2018 24th IEEE International Symposium on Asynchronous Circuits and Systems (ASYNC 2018)

Vienna, Austria 13 – 16 May 2018

IEEE Catalog Number: ISBN: CFP18012-POD 978-1-5386-5884-0

Copyright © 2018 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

IEEE Catalog Number:	CFP18012-POD
ISBN (Print-On-Demand):	978-1-5386-5884-0
ISBN (Online):	978-1-5386-5883-3
ISSN:	1522-8681

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com

2018 24th IEEE International Symposium on Asynchronous Circuits and Systems ASYNC 2018

Table of Contents

Message from the ASYNC 2018 Chairs	viii
Symposium Organization	x
Program Committee	xi
Secondary Reviewers	xii
Sponsors	xiii
	xiv
Bridging Talk	xvii

Paper Session 1: Building Blocks of Asynchronous Circuits

Novel Delay Elements for Bundled-Data Transfer Circuits Based on Two-Phase Handshaking Protocols
State Encoding of Asynchronous Controllers Using Pseudo-Boolean Optimization
Partially Systematic Constant-Weight Codes for Delay-Insensitive Communication

Industrial Session 1: Design Flow

Challenges in Building an Open-Source Flow from RTL to Bundled-Data Design	26
Yang Zhang (University of Southern California), Huimei Cheng	
(University of Southern California), Dake Chen (University of Southern	
California), Huayu Fu (University of Southern California), Shikhanshu	
Agarwal (Qualcomm Technologies), Mark Lin (Qualcomm Technologies), and	
Beerel Peter (University of Southern California)	
A Design Flow for Shaping Electromagnetic Emissions in Micropipeline Circuits	28
Sophie Germain (STMicroelectronics and Univ. Grenoble Alpes), Sylvain	
Engels (STMicroelectronics and Univ. Grenoble Alpes), and Laurent	
Fesquet (Univ. Grenoble Alpes)	

Design and Verification of Speed-Independent Circuits with Arbitration in Workcraft	
Danil Sokolov (Newcastle University), Victor Khomenko (Newcastle	
University), Alex Yakovlev (Newcastle University), and David Lloyd	
(Dialog Semiconductor)	

Industrial & Fresh Idea Paper Session 2: New Applications

Loihi Asynchronous Neuromorphic Research Chip Andrew Lines (Intel), Prasad Joshi (Intel), Ruokun Liu (Intel), Steve McCoy (Intel), Jonathan Tse (Intel), Yi-Hsin Weng (Intel), and Mike Davies (Intel)	.32
An Asynchronous Convolutional Neural Network Implementation for IoT Applications	N/A
Asynchronous Network Traversal for Computational Drug Discovery	N/A

Paper Session 3: Formal Methods for Design and Verification

Aodel-Checking Synthesizable SystemVerilog Descriptions of Asynchronous Circuits	.34
Aymane Bouzafour (Tiempo), Marc Renaudin (Tiempo), Hubert Garavel	
(Univ. Grenoble Alpes), Radu Mateescu (Univ. Grenoble Alpes), and	
Wendelin Serwe (Univ. Grenoble Alpes)	
Formal Verification of Mixed Synchronous Asynchronous Systems Using Industrial Tools	43
Ghaith Tarawneh (Newcastle University) and Andrey Mokhov (Newcastle	
University)	
Oniversity)	
Data-Loop-Free Self-Timed Circuit Verification	. 51
Cuong Chau (The University of Texas at Austin), Warren Hunt Jr. (The	
University of Texas at Austin), Matt Kaufmann (The University of Texas	
at Austin), Marly Roncken (Portland State University), and Ivan	
Sutherland (Portland State University)	

Paper Session 4: Metastability and Synchronization

Explaining Metastability in Real Synchronizers Justin Reiher (University of British Columbia), Mark R. Greenstreet (University of British Columbia), and Ian W. Jones (Oracle)	59
Fast All-Digital Clock Frequency Adaptation Circuit for Voltage Droop Tolerance	68
Matthias Fuegger (CNRS & LSV), Attila Kinali (Max Planck Institute for	
Informatics), Christoph Lenzen (Max Planck Institute for Informatics),	
and Ben Wiederhake (Max Planck Institute for Informatics)	

Paper Session 5: New Application Horizons

A Serial H-Tree Router for Two-Dimensional Arrays	
Sam Fok (Stanford University) and Kwabena Boahen	(Stanford University)

A High Speed Asynchronous Multi Input Pipeline for Compaction and Transfer of Parallel SIMD Data
Christoph Hoppe (Fraunhofer Institute for Integrated Circuits IIS),
Jens Döge (Fraunhofer Institute for Integrated Circuits IIS), Peter
Reichel (Fraunhofer Institute for Integrated Circuits IIS), Patrick
Russell (Fraunhofer Institute for Integrated Circuits IIS), Andreas
Reichel (Fraunhofer Institute for Integrated Circuits IIS), and Peter
Schneider (Fraunhofer Institute for Integrated Circuits IIS)
A Clock-Less Ultra-Low Power Bit-Serial LVDS Link for Address-Event Multi-chip Systems

Ning Qiao (Institute of Neuroinformatics) and Giacomo Indiveri (Institute of Neuroinformatics)	Clock Less Club Low I over Dit Senar L VDS Link for Address Lvent Multi cinp Systems	• • • • • • • • • • • •
(Institute of Neuroinformatics)	Ning Qiao (Institute of Neuroinformatics) and Giacomo Indiveri	
	(Institute of Neuroinformatics)	

Poster and Demo Session 6

N/A
N/A

Paper Session 7: Chip Design, Analysis and Verification

Loadable Kessels Counter Oyinkuro Benafa (Newcastle University), Danil Sokolov (Newcastle University), and Alex Yakovlev (Newcastle University)	102
Static Timing Analysis of Asynchronous Bundled-Data Circuits Grégoire Gimenez (TIMA laboratory), Abdelkarim Cherkaoui (TIMA laboratory), Guillaume Cogniard (Dolphin Integration), and Laurent Fesquet (TIMA laboratory)	110

Industrial & Fresh Idea Paper Session 8: Open Questions

Case Study of Process Variation-Based Domain Partitioning of GPGPUs Shomit Das (Advanced Micro Devices), Michael LeBeane (Advanced Micro Devices), Bradford Beckmann (Advanced Micro Devices), and Greg Sadowski (Advanced Micro Devices)	119
From Click Based Asynchronous Design to Xilinx FPGA	N/A
RH-Blade: A Radiation Hardened Asynchronous Bundled-Data Design	N/A

Author Index	 	 	 	 		 			 		 			 			 	 			 	 		 . 1	2	1
	 	 	 	 • •	•••	 	• •	• •	 	• •	 	•••	• •	 	•••	•••	 	 	• •	• •		 	• •	 •		