23rd International Conference on Water Jetting 2016

Seattle, Washington, USA 16 - 18 November 2016

ISBN: 978-1-5108-8347-5

Printed from e-media with permission by:

Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571

Some format issues inherent in the e-media version may also appear in this print version.

Copyright© (2016) by BHR Group All rights reserved.

Printed by Curran Associates, Inc. (2019)

For permission requests, please contact BHR Group at the address below.

BHR Group The Fluid Engineering Centre Cranfield, Bedfordshire MK43 0AJ United Kingdom

Phone: +44 1234 750422 Fax: +44 1234 750074

info@bhrgroup.com

Additional copies of this publication are available from:

Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571 USA Phone: 845-758-0400 Fax: 845-758-2633 Email: curran@proceedings.com Web: www.proceedings.com

The 23rd International Conference on

WATER JETTING

Seattle, USA: 16th – 18th November, 2016

CONTENTS

FOREWORD	1	
KEYNOTE PAPER What's Past is Prologue Professor Emeritus David Summers, Missouri University of Science and Technology, USA	3	
2D & 3D MACHINING		
An investigation into the effect upon flexural strength of different methods of cutting float glass and sintered recycled container glass S Doolan, T Oseng-Rees, J Ferriz-Papi, University of Wales Trinity Saint David, UK	13	
The impact of machining parameters on the surface roughness and depth of cut while cutting Inconel 718 super alloy using abrasive water jet <i>F Kartal, Kastamonu University, Turkey</i>	23	
Roles of taper compensation in AWJ ultra-precision machining (Peter) H-T Liu, P Miles, A Henning, OMAX Corporation, USA	33	
Quantifying surface finishes using Rz measurements P Miles, A Henning, (Peter) H-T Liu, OMAX Corporation, USA	47	
Interaction between metallurgical state and process parameters on AWJ kerf M Monno, F Vigano, Politecnico di Milano; G Pellegrini, C Ravasio, Universita' di Bergamo, Italy	59	
Abrasive waterjet turning of titanium alluminides E Uhlmann, F Faltin, K Flögel, Technische Universität Berlin, Germany	71	
Micro AWJ and Micro Milling for deep pocket hybrid machining F Viganò, M Annoni, Politecnico di Milano; F Arleo, WatAJet S.r.I., Italy	83	
Interpreting handwritten scrawl N Webers, V Cutler, OMAX Corporation, USA	99	

AEROSPACE APPLICATIONS

Deep pocket milling with abrasive waterjets P Miles, A Henning, OMAX Corporation, USA	113
Machinability of randomly chopped discontinuous fiber composites: A comparative assessment of conventional and abrasive waterjet R Pahuja, M Ramulu, University of Washington, USA	127
CLEANING, STRIPPING AND SURFACE PREPARATION	
What effect does waterjet cleaning have on the surface and surface preparation?	151
L Frenzel, Advisory Council, Vancouver, USA	
Benefits of waterblasting at 380 MPa pressure M Hashish, R Schmid, R Gonzalez, Flow International Corporation, USA	167
Surface modification of medical grade titanium alloy by forced pulsed water jet (FPWJ)	181
D Kalliecharan, T L Monchesky, Dalhousie University, A Tieu, B Daniels, W Yan, M Xu, M Vijay, VLN Advanced Technologies Inc., Canada	
Enhancement of adhesion strength of thick copper coatings on used nuclear fuel steel containers prepared with the forced pulsed waterjet (FPWJ)	191
A Nastic, B Jodoin, R Fernandez, D MacDonald, University of Ottawa; M Vijay, A Tieu, W Yan, B Daniels, M Xu, VLN Advanced Technologies, Canada	
Opposed cavitating jets and their application for cavitation peening of wall surrounding hole	201
H Soyama, Tohoku University, Japan	
Digging of concrete by a cavitating jet in air comparing with a conventional water jet	209
H Soyama, K Matsuda, M Mikami, Tohoku University, Japan	
Preventing hydrogen diffusion in stainless steel by cavitating jet in air O Takakuwa, H Soyama, Tohoku University, Japan	215
Material processing by mechanical-electrochemical cavitation T Yoshimura, K Tanaka, Tokyo University of Science, Yamaguchi; N Yoshinaga, Kagawa University Faculty of Engineering, Japan	223

DEVELOPMENTS IN EQUIPMENT

Optimization of abrasive waterjet nozzle design for precision and reduced wear using compressible multiphase CFD modelling C Narayanan, D Caviezel, D Lakehal, ASCOMP AG, Switzerland	239		
Optimized abrasive waterjet nozzle design using genetic algorithms J Schwartzentruber, M Papini, Ryerson University, Canada; C Narayanan, ASCOMP AG, Switzerland; (Peter) H-T Liu, OMAX Corporation, USA	251		
Observations of flow in an abrasive supply tube S Shimizu, S Watanabe, G Peng, Y Oguma, Nihon University, Japan	263		
ECONOMIC COST COMPARISONS			
Pressure, power, and productivity <i>M Hashish, Flow International Corporation, USA</i>	273		
Efficiency drives cutting performance A Henning, P Miles, OMAX Corporation, USA	285		
FUNDAMENTAL RESEARCH			
Waterjet impact force evaluations at pressures up to 600 MPa A Chillman, M Hashish, Flow International Corporation; M Ramulu, University of Washington, USA	301		
High-pressure jet cutting with liquid CO₂ E Uhlmann, P John, Technische Universität Berlin, Germany	315		
Estimation of bubble fusion requirements during mechanical- electrochemical cavitation T Yoshimura, H Yoshiya, K Tanaka, Tokyo University of Science, Yamaguchi, Japan	327		
MINING, QUARRYING AND TUNNELLING			
Waterjet rock cutting performance using recycled garnet G-W Joo, T-Z Ahn, Y Cha, G-C Cho, Korea Advanced Institute of Science and Technology (KAIST); T-M Oh, Korea Institute of Geoscience and Mineral Resources (KIGAM), Korea	337		

Abrasive waterjet applications for hard rock tunnelling in urban area345T-M Oh, H B Lee, Korea Institute of Geoscience and Mineral Resources(KIGAM): G-C Cho, G-W Joo, Korea Advanced Institute of Science and
Technology (KAIST), Korea

NUCLEAR AND OIL & GAS DECOMMISSIONING

Feasibility study of decontaminating steel ducts and pipes for decommissioning nuclear facilities with the forced pulsed waterjet (FPWJ) technique

A Jenkins, Sellafield Limited, UK; M Vijay, A Tieu, W Yan, B Daniels, M Xu, VLN Advanced Technologies Inc., Canada

Development of a radiological decontamination system for lakebeds –369Bottom material collector with a ventilated submerged water jetSS Shimizu, G Peng, Y Oguma, Nihon University; M Tsujita, K Kodama,
Eco-bond Environmental Engineering Research Co. Ltd., Japan

AUTHOR INDEX

357