2019 25th IEEE International Symposium on Asynchronous Circuits and Systems (ASYNC 2019)

Hirosaki, Japan 12 – 15 May 2019

IEEE Catalog Number: ISBN: CFP19012-POD 978-1-5386-4748-6

Copyright © 2019 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

IEEE Catalog Number:	
ISBN (Print-On-Demand):	
ISBN (Online):	
ISSN:	

CFP19012-POD 978-1-5386-4748-6 978-1-5386-4747-9 2643-1394

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com

2019 25th IEEE International Symposium on Asynchronous Circuits and Systems (ASYNC) ASYNC 2019

Table of Contents

Message from the Chairs	viii
Organizing Committee	x
Program Committee (Primary Reviewers)	
Secondary Reviewers	xii

Tools for Design Exploration I

AMC: An Asynchronous Memory Compiler
Design and FPGA-implementation of Asynchronous Circuits Using Two-Phase Handshaking

Tools for Design Exploration II

Effective FPGA Resource Utilization for Quasi Delay Insensitive Implementation of Asynchronous	
Circuits	19
Yi-Fan Evan Chang (National Taiwan University, Taiwan), Ruei-Yang	
Huang (National Taiwan University, Taiwan), and Jie-Hong R. Jiang	
(National Taiwan University, Taiwan)	

Networks and Systems on Chip

A Fine-Grained GALS SoC with Pausible Adaptive Clocking in 16 nm FinFET	27
Matthew Fojtik (NVIDIA), Ben Keller (NVİDIA), Alicia Klinefelter	
(NVIDIA), Nathaniel Pinckney (NVIDIA), Stephen G. Tell (NVIDIA), Brian	
Zimmer (NVIDIA), Tezaswi Raja (NVIDIA), Kevin Zhou (NVIDIA), William	
J. Dally (NVIDIA), and Brucek Khailany (NVIDIA)	
A Transmission Line Enabled Deadlock Free Toroidal Network-on-Chip using Asynchronous Handshake	
Protocols	36
Mackenzie J. Wibbels (University of Utah), Shomit Das (Advance Micro	
Devices Inc.), Dheeraj Singh Takur (Advanced Micro Devices Inc.),	
Venkata Nori (University of Utah), and Kenneth S. Stevens (University	
of Utah)	

Asynchronous Circuits Conquering the World

ASIE: An Asynchronous SNN Inference Engine for AER Events Processing	;
Ziyang Kang (National University of Defense Technology, China), Lei	
Wang (National University of Defense Technology, China), Shasha Guo	
(National University of Defense Technology, China), Rui Gong (National	
University of Defense Technology, China), Yu Deng (National University	
of Defense Technology, China), and Qiang Dou (National University of	
Defense Technology, China)	
AnARM: A 28nm Energy Efficient ARM Processor Based on Octasic Asynchronous Technology	í
Mickael Fiorentino (Polytechnique Montréal), Claude Thibeault (École	
de Technologie Supérieure), Yvon Savaria (Polytechnique Montréal),	
François Gagnon (École de Technologie Supérieure), Tom Awad (Octasic),	
Doug Morrissey (Octasic), and Michel Laurence (Octasic)	

General Synthesis

Synthesis from Waveform Transition Graphs Alberto Moreno (Newcastle University, United Kingdom), Danil Sokolov (Newcastle University, United Kingdom), and Jordi Cortadella (Universitat Politecnica de Catalunya, Spain)	60
Asynchronous Signalling Processes	68
Rajit Manohar (Yale University) and Yoram Moses (Technion-Israel	
Institute of Technology)	

Timing Analysis and Validation

Transistor-Level Analysis of Dynamic Delay Models	76
Jürgen Maier (TU Wien, Austria), Matthias Függer (Universite	
Paris-Saclay & Inria, France), Thomas Nowak (Universite Paris-Sud,	
France), and Ulrich Schmid (TU Wien, Austria)	
From Signal Transition Graphs to Timing Closure: Application to Bundled-Data Circuits	86
Grégoire Gimenez (TIMA Laboratory, France), Jean Simatic (HawAI.tech,	
France), and Laurent Fesquet (TIMA Laboratory, France)	

Verification

Verifying Timed, Asynchronous Circuits using ACL2	. 96
Yan Peng (University of British Columbia) and Mark Greenstreet	
(University of British Čolumbia)	

A Hierarchical Approach to Self-Timed Circuit Verification	105
Cuong Chau (The University of Texas at Austin, USA), Warren A. Hunt	
Jr. (The University of Texas at Austin, USA), Matt Kaufmann (The	
University of Texas at Austin, USA), Marly Roncken (Portland State	
University, USA), and Ivan Sutherland (Portland State University, USA)	

Cycle and Arbitration Timing

Pulsar: Constraining QDI Circuits Cycle Time Using Traditional EDA Tools	.114
Marcos L. L. Sartori (PUCRS), Rodrigo N. Wuerdig (PUCRS), Matheus T.	
Moreira (PUCRS), and Ney L. V. Calazans (PUCRS)	
Efficient Metastability Characterization for Schmitt-Triggers	. 124
Jürgen Maier (TU Wien, Austria) and Andreas Steininger (TU Wien,	
Austria)	

Resilience to Attacks and Errors

Hardware Trojan Insertion and Detection in Asynchronous Circuits	134
Koutaro Inaba (Hirosaki University, Japan), Tomohiro Yoneda (National	
Institute of Informatics, Japan), Toshiki Kanamoto (Hirosaki	
University, Japan), Atsushi Kurokawa (Hirosaki University, Japan), and	
Masashi Imai (Hirosaki University, Japan)	

Author Index		
--------------	--	--