND
FR-A2.1P.6: 1-BIT, 2-BIT POLARIZATION INSENSITIVE REFLECTION PROGRAMABLE
FR-A2.1P.7: IMPROVING STABILITY OF NEGATIVE CAPACITORS FOR USE IN ACTIVE
FR-A2.1P.8: RECONFIGURABLE MULTIBAND FARIR NOTCH FILTER EMPLOYING PHASE
FR-A2.1P.9: DESIGN OF A WIDEBAND RECONFIGURABLE HUYGENS METASURFACE
FR-A2.1P.10: A VOLTAGE TUNABLE METAMATERIAL FOR PHASE SHIFTING AT U-BAND BASED ON 1907 LIQUID CRYSTAL Yizhe Zhao, Anyong Qing, University of Electronic Science and Technology of China, China
FR-UB.3P: MILLIMETER WAVE AND TERAHERTZ ANTENNAS
FR-UB.3P.3: A NEW BUTTERFLY RADIATING ELEMENT FOR CIRCULAR POLARIZED SERIES
FR-UB.3P.4: CAVITY-BACKED SLOT ARRAY FOR MULTILAYER PCB IMPLEMENTATION1911 Christopher G. Hynes, Rodney Vaughan, Simon Fraser University, Canada
FR-UB.3P.5: AN OPTICAL LEAKY WAVEGUIDE EXCITATION BY OFFSET PRABOLIC REFLECTOR
FR-UB.3P.6: WIDEBAND BEAM STEERING USING A 4-ARM SPIRAL ARRAY FOR SIMULTANEOUS
FR-UB.3P.7: A FREQUENCY-RECONFIGURABLE CAVITY-BACKED SLOT ANTENNA ESPAR IN H
FR-UB.3P.9: COAXIAL FED SUBSTRATE INTEGRATED WAVEGUIDE H-PLANE HORN ANTENNA
FR-A5.2P: SOFTWARE DEFINED/COGNITIVE RADIO APPLICATIONS
FR-A5.2P.1: USE OF A DIGITAL NON-FOSTER RADIO ARCHITECTURE FOR CONVENTIONAL

FR-A5.2P.2: DISCOVERY OF BLOCKING TERRAIN IN A MILLIMETER-WAVE NETWORK BY ON-THE-FLY INCOHERENT TOMOGRAPHY Steven Ellingson, Aaron Marinkovich, Virginia Polytechnic Institute and State University, United States	. 1923
FR-A5.2P.4: BANDWIDTH ENHANCED LOW-VHF COMMUNICATIONS WITH A MINIATURE NON-FOSTER ANTENNA	. 1925
Jihun Choi, Fikadu Dagefu, Brian Sadler, U.S. Army Research Laboratory, United States; Kamal Sarabandi, University of Michigan, United States	
FR-A4.1P: EM PROPAGATION ANALYSIS AND PREDICTION IN NON-STANDARD ATMOSPHERE	
FR-A4.1P.3: PREDICTING RF PROPAGATION WITH NUMERICAL MODELS	. 1927
FR-A4.1P.4: IMPACT OF DATA SELECTION ON THE ACCURACY OF ATMOSPHERIC REFRACTIVITY EVAPORATIVE DUCT INVERSIONS USING GENETIC ALGORITHMS Ian J. Matsko, Erin E. Hackett, Coastal Carolina University, United States	. 1929
FR-A1.1P: DIRECTIONAL UWB ANTENNAS II	
FR-A1.1P.1: SUPERSHAPED CPW-FED MONOPOLE ANTENNA WITH PARASITIC STRIPS FOR UNIDIRECTIONAL PATTERN	. 1931
Vignesh Shanmugam Bhaskar, Eng Leong Tan, King Ho Holden Li, Man Siu Tse, Nanyang Technological University, Singapo	ore
FR-A1.1P.2: A LOOP-LINE ANTENNA WITH WIDEBAND CIRCULAR POLARIZATION	. 1933
FR-A1.1P.3: A DUAL-POLARIZED BROADBAND RESONANT CAVITY ANTENNA	. N/A
FR-A1.1P.4: UWB WITH GAIN ENHANCEMENT ARCHIMEDEAN SPIRAL MICROSTRIP ANTENNAS FOR ON-BOARD SATELLITE COMMUNICATIONS Mahmoud Rajab, Fatma El-Hefnawi, National Authority for Remote Sensing and Space Science, Egypt; Salwa Elramly, Misn	
University for science & Technology, Egypt; Marwa Bannis, Egyptian Russian University, Egypt	
FR-A1.1P.5: A COMPACT ULTRA-WIDEBAND SINGLE ELEMENT PLANAR YAGI ANTENNA Muhammad Awais, Muhammad Hamza, Wasif Tanveer Khan, Lahore University of Management Sciences, Pakistan	. 1939
FR-A1.1P.6: SIW STRUCTURE EXPLORED AS A LOW-PROFILE WIDEBAND ANTENNA BEARING USER-FRIENDLY CHARACTERISTICS FOR WIRELESS TRANSCEIVERS Suvadeep Choudhury, Akhilesh Mohan, Indian Institute of Technology Kharagpur, India; Debatosh Guha, University of Calc India	
FR-A1.1P.7: MILLIMETER-WAVE BROADBAND PLANAR CAVITY-BACKED ANTENNA WITH APPROXIMATELY SYMMETRICAL RADIATION PATTERN Jiexi Yin, Qi Wu, Chen Yu, Haiming Wang, Wei Hong, Southeast University, China	. 1943
FR-A1.1P.8: REDUCED COUPLING FOR THROUGH WALL RADARS USING ORTHOGONAL CIRCULAR POLARIZED ANTENNAS Guntaas Kaur, Shobha Sundar Ram, IIIT-Delhi, India	. 1945
FR-A1.1P.10: PLANAR BI-BLADE ANTENNA INTEGRATED WITH BALUN FOR GPR APPLICATIONS Ranadhir Chatterjee, Arijit De, Indian Institute of Technology Kharagpur, India	. 1947

FR-A1.2P.1: DESIGN OF AN ULTRA-THIN COMPACT FLEXIBLE DUAL-BAND ANTENNA FOR
FR-A1.2P.2: COMPACT TRI-BAND SLOTTED PRINTED MONOPOLE ANTENNA FOR WLAN AND
FR-A1.2P.3: A QUAD-BAND EIGHT-ANTENNA ARRAY FOR 5G/WLAN MIMO IN MICRO WIRELESS
FR-A1.2P.4: DUAL-BAND SINGLE/DUAL-BEAM SLOT PATCH ANTENNA
FR-A1.2P.5: MULTIBAND SPLIT-MONOPOLE ANTENNA DESIGN RULES
FR-A4.3P: ADVANCED MICROWAVE IMAGING APPLICATIONS
FR-A4.3P.1: TOWARDS THREE-DIMENSIONAL MILLIMETER-WAVE RADAR IMAGING OF
FR-A4.3P.2: ARRAY OPTIMIZATION FOR AN ON-THE-MOVE 3D IMAGING SYSTEM
FR-A4.3P.3: ALL-DIRECTIONS THORUGH-THE-WALL IMAGING USING OMNIDIRECTIONAL
FR-A4.3P.4: HIGH RESOLUTION SUBSURFACE IMAGING OF BURIED TARGETS USING
FR-A4.3P.5: GPR SYSTEM ONBOARD A UAV FOR NON-INVASIVE DETECTION OF BURIED
FR-A4.3P.7: NEAR-FIELD MICROWAVE IMAGING OF EMBEDDED OBJECTS IN A DENSE SLAB
FR-A4.3P.8: SUBSURFACE CYLINDRICAL CAVITY DETECTION VIA TE AND TM MODE MISMATCH

FR-A1.2P: DUAL-BAND AND MULTI-BAND ANTENNAS (III)

FR-A4.3P.9: DCGAN-BASED SCHEME FOR RADAR SPECTROGRAM AUGMENTATION IN HUMAN
FR-A4.3P.10: THROUGH THE WALL HUMAN SIGNATURE DETECTION USING PRINCIPLE
FR-A1.3P: ANTENNA FEEDS AND MATCHING CIRCUITS (III)
FR-A1.3P.1: A COMPACT BEAM-FORMING NETWORK FOR SWITCHED-BEAM ARRAYS
FR-A1.3P.2: ON THE DESIGN OF WIDEBAND MONOSTATIC STAR SYSTEMS WITH SPHERICALLY
FR-A1.3P.3: CURRENT REJECTION CHARACTERISTICS OF CHOKE STRUCTURE COMPOSED OF
FR-A1.3P.4: DESIGN OF A HIGH EFFICIENCY LOW SIDELOBE DUAL-POLARIZATION CAVITY
FR-A1.3P.5: A COMPACT SLOTTED-CAVITY ANTENNA FOR HPM REFLECTOR FEED
FR-A1.3P.6: TIGHTLY COUPLED DIPOLE ARRAY WITH WIDEBAND DIFFERENTIAL FEEDING
FR-A1.3P.7: EXPERIMENTAL INVESTIGATION OF PROBE IMMUNITY TO ABSORBER PLATE
FR-A1.3P.8: A RADIAL MULTI-MODE FILTERING POWER DIVIDER FOR ANTENNA ARRAY
FR-A1.3P.9: A HIGH-GAIN DUAL-FREQUENCY DUAL-POLARIZATION FEED SYSTEM FOR 5G
FR-A1.3P.10: MIXED TUNING METHODS FOR HF SMALL LOOP ANTENNA
FR-A4.4P: MILLIMETER-WAVE PROPAGATION
FR-A4.4P.1: SIMULATING ENGINEERED ELECTROMAGNETIC SURFACES IN RAY-TRACING

FR-A4.4P.2: CALCULATION OF MUTUAL COUPLING BETWEEN TWO ANTENNAS OF DIVERSE
FR-A4.4P.3: CHANNEL ANALYSIS AND PERFORMANCE EVALUATION OF WIRELESS BACKHAUL AT 2001 5G FREQUENCY BANDS Ruonan Shi, Bo Ai, Danping He, Ke Guan, Beijing Jiaotong University, China; Ning Wang, Zhengzhou University, China; Yajun Zhao, ZET, China
FR-A4.4P.4: COMPLEX PERMITTIVITY OF TYPICAL CONSTRUCTION MATERIALS OVER 40-50
FR-A4.4P.5: DOPPLER SHIFT AND COHERENCE TIME OF 5G VEHICULAR CHANNELS AT 3.5 GHZ
FR-A5.1P: RFID AND REMOTE SENSING
FR-A5.1P.2: EMBROIDERED UHF RFID MOISTURE SENSOR TAG ON DISHCLOTH SUBSTRATE
FR-A5.1P.3: HIGH-ORDER PT-SYMMETRIC TELEMETRIC SENSORS WITH
FR-A5.1P.4: A NOVEL PASSIVE RFID TEMPERATURE SENSOR USING LIQUID CRYSTAL
FR-A5.1P.5: ARRAY STRATEGIES FOR IMPROVING THE PERFORMANCES OF CHIPLESS RFID
TUP-A2.3P: FREQUENCY SELECTIVE SURFACE APPLICATIONS
TUP-A2.3P.1: AN I-SLAB SYSTEM FOR TILTED BEAM FORMATION
TUP-A2.3P.2: DESIGN OF FREQUENCY SELECTIVE PAPER FOR CRACK DETECTION OF
TUP-A2.3P.3: FREQUENCY SELECTIVE PROPERTIES OF METAL MESH OPTICALLY
TUP-A2.3P.4: A FLEXIBLE FREQUENCY SELECTIVE SURFACE FOR BEAM-SWITCHING
TUP-A2.3P.5: DUAL-BAND FILTENNA DESIGN FOR X-BAND APPLICATIONS

TUP-A2.3P.6: CODING AMC STRUCTURE FOR PATTERN SCATTERING
TUP-A2.3P.7: ELECTROMAGNETIC RESPONSE FROM A TWO-DIMENSIONAL ARRAY OF
Jerika Cleveland, Benjamin D. Braaten, North Dakota State University, United States; Jeffery Allen, Monica Allen, Brett Wenner, Air Force Research Laboratory, United States
TUP-A2.3P.9: OFF-BODY ANTENNA DUAL-BEAM LINEAR TO CIRCULAR POLARISATION
TUP-A2.1P: ADVANCES IN FREQUENCY SELECTIVE SURFACES
TUP-A2.1P.1: IMPROVED BROADBAND BANDPASS FSS FILTERS FOR 5G APPLICATIONS
TUP-A2.1P.2: MULTI-OBJECTIVE LAZY ANT COLONY OPTIMIZATION FOR FREQUENCY
TUP-A2.1P.3: COMPACT THIRD-ORDER BANDPASS FREQUENCY SELECTIVE SURFACE WITH
TUP-A2.1P.4: A NOVEL WIDEBAND FREQUENCY SELECTIVE SURFACE DESIGN BASED ON
TUP-A2.1P.5: POLARIZATION INDEPENDENT FREQUENCY SELECTIVE SURFACE DESIGN
TUP-A2.1P.6: SANDWICHED PRS FABRY-PEROT STRUCTURE FOR ACHIEVING COMPACTNESS
TUP-A2.1P.7: BISTATE FREQUENCY SELECTIVE SURFACE BASED ON MICROFLUIDIC
TUP-A2.1P.8: ACTIVE FREQUENCY SELECTIVE SURFACE WITH TWO INDEPENDENT
TUP-A2.1P.9: 2.5 DIMENSIONAL MINIATURIZED DUAL-BAND FREQUENCY SELECTIVE SURFACE
TUP-A2.1P.10: RECONFIGURABLE FREQUENCY SELECTIVE SURFACE FOR DUAL BAND FILTER

TUP-A2.4P: FREQUENCY SELECTIVE SURFACES: POLARIZERS AND ABSORBERS

TUP-A2.4P.1: LINEAR TO CIRCULAR FSS TRANSFORMER FOR DUAL-POLARIZED APPLICATIONS
TUP-A2.4P.2: TX-RX K/KA BAND POLARIZER BASED ON A SIW POLARIZATION TWISTER
TUP-A2.4P.3: DUAL-FREQUENCY TUNABLE WAVE ABSORBING STRUCTURE BASED ON
TUP-A2.4P.4: DESIGN OF A CO TO CROSS POLARIZATION CONVERTER WITH WIDEBAND PCR
TUP-A2.4P.5: WIDEBAND MULTI-LOOP FSS ABSORBER DESIGN BASED ON Q-FACTOR APPROACH
TUP-A2.4P.6: TUNABLE ABSORPTIVE FREQUENCY-SELECTIVE TRANSMISSION STRUCTURE
TUP-A2.4P.7: LOW-PROFILE PLASMA-BASED TUNABLE ABSORBER
TUP-A2.4P.8: A PROPOSED LONG WAVELENGTH INFRA-RED METAMATERIAL ABSORBER FOR
TUP-A2.4P.9: NEAR-FIELD MULTI-BEAM-SPLITTING FOR FABRY-PEROT CAVITY ANTENNA
TUP-A2.5P: NANOSCALE ELECTROMAGNETICS
TUP-A2.5P.1: THE ELECTROMAGNETIC FRAMEWORK OF "NANOARCHITECTRONICS"
TUP-A2.5P.2: USE OF DIELECTRIC NANOPARTICLES FOR DESIGNING HIGH-REFLECTION
TUP-A2.5P.3: OPTICAL ABSORBERS WITH NPS-BASED LOSSY METASURFACES

TUP-A2.5P.4: ON A BOUNDARY ELEMENT METHOD (BEM) FOR THE NONLOCAL
TUP-A2.5P.5: DIRECTIONAL ENHANCEMENT ANALYSIS OF ALL-DIELECTRIC OPTICAL
TUP-A1.6P: DIELECTRIC RESONATOR ANTENNAS
TUP-A1.6P.1: WIDEBAND 3D-PRINTED DIELECTRIC RESONATOR ANTENNAS
TUP-A1.6P.2: DESIGN OF HYBRID SLOT-FED DIELECTRIC RESONATOR ANTENNA ARRAYS FOR
TUP-A1.6P.3: A WIDEBAND CIRCULARLY POLARIZED DIELECTRIC RESONATOR ANTENNA OVER
TUP-A1.6P.4: CIRCULARLY POLARIZED HIGH GAIN SPHERICAL DIELECTRIC RESONATOR
TUP-A1.6P.5: DESIGN AND DEVELOPMENT OF UWB MODIFIED MALTESE SHAPED DIELECTRIC
TUP-A1.6P.6: BANDWIDTH ENHANCEMENT BY POSITION PERTURBATIONS IN STACKED
TUP-A1.6P.7: MULTI-FREQUENCY CYLINDRICAL DRA WITH IDENTICAL RADIATIONS USING
TUP-A1.6P.8: STRIPLINE FED HOLLOW DIELECTRIC RESONATOR ANTENNA-IN-PACKAGE
TUP-A1.6P.9: BANDWIDTH RECONFIGURABLE CYLINDRICAL DIELECTRIC RESONATOR
TUP-A1.6P.10: A MINIATURIZED BROADBAND RRECTANGULAR DIELECTRIC RESONANT ANTENNA N/A ARRAY FED BY RSIW Xing Jiang, Quan Li, Lin Peng, Xiaofeng Li, Guilin University of Electronic Technology, China

TUP-A1.1P: ARRAY PATTERN SYNTHESIS AND OPTIMIZATION TECHNIQUES

TUP-A1.1P.1: SIMPLE PHASE-MODE COEFFICIENTS FOR EQUIRIPPLE SIDELOBE REDUCTION
TUP-A1.1P.2: SYNTHESIS OF NON-BROADSIDE LINEAR ARRAY WITH SPARSE BAYESIAN2103 LEARNING
Hua Bai, Ramakrishna Janaswamy, University of Massachusetts Amherst, United States
TUP-A1.1P.3: A GRAPHICAL METHOD FOR THE PRELIMINARY DESIGN OF PHASED ARRAY
ANTENNA Stefano Maddio, Giuseppe Pelosi, Monica Righini, Stefano Selleri, University of Florence, Italy; Giorgio Giunta, Chiara Novi, Rheinmetall, Italy
TUP-A1.1P.4: INNOVATIVE METHOD FOR DESIGNING MULTIBEAM-ON-RECEIVE SCANNING2107 ARRAYS WITH OPTIMIZED SUB-ARRAY CONFIGURATION AND ANALYTIC PHASE SYNTHESIS
Nicola Anselmi, Paolo Rocca, Lorenzo Poli, Andrea Massa, University of Trento, Italy
TUP-A1.1P.5: A GENERAL APPROACH TO THE OPTIMAL SYNTHESIS OF SHAPED-BEAMS2109
THROUGH FIXED GEOMETRY ARRAYS Andrea Francesco Morabito, Università Mediterranea di Reggio Calabria, Italy; Giada M. Battaglia, University 'Mediterranea' of Reggio Calabria, Italy; Gennaro Giovanni Bellizzi, Università Mediterranea di Reggio Calabria, Italy; Tommaso Isernia, University 'Mediterranea' of Reggio Calabria, Italy
TUP-A1.1P.6: TWO-STEP OPTIMIZATION OF LINEAR DISTRIBUTED ARRAYS
TUP-A1.1P.7: PHASE-ONLY SHAPED BEAM TRANSMIT-ARRAY
TUP-A1.1P.8: FAST 3D SYNTHESIS OF APERIODIC RECTANGULAR ARRAYS
TUP-A1.1P.9: THINNED ARRAY DESIGN VIA AUTOCORRELATION MATCHING STRATEGY2117 Giacomo Oliveri, Lorenzo Poli, Andrea Massa, University of Trento, Italy
TUP-A1.1P.10: SYNTHESIS OF 4D LINEAR ANTENNA ARRAYS USING AN ITERATIVE CONVEX2119 OPTIMIZATION ALGORITHM
Feng Yang, Shiwen Yang, Yikai Chen, University of Electronic Science and Technology of China, China
TUP-A1.7P: LOW COST ARRAYS FOR SCANNING AND FIXED BEAMS
TUP-A1.7P.1: REALIZATION OF LOW-COST WIDE SCANNING ARRAYS
TUP-A1.7P.2: A SUBSTRATE INTEGRATED WAVEGUIDE SLOT ARRAY WITH
TUP-A1.7P.3: LOW COST BROADBAND PHASED ARRAY SYSTEM
TUP-A1.7P.4: NOVEL LOW-COST PHASE SHIFTERS FOR MILLIMETER WAVE APPLICATIONS

BEAMFORMING BASED ANTENNA ARRAYS Enrico Tolin, Francesca Vipiana, Politecnico di Torino, Germany; Oliver Litschke, Simona Bruni, IMST GmbH, Germany
TUP-A1.7P.6: MICROWAVE IMAGING USING FOCUSED ARRAY ANTENNA
TUP-A1.7P.7: ANALYSIS AND DESIGN OF A CIRCULARLY-POLARIZED PLANAR LEAKY-WAVE
TUP-A1.7P.8: DESIGN OF A 3-FACET LINEARLY-POLARIZED TRANSMITARRAY ANTENNA AT
TUP-A1.7P.9: COMPACT OVERLAPPING ANNULAR SLOT ARRAY
TUP-A1.3P: ARRAYS FOR RADAR: WEATHER, MULTIFUNCTION, AND OTH
TUP-A1.3P.1: ORCHESTRA: OPTIMIZABLE RF CONVERGED HARDWARE EXPRESSION OF A
TUP-A1.3P.4: DUAL-POLARIZED APERTURE-COUPLED HYBRID-FED MICROSTRIP PATCH
TUP-A1.3P.5: A HIGHLY ISOLATED DUAL-POLARIZED CROSSED DIPOLE ARRAY ANTENNA FOR
TUP-A1.3P.6: EFFECTS OF ANTENNA PATTERN ASYMMETRY ON RADAR ANGLE RATE ESTIMATION 2145 Stavros Vakalis, Jeffrey A. Nanzer, Michigan State University, United States
TUP-A1.3P.7: SUBSTRATE INTEGRATED WAVEGUIDE ANTENNA ARRAY FOR MODERN
TUP-A1.3P.8: NULL-STEERING SENSITIVITY TO GROUND PROPERTIES IN
TUP-A1.3P.9: CROSS-POLARIZED NULL-STEERING IN OVER-THE-HORIZON RADAR WITH
TUP-A1.3P.10: SYNTHESIS OF STEERABLE MAXIMALLY SPARSE ARRAY VIA MODIFIED

TUP-A1.9P: WIDEBAND AND UWB ARRAY RADIATORS

TUP-A1.9P.1: 6-15 GHZ WIDE SCANNING CONNECTED ARRAY
TUP-A1.9P.2: WIDE SCAN, WIDEBAND ARRAYS WITH SELF-DUAL POINT-LIKE ELEMENTS
TUP-A1.9P.3: INVESTIGATION OF ACTIVE LOAD PULLING EFFECT ON RADIATED POWER OF
TUP-A1.9P.4: COMPARISON OF TOPOLOGY MODIFICATION FOR SIZE-REDUCTION-ORIENTED2161 WIDEBAND ANTENNA DESIGN Muhammad Ul Haq, Slawomir Koziel, Reykjavik University, Iceland
TUP-A1.9P.5: A 12.5:1 BANDWIDTH DUAL-POLARIZED TIGHTLY COUPLED DIPOLE PHASED ARRAY 2163 WITH COMPACT BALUN Wenyang Zhou, Yikai Chen, Shiwen Yang, University of Electronic Science and Technology of China, China
TUP-A1.9P.6: A 6:1 BANDWIDTH DUAL-POLARIZED LINEAR PHASED ARRAY OF TAPERED SLOT
TUP-A1.9P.7: WIDEBAND TIGHTLY COUPLED ARRAY WITH APERTURE-COUPLED EXCITATION
TUP-A1.9P.8: A LOW PROFILE DUAL-POLARIZED TIGHTLY COUPLED DIPOLE ARRAY WITH
TUP-A1.9P.9: AN X-BAND OBLIQUE POLARIZED ANTENNA ARRAY
TUP-A1.9P.10: A NOVEL DUAL-POLARIZED CAVITY-BACKED ELEMENT FOR WIDEBAND
TUP-A1.2P: ARRAYS FOR 5G AND MILLIMETER WAVE
TUP-A1.2P.1: DESIGNING NEW GENERATION ANTENNAS FOR 5G MIMO SYSTEMS - A NEW
TUP-A1.2P.2: 28 GHZ MULTI-BEAM ANTENNA ARRAY BASED ON A COMPACT WIDEBAND 8X8
TUP-A1.2P.4: A CLASS OF CAVITY-BASED UWB MULTI-BEAMFORMERS WITH APPLICATIONS TO
TUP-A1.2P.5: HEAT DISSIPATION ANTENNA ARRAY FOR COMPACT MASSIVE MIMO RADIO UNIT

TUP-A1.2P.6: APERTURE COUPLED BEAMFORMING ANTENNA ARRAY
TUP-A1.2P.7: A NOVEL DUAL-POLARIZED PLANAR ANTENNA
TUP-A1.2P.8: BEAM STEERING CAPABILITIES OF A FULLY DIELECTRIC ANTENNA ARRAY
TUP-A1.5P: DIELECTRIC RESONATOR AND SIW ANTENNAS
TUP-A1.5P.1: NOVEL ACOUSTICALLY ACTUATED MAGNETOELECTRIC ANTENNAS
TUP-A1.5P.3: HIGH GAIN AND DUAL CIRCULARLY POLARIZED SIW SLOTTED ANTENNA
TUP-A1.5P.4: HEM12D MODE BASED ADVANCED CYLINDRICAL DRA USING A NEW FEEDING
TUP-A1.5P.5: SLOT-LOADED SIW-FED WIDE-BAND YAGI ANTENNA HAVING END-FIRE /
TUP-A1.8P: PATTERN SYNTHESIS, DOA, AND CALIBRATION WITH NON-IDEAL ARRAYS
TUP-A1.8P.1: PENCIL BEAM CONSTRAINED SYNTHESIS OF LINEAR SPARSE ARRAYS IN
TUP-A1.8P.2: OPTIMAL CP-BASED SYNTHESIS OF REAL LINEAR ARRAYS
TUP-A1.8P.3: SYNTHESIS OF SHAPED BEAMS USING ACTIVE ELEMENT PATTERNS AND
TUP-A1.8P.4: APPLICATION OF SOCIAL NETWORK OPTIMIZATION TO SHAPED BEAM
TUP-A1.8P.5: COMPARISON BETWEEN NU-CNLMS AND GA FOR ANTENNA ARRAY FAILURE
TUP-A1.8P.6: ADAPTIVE ANTENNA ARRAY BEAMFORMING BASED ON NORM PENALIZED NLMS
TUP-A1.8P.7: COMPUTATIONALLY EFFICIENT ESPRIT APPROACH FOR 2D DOA ESTIMATION

TUP-A1.8P.8: DOA ESTIMATION WITH TRIPLY PRIMED ARRAYS BASED ON FOURTH-ORDER2211 STATISTICS Kai-Chieh Hsu, Jean-Fu Kiang, National Taiwan University, Taiwan
TUP-A1.8P.9: PHASED ANTENNA ARRAY CALIBRATION BASED ON COMPRESSED SENSING
TUP-A1.4P: COMMUNICATIONS ARRAYS: MODULATIONS AND APERTURES
TUP-A1.4P.1: PULSE SEQUENCE OPTIMIZATION FOR HARMONIC-DIVERSITY EXPLOITATION
TUP-A1.4P.2: FULL-DIVERSITY OAM MULTIPLEXING BY ANTENNA ARRAY
TUP-A1.4P.3: DUAL CHANNEL BROADCAST USING PHASE-ONLY DIRECTIONAL MODULATION
TUP-A1.4P.4: GAIN IMPROVEMENT OF PHASED ARRAY USING SUB-ARRAYED MICROSTRIP
TUP-A1.4P.5: EXPERIMENTAL DEMONSTRATION AND SYSTEM EVALUATION OF OAM-LIKE
TUP-A1.4P.6: DUAL-POLARIZED WIDEBAND REMOTE ELECTRICAL TILT MULTI-BEAM ANTENNAS 2225 Lin-Ping Shen, Hua Wang, Nasrin Hojjat, Willi Lotz, Hamid Jamali, CCAI, Canada
TUP-A1.4P.7: DESIGN AND OPTIMIZATION OF A CIRCULAR POLARIZED LINEAR ARRAY IN SIW
TUP-A1.4P.8: INTEGRATING THE SMALL WIND TURBINE WITH ITS POWER GENERATOR AND
TUP-A1.4P.9: DESIGN AND DEVELOPMENT OF ULTRA-BROADBAND CIRCULARLY POLARIZED
TUP-A1.4P.10: A 28GHZ DUAL-POLARIZED PLANAR ANTENNA ARRAY
TUP-A1.4P.11: FAST DESIGN TUNING OF LINEAR MICROSTRIP ANTENNA ARRAY APERTURES BY

TUP-A2.2P: ELECTROMAGNETIC THEORY

TUP-A2.2P.1: TOWARD THE SOLUTION OF THE TWO WEDGE PROBLEM BY USING THEGENERALIZED WIENER HOPF TECHNIQUE Vito Daniele, Guido Lombardi, Rodolfo S. Zich, Politecnico di Torino-ISMB, Italy	2237
TUP-A2.2P.2: NEW PERSPECTIVES FOR THE LONGITUDINAL SPECTRAL SOLUTION OFSOMMERFELD HALF-SPACE PROBLEM Arun Bhattacharyya, Lockheed Martin Space Systems, United States	2239
TUP-A2.2P.3: HIGH FREQUENCY WEDGE DIFFRACTION ANALYSIS VIA SURFACE EQUIVALENCE THEOREM Hieu Ngoc Quang, Hiroshi Shirai, Chuo University, Japan	2241
TUP-A2.2P.4: APPLICATION OF THE DISCRETE HANKEL TRANSFORM TO CYLINDRICAL	2243
TUP-A2.2P.5: PERTURBATIVE RECIPROCAL FORMULATION FOR MAXWELL'S EQUATIONS: A	
TUP-A2.2P.6: GENERAL BOUNDARY CONDITIONS IN ELECTROMAGNETICS	2247
TUP-A2.2P.7: REALIZATION OF FOURTH ORDER EXCEPTIONAL POINTS OF DEGENERACY INUNIFORM COUPLED-WAVEGUIDES Tarek Mealy, Mohamed Y. Nada, Filippo Capolino, University of California, Irvine, United States	2249
TUP-A2,2P.8: SCALED PT-SYMMETRIC COHERENT PERFECT ABSORBER (CPA)-LASER	2251
TUP-A2.2P.9: TIME REFLECTION AND REFRACTION IN TEMPORAL PERIODIC STRUCTURESLizhen Lu, Xikui Ma, Tianyu Dong, Xi'an Jiaotong University, China; Qi Liu, Xi'an XD Power Systems Co. Ltd., China	2253
TUP-A2.2P.10: A COMPLETE SET OF BOUNDARY CONDITIONS ON PEC - A WAY TO INCREASETHE PHYSICAL INSIGHT OF UNDERGRADUATE STUDENTS Rajarshi Bhattacharya, National Institute of Technology Patna, India	2255
TUP-A2.2P.11: THE SCATTERING BY TWO INVERTED STAGGERED PEC HALF-PLANES LOADED	2257
THP-A3.5P: HIGH FREQUENCY AND ASYMPTOTIC METHODS	
THP-A3.5P.1: TIP DIFFRACTION OF WIDE-ANGLE CONES	2259
THP-A3.5P.2: DEVELOPMENT AND APPLICATION OF ITERATIVE PO TO THE CHARACTERIZATION OF EMI/EMC GROUND TEST FACILITY FOR ELECTRIC PROPULSION THRUSTERS Matteo Albani, Federico Puggelli, Alberto Toccafondi, University of Siena, Italy; Gianfranco Meniconi, Fabrizio Scortecci Aerospazio Tecnologie, Italy	
THP-A3.5P.3: GEODESIC RAY TRACING ON FACETED CONVEX SURFACES FOR CO-SITEINTERFERENCE PREDICTION	
Cagatay Tokgoz, Lamar University, United States: Daniel Dault, Bradley Kramer, Air Force Research Laboratory, United.	States

THP-A3.5P.4: RADIATION PATTERN OF A MONOPOLE ANTENNA ON AN ELECTRICALLY LARGE
THP-A3.5P.5: STUDIES ON NUMERICAL EVALUATION OF SOMMERFELD INTEGRALS FOR
THP-A3.5P.6: PO-BASED SHAPED REFLECTOR DESIGN FOR SECTORAL PATTERN RADAR
THP-A3.5P.7: ANALYSIS OF STRIP-GRATED CONDUCTING ROD USING ASYMPTOTIC STRIP
THP-A3.5P.8: COMPARISON OF THREE SAMPLING METHODS FOR SHOOTING-BOUNCING RAY
THP-A3.5P.9: CURVATURE AND SLOPE CORRECTION IN HIGH-FREQUENCY DIFFRACTION AT
THP-A3.5P.10: RAY MODEL ANALYSIS WITH ANTENNA FOR PREDICTING INDOOR WIRELESS
THP-A4.2P: RCS
THP-A4.2P.1: PHASOR REPRESENTATION METHOD FOR SYNTHESIZING RCS-REDUCTION
THP-A4.2P.2: LUNEBURG LENS FROM HYPERUNIFORM DISORDERED COMPOSITE MATERIALS
THP-A4.2P.3: ANTENNA-BASED CARPET DEVICE FOR EXTREMELY LARGE OBSTACLES:
THP-A4.2P.4: RCS INVESTIGATION OF TETRAHEDRAL ALIGNED SPHERE TARGETS FOR RADAR
THP-A4.2P.5: REFINEMENT AND UNIFICATION OF CHECKERBOARD AND GRADIENT INDEX
THP-A4.2P.6: PATH-LOSS COMPENSATION AND TARGET DESIGN FOR DIELECTRIC WAVEGUIDE
THP-A4.2P.7: A MULTIPURPOSE CALIBRATOR IN RADAR CROSS SECTION MEASUREMENT

THP-A4.2P.8: THE SCATTERING OF VORTEX ELECTROMAGNETIC WAVES BY A COATED
Crima
THP-A3.3P: FAST ALGORITHMS IN COMPUTATIONAL ELECTROMAGNETICS
THP-A3.3P.1: INTEGRATING THE DISCRETE DIPOLE APPROXIMATION FORWARD SOLVER WITH
college, United States
THP-A3.3P.2: FAST CALCULATION OF DIPOLE PROBE RECEIVING PATTERN BASED ON THE
University, Canada
THP-A3.3P.3: ERROR CONTROL OF MLFMA WITHIN A MULTIPLE-PRECISION ARITHMETIC2299 FRAMEWORK
Mert Kalfa, Bilkent University, Turkey; Özgür Ergül, Middle East Technical University, Turkey; Vakur Behcet Ertürk, Bilkent University, Turkey
THP-A3.3P.4: PRUNED NUFFT-3 FOR FAR-FIELD CALCULATIONS
THP-A3.3P.5: FAST ALGORITHM FOR BROADBAND ELECTROMAGNETIC SCATTERING FORM
THP-A3.3P.6: A HYBRID BROADBAND FAST MULTIPOLE ALGORITHM 2305 Tian Xia, Lingling Meng, Qin Liu, Hui Gan, University of Illinois at Urbana-Champaign, United States; Weng Chew, Purdue University, United States
THP-A3.3P.7: SOLUTION OF POTENTIAL INTEGRAL EQUATIONS WITH NSPWMLFMA
THP-A3.3P.8: A FAST AND BROADBAND SURFACE METHOD FOR SKIN EFFECT MODELING IN
THP-A3.3P.9: MACHINE LEARNING BASED MULTILEVEL FAST MULTIPOLE ALGORITHM
THP-A3.3P.10: SINGULAR INTEGRATION IN BEM BY INTERPOLATION: THE EFIE CASE
THP-A3.11P: TIME DOMAIN APPROACH IN COMPUTATIONAL ELECTROMAGNETICS
THP-A3.11P.1: STOCHASTIC FINITE DIFFERENCE FREQUENCY DOMAIN METHOD
THP-A3.11P.2: NUMERICAL DISPERSION AND STABILITY OF THE TIME DOMAIN PROPAGATOR

TRANSIENT ELECTROMAGNETIC PROBLEMS Shu Wang, Zhen Peng, University of New Mexico, United States
THP-A3.11P.4: MACHINE LEARNING BASED NEURAL NETWORK SOLVING METHODS FOR THE
THP-A3.11P.5: SYMMETRIC POSITIVE SEMI-DEFINITE FDTD SUBGRIDDING ALGORITHM IN
THP-UB.2P: HIGH FREQUENCY TECHNIQUES AND METAMATERIALS
THP-UB.2P.3: BROADBAND FREQUENCY RECONFIGURABLE METAMATERIAL ABSORBER USING
THP-UB.2P.4: SECOND-MODE SPOOF SURFACE PLASMON POLARITONS BASED ON
THP-A4.3P: RCS II
THP-A4.3P.1: INVESTIGATION OF CHECKERBOARD METASUFACES ON FLEXIBLE CURVILINEAR
THP-A4.3P.2: IMPACT ON REFLECTION PHASE BY DIFFERENT GEOMETRICAL STRUCTURES OF
THP-A4.3P.3: EFFECTS OF LOCALIZED DEFECTS / SOURCES IN A PERIODIC LATTICE USING
THP-A4.3P.4: ANALYSIS FOR CONTRIBUTION OF ENGINE INLET STRUCTURE TO MONOSTATIC
THP-A4.3P.5: ON THE STUDY OF THE EFFECT OF FREQUENCY DEVIATION ON ELECTRIC
THP-A4.3P.7: A PLANAR ULTRA-WIDEBAND PHASED ARRAY ANTENNA WITH LOW
THP-A4.3P.8: AN INTEGRATED RADIATION AND SCATTERING DESIGN OF LOW-RCS PATCH ARRAY N/A WITH DIFFERENT ANTENNA ELEMENTS Yongtao Jia, Ying Liu, Shuxi Gong, Xidian University, China
THP-A4.3P.9: A HYBRID MICROSTRIP ARRAY OF TWO TYPES OF ANTENNA UNITS FOR

THP-A3.6P: INTEGRAL EQUATION APPROACH AND BASIS FUNCTIONS

THP-A3.6P.1: FORMULATION OF SURFACE-VOLUME-SURFACE-EFIE FOR SOLUTION OF 2D2345 SCATTERING PROBLEMS ON COMPOSITE DIELECTRIC OBJECTS UNDER TM POLARIZATION
Zhuotong Chen, Reza Gholami, Vladimir Okhmatovski, University of Manitoba, Canada
THP-A3.6P.2: SCATTERING ANALYSIS OF BI-ISOTROPIC OBJECTS BY CURRENT-BASED
of China, China
THP-A3.6P.3: ON A CONFORMING IMPEDANCE BOUNDARY CONDITION EFIE
THP-A3.6P.4: A STABLE LOW FREQUENCY TIME DOMAIN EFIE WITH WEIGHTED CONTINUITY2351 EQUATION Thomas Roth, Sandia National Laboratories, United States; Weng Chew, Purdue University, United States
THP-A3.6P.5: CHARACTERISTIC BASIS FUNCTION METHOD FOR THE ANALYSIS OF COMPOSITE 2353 OBJECTS EMBEDDED IN LAYERED MEDIA Yang Su, University of Waterloo, Canada; Raj Mittra, University of Central Florida, King Abdulaziz University, United States
THP-A3.6P.6: A SINGLE SOURCE VOLUME INTEGRAL EQUATION FOR THE INHOMOGENEOUS
THP-A3.6P.7: COMPARISON OF MACRO BASIS FUNCTION SETS FOR ANTENNA ARRAY ANALYSIS 2357 WITH THE MOM Keshav Sewraj, Matthys M. Botha, Stellenbosch University, South Africa
THP-A3.6P.8: ACCELERATION OF REDUCED MATRIX FILLING IN NEAR FIELD REGION FOR2359
M-CBFM USING 2-LEVEL CBFS Chan-Sun Park, Jong-Gwan Yook, Yonsei university, Korea (South); Yi-Ru Jeong, University of Texas at Austin, United States; Ic-Pyo Hong, Kongju National University, Korea (South); Hong-Ryeol Song, Samjin Elex Co., Ltd, Korea (South)
THP-A3.6P.9: ENTIRE-DOMAIN SPECTRAL BASIS FUNCTIONS FOR THE EFFICIENT DESIGN OF2361 METASURFACE ANTENNAS OF CIRCULAR SHAPE
Francesco Vernì, Giuseppe Vecchi, Politecnico di Torino, Italy; Marco Righero, Istituto Superiore Mario Boella, Italy
THP-A3.6P.10: A BROADBAND SIW ANTENNA FOR 5G APPLICATIONS
THP-A3.6P.11: FSS BASED HEXO-FRACTAL DUAL PASSBAND FILTER FOR 28 AND 38 GHZ 5G
THP-A3.8P: MODELING OF WAVE PROPAGATION
THP-A3.8P.1: A RESEARCH ON BROADBAND DOA TECHNOLOGY BASED ON VIRTUAL-STAGGER

THP-A3.8P.2: MODELING OF A DIRECT TRANSITION FROM IC-PACKAGE TO WAVEGUIDE Sander Jacobus Geluk, Bastiaan de Hon, Bart Smolders, Eindhoven University of Technology, Netherlands	2369
THP-A3.8P.4: ANALYTICAL SOLUTION TO THE INCIDENT POWER OF THE TAPERED WAVE IN3-D SCATTERING PROBLEMS Lisha Zhang, George Pan, Arizona State University, United States	2371
THP-A3.2P: APPLICATIONS OF COMPUTATIONAL ELECTROMAGNETICS	
THP-A3.2P.1: ELECTROMAGNETIC SCATTERING OF ARBITRARY-SHAPED BURIED OBJECTS	N/A
THP-A3.2P.2: COORDINATE TRANSFORMATION BASED FIELD TAPERING DEVICE	China;
THP-A3.2P.3: CAUSALITY VERIFICATION USING A FIRST-ORDER CHEBYSHEV FILTER Amirreza Jalali Khalilabadi, Ata Zadehgol, University of Idaho, United States	2377
THP-A3.2P.4: COMPACT 2-D FDFD ANALYSIS OF WAVEGUIDE STRUCTURES WITH ARPACK	2379
THP-A3.2P.5: MULTI-PARAMETER MODELING WITH ANN FOR ANTENNA DESIGN	2381
THP-A3.2P.6: IMPACTS OF TIP STRUCTURE ON RF-INDUCED HEATING OF AN IMPLANTABLE NEUROSTIMULATOR UNDER 1.5 T MRI Rui Yang, Jianfeng Zheng, Ji Chen, University of Houston, United States	2383
THP-A3.2P.7: FREQUENCY SELECTIVE SURFACE ANALYSIS USING THE EIGENMODE	N/A
THP-A3.2P.9: INDUCTANCE MATRIX CALCULATION FOR SHIELDED MULTICONDUCTOR SYSTEMS USING AN EIGENMODE PROJECTION TECHNIQUE Hady Saied, Analog Devices, Inc., Egypt; Islam Eshrah, Cairo University, Egypt	2387
THP-A3.2P.10: CIRCULARLY POLARIZED C-SHAPED MONOPOLE ANTENNA FOR C-BANDAPPLICATIONS	2389
M. Ahsan Ashraf, Farooq A. Tahir, Research Institute of Microwave and Millimeter Wave Studies, National University of Scand Technology (NUST), Pakistan; Qammer H. Abbasi, University of Glasgow, United Kingdom	ciences
THP-A3.2P.11: OPTIMAL CHOICE OF MEASUREMENT POINTS IN NEAR fiELD: NUMERICAL	2561
THP-A3.9P: NEW INTEGRAL EQUATION FORMULATIONS	
THP-A3.9P.1: IMPROVED REDUCED-ORDER MODEL WITH EQUIVALENT SURFACE FOR	
THP-A3.9P.2: A RIGOROUS MACROMODELING APPROACH TO EFFICIENTLY SIMULATE LARGEARRAYS OF COMPLEX SCATTERERS Utkarsh Patel, Piero Triverio, Sean V. Hum, University of Toronto, Canada	2393

THP-A3.9P.3: A HYBRID INTEGRAL EQUATION APPROACH TO SOLVE THE ANISOTROPIC
THP-A3.9P.4: ELECTROMAGNETIC FIELD SCATTERING FROM A THIN SHEET
THP-A3.9P.5: A DOMAIN DECOMPOSITION METHOD BASED ON SIMPLIFIED VOLUME-SURFACE
THP-A3.7P: INTEGRAL EQUATION STRATEGIES AND APPLICATIONS
THP-A3.7P.1: AN ALTERNATE APPROACH TO USE SOMMERFELD INTEGRALS CODES FOR
THP-A3.7P.2: DEEP THINNING OF MOM MATRICES WITH THE BALANCED ELECTROMAGNETIC
THP-A3.7P.3: NUMERICAL IMPLEMENTATION OF EQUIVALENCE PRINCIPLE ALGORITHM FOR
THP-A3.7P.4: ANALYSIS OF THE POSITION OF ANTENNA ON A SCALED VEHICLE BY USING
THP-A3.7P.5: AN EXPLICIT MARCHING-ON-IN-TIME SCHEME FOR SOLVING THE KIRCHHOFF2409 INTEGRAL EQUATION Rui Chen, Sadeed Sayed, Hakan Bagci, King Abdullah University of Science and Technology (KAUST), Saudi Arabia
THP-A4.5P: SCATTERING, DIFFRACTION, AND RCS
THP-A4.5P.1: PLANEWAVE SCATTERING BY TOPOLOGICALLY INSULATING SURFACE STATES ON2411 A SPHERICAL SURFACE
Muhammad Faryad, Lahore University of Management Sciences, Pakistan; Akhlesh Lakhtakia, Pennsylvania State University, United States
THP-A4.5P.2: PLANE WAVE SCATTERING BY A PEC WEDGE IN RELATIVISTIC TRANSLATIONAL
THP-A4.5P.3: GAUSSIAN BEAM DIFFRACTION BY THE INVERSE PRISM
THP-A4.5P.4: THE PHYSICS OF ANGLE GLINT: USING THE POYNTING VECTOR
THP-A4.5P.5: FORWARD DERIVATION AND ANALYSIS FOR 3-D SCATTERING CENTER POSITION

THP-A4.5P.6: RADAR BACKSCATTER MEASUREMENTS OF ROAD SURFACES AT 77 GHZ
THP-A4.5P.7: ELECTROMAGNETIC WAVE REFLECTION FROM SHOCKED DIELECTRIC242: MATERIALS
Benoit Rougier, Hervé Aubert, LAAS CNRS, France; Alexandre Lefrançois, CEA, France
THP-A4.5P.8: CHARACTERIZATION OF DIFFUSE SCATTERING BASED ON DIELECTRIC
THP-A4.5P.9: A FORWARD APPROACH TO ESTABLISH PARAMETRIC SCATTERING CENTER
THP-A4.5P.10: DOPPLER SPECTRUM OF ELECTROMAGNETIC SCATTERING FROM OCEAN
THP-A3.1P: ACCURATE AND STABLE INTEGRAL EQUATIONS
THP-A3.1P.2: AN IMPROVED QUADRATURE ERROR ESTIMATE FOR NEARLY-SINGULAR MOM
THP-A3.1P.3: THE IMPACT OF INTEGRATION ORDER AND ACCURACY ON THE STABILITY OF
THP-A3.1P.4: ACCURACY OF SURFACE CURRENT APPROXIMATION USING LEGENDRE
THP-A3.1P.5: ACCURATE IDENTITY OPERATOR DISCRETIZATION FOR THE COMBINED FIELD243' INTEGRAL EQUATION Jonas Kornprobst, Thomas F. Eibert, Technical University of Munich, Germany
THP-A3.1P.6: ACCURATE SOLUTION OF MULLER EQUATIONS FOR ELECTROMAGNETIC
THP-A3.1P.7: ULTRA HIGH ORDER BASIS FUNCTIONS IN ANALYSIS OF SCATTERING FROM
THP-A3.1P.8: AN EXPLICIT MOT SCHEME FOR SOLVING THE NYSTROM-DISCRETIZED
THP-A3.1P.9: DISCONTINUOUS GALERKIN TIME DOMAIN ELECTRIC FIELD INTEGRAL

THP-A3.10P: NEW WELL-CONDITIONED INTEGRAL EQUATIONS

THP-A3.10P.1: ON THE SPECTRAL BEHAVIOR AND NORMALIZATION OF A RESONANCE-FREE AND 244' HIGH-FREQUENCY STABLE INTEGRAL EQUATION Tiffany L. Chhim, Politecnico di Torino, Italy; Simon B. Adrian, Technical University of Munich, Germany; Francesco P. Andriulli, Politecnico di Torino, Italy	7
THP-A3.10P.2: REDUCING UNKNOWNS ON OVERLY DENSE MESHES IN COMPUTATIONAL	L
THP-A3.10P.3: A REFINEMENT-FREE CALDERÓN PRECONDITIONER FOR THE ELECTRIC FIELD	1
THP-A3.10P.5: SPURIOUS-FREE SURFACE INTEGRAL EQUATION CHARACTERISTIC MODE	3
THP-A4.1P: INVERSE SCATTERING AND IMAGING	
THP-A4.1P.1: MODEL-BASED INVERSION OF 3D ANISOTROPIC OBJECTS AND SENSITIVITY	5
THP-A4.1P.2: FAST ANALYSIS OF THREE-DIMENSIONAL SCATTERING FROM A BURIED OBJECT2457 UNDER A DIELECTRIC ROUGH SURFACE USING THE CHARACTERISTIC BASIS FUNCTION METHOD	7
Chao Li, University of Jinan, China; Raj Mittra, University of Central Florida, United States	
THP-A4.1P.3: TARGET RECOGNITION USING SPARSE REPRESENTATION: A PERFORMANCE	9
THP-A4.1P.5: A NEW DIHEDRAL REFLECTOR FOR SIMULTANEOUS POLARIMETRIC	1
THP-A4.1P.6: A NOVEL FINGERPRINT SCANNING METHOD USING TERAHERTZ IMAGING	3
THP-A4.1P.7: IDENTIFICATION AND SEPARATION OF MULTIPLE SCATTERING FROM COMPLEX2465 CAVITIES Penghui Chen, Xiaojian Xu, Beihang University, China	5
THP-A4.1P.8: COMBINATION OF GO/PO AND PTD METHOD FOR EM SCATTERING AND SAR	7
THP-A4.1P.9: A DEPOLARIZING CHIPLESS RFID TAG WITH HUMIDITY SENSING CAPABILITY	9
THP-A4.1P.10: UWB IMAGING USING COMPUTATIONAL FDTD TR AND TRO METHODS	1

THP-A4.4P: SCATTERING II

THP-A4.4P.1: ON THE MODELING OF THE BISTATIC COHERENT SCATTERING FROM A ROUGH	473
THP-A4.4P.2: VALIDATING MODELS OF BISTATIC SCATTERING FROM DIELECTRIC SURFACES	475
THP-A4.4P.3: RADIATION BY AN APERTURE IN A PLANAR SCREEN ILLUMINATED BY A GAUSSIAN	
THP-A4.4P.4: FORWARD SCATTERING BASED APPROACH FOR REMOTE IMPEDANCE	
THP-A4.4P.5: FAST CALCULATION OF ELECTROMAGNETIC SCATTERING FROM OBJECTS ABOVE 24 COMPLEX ROUGH SURFACE ENVIRONMENT Yiwen Wei, Chao-Fu Wang, Chun Yun Kee, Tse Tong Chia, National University of Singapore, Singapore	481
THP-A4.4P.6: 4-40 GHZ TRANSMISSION MEASUREMENT OF INDOOR BUILDING MATERIALS AT	483
THP-A4.4P.7: EFFECTS OF COMPLEX WALL STRUCTURES ON ANTENNA RADIATION	485
THP-A4.4P.8: IMPACT OF TROPOSPHERIC SCINTILLATION ON EARTH-SPACE LINK IN WEST	487
THP-A4.4P.9: IMPACT OF RAIN ON EARTH-SPACE COMMUNICATION LINK IN WEST-AFRICA	489
THP-A3.4P: FAST INTEGRAL EQUATION SOLVERS	
THP-A3.4P.1: FAST DIRECT EQUIVALENCE PRINCIPLE ALGORITHM FOR MULTI-SCALE	491
THP-A3.4P.2: FAST SOLUTIONS OF DYADIC GREEN'S FUNCTION FOR MULTILAYERED	493
THP-A3.4P.3: A LOG-SCALE INTERPOLATION METHOD FOR LAYERED MEDIUM GREEN'S	495
THP-A3.4P.4: ON THE RANDOMIZED CROSS APPROXIMATION OF EFIE METHOD OF MOMENTS	497

THP-A3.4P.5: ACCURACY CONTROLLED H2-MATRIX-MATRIX PRODUCT IN LINEAR
THP-A3.4P.6: ON RAPID ESTIMATION OF IMPEDANCE-MATRIX RANKS VIA GRID-BASED
THP-A3.4P.7: METHOD FOR GENERATING A MINIMAL-RANK H2-MATRIX FROM FMM FOR
THP-A3.4P.8: BEM BASED ADAPTIVE CROSS APPROXIMATION ALGORITHM FOR SOLVING LOW
THP-A3.4P.9: 3D CROSS-TUCKER APPROXIMATION IN FFT-BASED VOLUME INTEGRAL
THP-A3.4P.10: A HIGHER-ORDER NYSTROM DISCRETIZATION OF SURFACE INTEGRAL
THP-A5.2P: WIRELESS POWER HARVESTING
THP-A5.2P.1: COMPACT FLAT DIPOLE RECTENNA FOR ENERGY HARVESTING OR WIRELESS2511 POWER TRANSMISSION APPLICATIONS Abderrahim Okba, Alexandru Takacs, Hervé Aubert, LAAS CNRS, France
THP-A5.2P.2: MULTI-LAYER DIPOLE ARRAY FOR MULTI-POLARIZATION ELECTROMAGNETIC
THP-A5.2P.3: HIGH EFFICIENCY VOLTAGE DOUBLER RECTIFIER DESIGN FOR HARVESTING
THP-A5.2P.4: A HYBRID INDUCTIVE AND RESONANT TRANSMITTER FOR DUAL-MODE
THP-A5.2P.5: A HIGH-EFFICIENCY DUAL-BAND WIRELESS ENERGY HARVESTING CIRCUIT
THP-A5.2P.6: ELECTROMAGNETIC ENERGY HARVESTING USING FREQUENCY SELECTIVE
THP-A5.2P.7: A SELECTIVE RECTIFIER FOR RF ENERGY HARVESTING FOR IOT APPLICATIONS
THP-A5.2P.8: RECTENNA ARRAY ON FLEXIBLE SUBSTRATE
THP-A5.2P.9: DUAL-POLARIZED AND MULTI-BEAM CROSS-MESH ARRAY ANTENNA FOR RF

Nermeen A.Eltresy, Dalia Elsheakh, Esmat A. Abdallah, Electronics Research Institute, Egypt; Hadia Elhenawy, Ain Shams University, Egypt
THP-A5.3P: WIRELESS POWER TRANSMISSION
THP-A5.3P.1: IMPACT OF INTRINSIC LOSSES IN WIRELESS POWER TRANSFER USING DR
THP-A5.3P.3: SELF-OSCILLATING CAPACITIVE WIRELESS POWER TRANSFER WITH ROBUST
THP-A5.3P.4: SIMULTANEOUS WIRELESS POWER AND DATA TRANSFER THROUGH BROADBAND
THP-A5.3P.5: FUSED HELICO-SPIRAL COIL DESIGN USING BOTH NEURAL NETWORK AND
THP-A5.3P.6: POWER TRANSFER BY ELECTRIC COUPLING BETWEEN ROTATING BODIES
THP-A5.3P.7: HIGHER-ORDER BESSEL BEAMS LAUNCHERS COMPARISON
THP-A5.3P.8: 1 GHZ CHARGE PUMP WITH ULTRA-LOW POWER BOOST CONVERTER FOR
THP-A5.3P.9: A DESIGN OF OPTIMAL RECTENNA ARRAY FOR RETRODIRECTIVE MPT SYSTEM2545 Seung-Tae Khang, Hye-Won Jo, In-June Hwang, Jong-Won Yu, Korea Advanced Institute of Science and Technology (KAIST), Korea (South)
THP-A5.3P.10: A NOVEL LOW-COST BEAM STEERING METHOD USING DISPERSIVE
THP-A5.1P: WEARABLE, IMPLANTABLE WIRELESS POWER
THP-A5.1P.1: 2.45 GHZ WEARABLE RF-HARVESTER FOR LARGE AREA TEXTILE HARVESTER
THP-A5.1P.2: RADIATION PATTERNS OF AN RF ENERGY HARVESTING NECKLACE ON HUMAN
THP-A5.1P.3: STUDY OF MISALIGNMENT EFFECTS ON HYBRID POWER TRANSFER AND

THP-A5.2P.10: TRI-BAND COMPACT CPW-FED PIFA ANTENNA FOR ENERGY HARVESTING......N/A

THP-A5.1P.4: AN ULTRA-THIN LOW-FREQUENCY METAMATERIAL FOR WIRELESS POWERTRANSFER APPLICATIONS	2555
Danilo Brizi, Agostino Monorchio, University of Pisa, Italy; Gianluca Lazzi, University of Southern California, United States	š
THP-A5.1P.5: WIRELESS POWER TRANSFER USING RESONANCE COUPLING METHOD FORIMPLANTABLE APPLICATIONS Jingchen Wang, Mark Leach, Eng Gee Lim, Zhao Wang, Xi'an-jiaotong Liverpool University, China; Yi Huang, University of Liverpool, United Kingdom	