Proceedings of
The 18th International Symposium on
Power Semiconductor Devices & ICs

June 4th-8th, 2006

University of Naples Federico II
Naples, ITALY
Plenary Sessions
Chair: Paolo Spirito – University of Naples "Federico II"
Claudio Contiero – ST Microelectronics, Italy
M.K. Han – Seoul National University, Korea

P-1 Future Trend of Flat Panel Displays and Comparison of its Driving Methods
SHUICHI UCHIKOGA
Toshiba Corporation, Corporate R & D Center, JAPAN

P-2 Power Drive Circuits for Diagnostic Medical Ultrasound
BRUNO HAIDER
General Electric, Niskayuna, USA

P-3 Trend and Challenges in Automotive Electronics
VALENTIN VON TILS
Robert Bosch GmbH, GERMANY

Session 1: Diodes and IGBT
Chair: Daniel Kinzer - International Rectifier, USA
Stefan Linder - ABB, Switzerland

1-1 Mechanical stress dependence of power device electrical characteristics
HIROAKI TANAKA, KOJI HOTTA, SATOSHI KUWANO, MASANORI USUI*, MASAYASU ISHIKO*
TOYOTA MOTOR Corp., \ Aichi, JAPAN
*TOYOTA CENTRAL R&D LABS. INC. Nagakute, Aichi, JAPAN

1-2 Theoretical investigation of Silicon limit characteristics of IGBT
AKIO NAKAGAWA
Semiconductor Company, Toshiba Corporation, Japan

1-3 A novel diode structure with Controlled Injection of Backside Holes (CIBH)
MIN CHEN, JOSEF LUTZ, MARTIN DOMEIJ, HANS PETER FELSL*, HANS-JOACHIM SCHULZE*
Chemnitz University of Technology, Chemnitz, Germany
*KTH Stockholm, 2Infineon Technologies AG, Munich

1-4 Electro-thermal simulation of current filamentation in 3.3-kV silicon p-i-n diodes with different edge terminations
H. P. FELSL, E. FALCK, F. J. NIEDERNOSTHEIDE, *S. MILADY, **D. SILBER and **J. LUTZ
Infineon Technologies AG, Munich, Germany
* University of Bremen, Germany
** Chemnitz University of Technology, Germany
Session 2: IGBT 2

Chair: Thomas Stockmeier - Semikron, Germany
Yasukazu Seki - Fuji Hitachi Power Semiconductor, Japan

<table>
<thead>
<tr>
<th>2-1</th>
<th>A Landmark in Electrical Performance of IGBT Modules Utilizing Next Generation Chip Technologies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A. KOPTA, M. RAHIMO, S. EICHER, U. SCHLAPBACH</td>
</tr>
<tr>
<td></td>
<td>ABB Switzerland Ltd, Semiconductors, Lenzburg, Switzerland</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2-2</th>
<th>Source Side Thermal Runaway of Trench IGBTs, Dependence on Design Aspects</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ANDREAS MÜLLER-DAUCH*, FRANK PFIRSC, MANFRED PFAFFENLEHNER, DIETER SILBER*</td>
</tr>
<tr>
<td></td>
<td>*University of Bremen, Bremen, Germany</td>
</tr>
<tr>
<td></td>
<td>Infineon Technologies, Munich, Germany</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2-3</th>
<th>A New Stored-Charge-Controlled Over-Voltage Protection Concept for Wide RBSOA in High-Voltage Trench-IEGTs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TSUNEI OGURA, KIOCHI SUGIYAMA, ICHIRO OMURA, MASAKAZU YAMAGUCHI, SATOSHI TERAMAEB, NOBUAKI YAMANO AND SUSUMU IESAKA</td>
</tr>
<tr>
<td></td>
<td>Discrete Semiconductor Division, Toshiba Corporation, Japan</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2-4</th>
<th>A new isolation technique for reverse blocking IGBT with ion implantation and laser annealing to tapered chip edge sidewalls.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>KAZUO SHIMOYAMA, MANABU TAKAI, YASUHISA SOUMA, AYAKO YAJIMA, SATOMI KAJIWARA AND HARUO NAKAZAWA.</td>
</tr>
<tr>
<td></td>
<td>Fuji Electric Advanced Technology, Co. Ltd., Nagano, Japan</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2-5</th>
<th>Novel Enhanced-Planar IGBT technology rated up to 6.5kV, Lower Losses and Higher SOA Capability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M. RAHIMO, A. KOPTA, S. LINDBERG</td>
</tr>
<tr>
<td></td>
<td>ABB Switzerland Ltd, Semiconductors, Lenzburg, Switzerland</td>
</tr>
</tbody>
</table>

Tuesday, June 6th 2006

Session 3: RF power and modeling

Chair: Vishnu Khemka - Freescale Semiconductor, USA
Fiorun Udrea - Cambridge University, UK

<table>
<thead>
<tr>
<th>3-1</th>
<th>A Complementary RF-LDMOS Architecture Compatible with 0.13micron CMOS Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nihar R. MOHAPATRA, H. RUECKER, K. E. EHWALD, R. SORGE, R. BARTH, P. SCHLEY, D. SCHMIDT AND H. E. WULF</td>
</tr>
<tr>
<td></td>
<td>IHP, Frankfurt (Oder), Germany</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3-2</th>
<th>Enhancing commercial CAD tools toward the electrothermal simulation of power transistors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F. M. DE PAOLA, V. D'ALESSANDRO, G. BREGLIO, N. RINALDI, AND P. SPIRITO</td>
</tr>
<tr>
<td></td>
<td>Department of Electronics and Telecommunications Engineering</td>
</tr>
<tr>
<td></td>
<td>University of Naples “Federico II”, Naples, Italy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3-3</th>
<th>Modeling and Analysis of Metal Interconnect Resistance of Power MOSFETs with Ultra Low On-Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Y. CHEN, X. CHENG, Y. LIU, Y. FU, T. X. WU, AND Z. J. SHEN</td>
</tr>
<tr>
<td></td>
<td>School of Electrical Engineering and Computer Science, University of Central Florida, Orlando, USA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3-4</th>
<th>Trade-offs in RF Performance and Electrothermal Ruggedness of Multifinger SiGe Power Cells</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M. SPIRITO*, F. M. DE PAOLA**, V. D'ALESSANDRO**, K. BUISMAN*, AND N. RINALDI*</td>
</tr>
<tr>
<td></td>
<td>*HiTeC Laboratory, Delft University of Technology, Delft, The Netherlands</td>
</tr>
<tr>
<td></td>
<td>**University of Naples “Federico II”, Naples, Italy.</td>
</tr>
</tbody>
</table>
Session 4: Low voltage Si MOS

Chair: Mohamed Darwish - Fultec Semiconductor, USA
C. Andre T. Salama - University of Toronto, Canada

4-1 20V-40V Vertical Trench nMOS design for display driver
M. ANNESE, P. MONTANINI, F. TOIA, L. ZULLINO, C. CONTIERO
STMicroelectronics, Italy

4-2 Substrate deep depletion: an innovative design concept to improve the voltage rating of SOI power devices
ETTORE NAPOLI, FLORIN UDREA*
Electronic and Telecom. Engineering dept. University of Napoli, Napoli Italy
* Department of Engineering University of Cambridge, Cambridge, UK
* Cambridge Semiconductor (Camsemi), Cambridge, UK

4-3 Break-through of the Si limit under 100V breakdown voltage with Super 3D MOSFET
HITOSHI YAMAGUCHI, YASUSHI URAKAMI AND JUN SAKAKIBARA
DENSO CORPORATION, Japan

4-4 200V Super Junction MOSFET Fabricated by High Aspect Ratio Trench Filling
SHOICHI YAMAUCHI, TAKUMI SHIBATA, SHOJI NOGAMI*, TOMONORI YAMAOKA*,
YOSHIIKI HATTORI** AND HITOSHI YAMAGUCHI
DENSO CORPORATION, Nissin, Aichi, 470-0111, Japan
*SUMCO CORPORATION, Japan
**TOYOTA CENTRAL R&D LABS., Japan

Session 5: Diamond devices

Chair: Gehan Amaratunga - Cambridge University, UK
Anant Agarwal - Cree, USA

5-1 RF diamond MISFETs using surface accumulation layer
K. HIRAMA, T. KOSHIKA, K. YOHARA, H. TAKAYANAGI, S. YAMAUCHI, M. SATOH, H. KAWARADA
Waseda University, Okubo 3-4-1, Shinjyuku-ku, Tokyo, Japan

5-2 Termination structures for diamond Schottky barrier diodes
1Department of Engineering, University of Cambridge, UK
2National Institute for R&D in Microtechnology (IMT-Bucharest), Romania
3Element Six Ltd., King’s Ride Park, Ascot, UK
4Dynex Semiconductor Ltd., Lincoln, UK
5University Politehnica Bucharest, Bucharest, Romania
<table>
<thead>
<tr>
<th>Session 6: Poster Session</th>
</tr>
</thead>
</table>
| **6-1** High density MOSBD (UMOS with built-in Trench Schottky Barrier Diode) for Synchronous Buck Converters
SyoTaro Ono, Yoshihiro Yamaguchi, Noboru Matsuda, Akio Takano, Miwako Akiyama, Yusuke Kawaguchi, and Akio Nakagawa
Toshiba Corporation Semiconductor Company, Japan |
| **6-2** Reverse recovery in high density trench MOSFETs with regard to the body effect
Toni López, Reinhold Elferich and Nick Koper*
Philips Research Laboratories, Aachen, Germany
*Philips Semiconductors, Stockport (Hazel Grove), United Kingdom |
| **6-3** High Performance and Reliability Trench Gate Power MOSFET with Partially Thick Gate Oxide Film Structure (PTOx TMOS)
Takaaki Aoki, Yukio Tsuzuki, Shoji Miura, Yoshifumi Okabe, Mikimasa Suzuki and Akira Kuroyama
DENSO CORPORATION, Japan |
| **6-4** Two-carrier current saturation in a lateral dmos
John Lin and Philip L. Hower
Texas Instruments Inc, USA |
| **6-5** A new principle for self-protecting array design
V.A. Vashchenko and P.J. Hopper
National Semiconductor Corporation, USA |
| **6-6** Accurate Large-Signal Modeling of AlGaN-GaN HEMT Including Trapping and Self-Heating Induced Dispersion
Anwar Jarndal, Bernd Bunz and Günter Kompa
University of Kassel, Fachgebiet Hochfrequenztechnik, Kassel, Germany |
| **6-7** Self-aligned High Density Low Voltage P-channel Trench MOSFET with Ultra low Resistance and Robust Ruggedness
Christopher Kocon, Ashok Challa, Paul Thorup
Fairchild Semiconductor, USA |
| **6-9** Evaluation of GaN HEMT Technology Development Through Nonlinear Characterization
A. Angelini, V. Camarchia, F. Cappelluti, S. Donati Guerrieri, M. Pirola, F. Bonani, A. Serino* and G. Ghione
Politecnico di Torino, Dipartimento di Elettronica, Torino, Italy
*Università di Roma “Tor Vergata”, Dipartimento di Elettronica, Roma, Italy |
| **6-10** Industrialisation of Resurf Stepped Oxide Technology for Power Transistors
M. A. Gajda, S. W. Hodgskiss, L. A. Mounfield, N. T. Irwin, G. E. J. Koops*, R. van Dalen*
Philips Semiconductors, Stockport, United Kingdom
*Philips Research Europe, Kapeldreef 75, B-3001 Leuven, Belgium |
| **6-11** Mechanism and Control Technology of Trench Corner Rounding by Hydrogen Annealing for Highly Reliable Trench MOSFET
Ryosuke Shimizu, Hitoshi Kuribayashi*, Reiko Hiruta*, Koichi Sudoh** and Hiroshi Iwasaki**
Material and Science Laboratory, Fuji Electric Advanced Technology Co., Japan
*Device Technology Laboratory, Fuji Electric Advanced Technology Co., Japan
**Institute of Scientific and Industrial Research, Osaka University, Japan |
| **6-12** Low Specific On-Resistance AlGaN/GaN HEMT on Sapphire Substrate
Masaki Inada, Shuichi Yagi, Yuki Yamamoto, Guanxi Piao, Mitsuaki Shimizu, Hajime Okumura and Kazuo Arai, Yoshih Yano and Nakao Akutsu
National Institute of Advanced Industrial Science and Technology, Japan
Taiyo Nippon Sanso Corporation, Japan |
4.5kV 120A SICGT and Its PWM Three Phase Inverter Operation of 100kVA
Kansai Electric Power Co., Nakoji, Japan
* CREE Inc., Durham, USA
** Asahi Denka Co., Tokyo, Japan

Low on-resistance in inversion channel IEMOSFET formed on 4H-SiC C-face substrate
S. HARADA, M. KATO, M. OKAMOTO, T. YATSUO, K. FUKUDA, K. ARAI
National Institute of Advanced Industrial Science and Technology, Japan

Active Fuse
S. E. BERBERICH, M. MARZ, A. J. BAUER, S. K. BEUER, H. RYSSL
Fraunhofer Institute of Integrated Systems and Device Technology (IISB)
Erlangen, Germany

The Second Stage of a Thin Wafer IGBT Low Loss 1200V LPT-CSTBT with a Backside Doping Optimization Process
KATSUMI NAKAMURA, YOSHIKI HISAMOTO, TAMIO MATSUMURA, TADAHARU MINATO AND JUNICHI MORTANI
Power Device Works, Mitsubishi Electric Corporation, Japan

Fast Recovery Diode with Novel Local Lifetime Control
J. VOBECKY AND P. HAZDRA
Microelectronics Dept., Czech Technical University, Prague, Czech Republic

High current gain silicon carbide bipolar power transistors
MARTIN DOMEIJ, HYUNG-SEOK LEE, CARL-MIKAIL ZETTERLING, MIKAEL ÖSTLING AND ADOLF SCHÖNER*
KTH Royal Institute of Technology, Electrum 229, S-16440 Kista-Stockholm, Sweden
*Acreo AB, Electrum 236, S-16440 Kista-Stockholm, Sweden

Analysis of Dynamic Avalanche Phenomenon of PiN Diode Using He Ion Irradiation
TADASHI MISUMI, SHINJI NAKAGAKI, MASAKAZU YAMAGUCHI*, KOICHI SUGIYAMA*
FUMIO HIRAHARA* AND KATSUYUKI NISHIWAKI
Toyota Motor Corporation, Toyota, Aichi 470-0309, Japan
*Discrete Semiconductor Division, Toshiba Corporation, Kawasaki, Japan

Characterization of Unconventional Engineering Solutions for Superjunction Devices
M. BUZZO***, M. CIAPPA**, M. RUEB*, AND W. FITCHNER**
*Infineon Technologies, Villach, Austria
**Swiss Federal Institute of Technology (ETH), Zurich, Switzerland

Helium implantation in silicon: detailed experimental analysis of resistivity and lifetime profiles as a function of the implantation dose and energy
S. DALIENTO, L. MELE, P. SPIRITO, L. GIALANELLA*, M. ROMANO*, B. N. LIMATA*, R. CARTA** L. BELLEMO**
University of Napoli “Federico II” Napoli, Italy
* Dipartimento di Scienze Fisiche e INFN Napoli, Napoli, Italy
** International Rectifier Corporation Italiana, Borgaro (TO), Italy

Dynamic Behavior of High-Power Diodes Analyzed by EBIC
BERGISCHE UNIVERSITÁT WUPPERTAL, WUPPERTAL, GERMANY
*INFINEON TECHNOLOGIES AG, MÜNCHEN, GERMANY
**INFINEON AG, WARSTEIN, GERMANY

xix
6-23 High temperature characterization of 4H-SiC normally-on vertical JFETs with buried gate and buried field rings
Engineering Department, Cambridge University, Cambridge, UK
*CNM, Campus Universidad Autonoma de Barcelona, Barcelona, Spain

6-24 Influence of layout geometries on the behavior of 4H-SiC 600 V Merged PIN Schottky (MPS) rectifiers
*Department of Electronics and Telecommunications Engineering, University of Naples “Federico II”, Naples, Italy
**IRCI-International Rectifier Corporation Italia, Turin, Italy

6-25 Silicon Dioxide Passivation of AlGaN/GaN HEMTs for High Breakdown Voltage
MIN-WOO HA, SEUNG-CHUL LEE, JOONG-HYUN PARK, JIN-CHEOL HER, KWANG-SEOK SEO, AND MIN-KOO HAN
School of Electrical Engineering, Seoul National University, Korea

6-26 Investigation of carrier streaming effect for the low spike fast IGBT turn-off
Y. ONOZAWA, M. OTSUJI AND Y. SEKI*
Fujitsu Electric Device Technology Co., Ltd., Nagano, Japan
*Fujitsu Electric Advanced Technology Co., Ltd., Nagano, Japan

6-27 High performance AlGaN/GaN HEMT switches employing 500°C oxidized Ni/Au gate for very low leakage current and improvement of uniformity
SEUNG-CHUL LEE, JIYONG LIM, MIN-WOO HA, JIN-CHEOL HER, CHONG-MAN YUN*, AND MIN-KOO HAN
School of Electrical Engineering, Seoul National University, Korea
* Fairchild Semiconductor, Korea

6-28 Fabrication of Monolithic Bidirectional Switch (MBS) devices with MOS-controlled emitter structures
M. BAUS*, B. N. SZAIFRANEK*, ST. CHMIELUŚ*, M. C. LEMME†, B. HADAM*, B. SPANGENBERG*, R. SITTI† AND H. KURZ‡
†Institut für Halbleitertechnik, RWTH-Aachen, Aachen, Germany,
‡Institut für Halbleitertechnik, TU-Braunschweig, Braunschweig, Germany
‡AMICA/AMO GmbH, Aachen, Germany

6-29 Experimental demonstration of a 1.2kV trench clustered insulated gate bipolar transistor in non punch through technology
*Emerging Technologies Research Centre, De Montfort University, Leicester, UK
**Dynex Semiconductor, Lincoln, UK
***Semefab (Scotland) Ltd, Glenrothes, Fife, UK

6-30 The Optimized Monolithic Fault Protection Circuit for the Soft-shutdown behavior of 600V PT-IGBT by employing a New blanking Filter
IN-HWAN JI, YOUNG-HWAN CHOI, SOO-SEONG KIM*, KWANG-HOON OH* AND MIN-KOO HAN
School of Electrical Eng., Seoul Nat’l Univ., Korea
* Fairchild Semiconductor, Korea

6-32 Problems on the SRH Recombination Model and a Proposed Solution
IKUNORI TAKATA
Mitsubishi Electric Corporation, Japan

6-33 Advanced 100V, 0.13um BCD process for next generation automotive applications
PIET WESSELS, MAARTEN SWANEKEN, JAN CLAES, ERIC R. OOMS.
Philips Semiconductors, Nijmegen, The Netherlands.
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
<th>Institution/Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-35</td>
<td>A 75 V Lateral IGBT for Junction-Isolated Smart Power Technologies</td>
<td>B. Bakeroot, J. Doutreloigne, and P. Moens*</td>
<td>Ghent University, Ghent, Belgium</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*AMI Semiconductor Belgium BVBA, Oudenaarde, Belgium</td>
<td></td>
</tr>
<tr>
<td>6-36</td>
<td>Improved dielectric isolation HVIC technology (SODI) in Transfer Mold</td>
<td>H. Akiyama, N. Yasuda, J. Moritani, K. Takanashi, and G. Majumdar</td>
<td>Mitsubishi Electric Corporation, Japan</td>
</tr>
<tr>
<td></td>
<td>Package</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-37</td>
<td>Numerical Simulations for Electromagnetic Power Module Design</td>
<td>Didier Cottet, Samuel Hartmann, Ulrich Schlapbach*</td>
<td>ABB Switzerland Ltd. Corporate Research, Switzerland</td>
</tr>
<tr>
<td></td>
<td></td>
<td>* ABB Switzerland Ltd. Semiconductors, Switzerland</td>
<td></td>
</tr>
<tr>
<td>6-38</td>
<td>TherMos3: a 3D electrothermal simulator for smart Power Devices</td>
<td>Andrea Irace, Giovanni Breglio and Paolo Spirito</td>
<td>University of Naples “Federico II”, Naples, Italy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-39</td>
<td>Power Cycling at High Temperature Swings of Modules with Low</td>
<td>R. Amro¹, J. Lutz², J. Rudzki³, R. Sittig۴ and M. Thoben⁴</td>
<td>Chemnitz University of Technology-Germany</td>
</tr>
<tr>
<td></td>
<td>Temperature Joining Technique</td>
<td></td>
<td>Kiel University of Applied Science-Germany</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Technical University at Braunschweig-Germany</td>
<td>Infinion Technologies AG, Warstein-Germany</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-40</td>
<td>Fully Isolated High-Side and Low-Side IGBTs in Junction Isolation</td>
<td>David W. Green and E. M. Sankara Narayanan</td>
<td>Emerging Technologies Research Centre, De Montfort University, Leicester, UK</td>
</tr>
<tr>
<td></td>
<td>Technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-41</td>
<td>High-Frequency Monolithic DC/DC Converter for System-on-Chip Power</td>
<td>Vincent Pinon, Bruno Allard*, Christophe Garnier</td>
<td>STMicroelectronics, Crolles, France</td>
</tr>
<tr>
<td></td>
<td>Management</td>
<td></td>
<td>*CEGELY, INSA de Lyon</td>
</tr>
<tr>
<td>6-42</td>
<td>Technology for Power Integrated Circuits with Multiple Vertical Power</td>
<td>Petar Ilic, Paul Holland, Steve Batcup, Ralf Lerner* and Andreas Menz**</td>
<td>Electronics Systems Design Centre, University of Wales, Swansea, UK</td>
</tr>
<tr>
<td></td>
<td>Devices</td>
<td></td>
<td>*X-FAB Semiconductor Foundries, Erfurt, Germany</td>
</tr>
<tr>
<td></td>
<td></td>
<td>** Proton Mikrotechnik GmbH, Bremen, Germany</td>
<td></td>
</tr>
<tr>
<td>6-43</td>
<td>Design and Optimization of a Versatile 700 V SPIC Process Using a</td>
<td>Wanjun Chen, Bo Zhang, Zehong Li, Zhaoji Li, Xiaochuan Deng, Jianbing Cheng</td>
<td>University of Electronic Science and Technology of China, Chengdu, P. R. China</td>
</tr>
<tr>
<td></td>
<td>Fully Implanted Triple-well Technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-44</td>
<td>High efficiency Piezoelectric Transformer Driver in BCD6-20V</td>
<td>Giulio Ricotti, Alberto Danioni</td>
<td>StMicroelectronics, Italy</td>
</tr>
<tr>
<td></td>
<td>technology, generating up to positive or negative 1700V output voltage,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>from 1V input supply</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Giulio Ricotti, Alberto Danioni</td>
<td></td>
</tr>
<tr>
<td>6-45</td>
<td>Monolithic integrated over voltage protection circuits For Power</td>
<td>F. Alkayal, J-C Crebier, C. Schaeffer</td>
<td>LEG - ENSIEG, INPG, St Martin d'Hères, France</td>
</tr>
<tr>
<td></td>
<td>MOSFET and IGBT – topology, validation and thermal analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-46</td>
<td>interaction analysis and insulation techniques for short-circuit</td>
<td>C. Caramel, P. Austin, J-L. Sanchez, E. Imbernon, B. Rousset</td>
<td>LAAS-CNRS, Toulouse, France</td>
</tr>
<tr>
<td></td>
<td>integrated protection structure</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

xxi
6-47 Investigations of all lead free IGBT module structure with low thermal resistance and high reliability
Y. Nishimura, A. Morozumi, E. Mochizuki, and Y. Takahashi
Fuji Electric Device Technology Co., Ltd., Nagano, Japan

6-48 JFET Transistor used for power devices integrated over voltage protection
L. Vincent, B. Nguyen-Dac, J-C Crebier, F. Alkayal, C. Schaeffer
LEG - ENSIEG, INPG, St Martin d’Hères, France

6-49 Analytical design rules for field compensated structures (paper not available at the time of proceedings print)
Igor Sankin

6-50 Fast transient infrared thermal analysis of smart Power MOSFETs in permanent short circuit operation
* DIET, University of Naples Federico II, Naples, Italy
**STMicroelectronics Catania, Catania, Italy

Wednesday, June 7th 2006

Session 7: SiC Unipolar
Chair: Jose Millan - CNM, Spain
Masakatsu Hoshi - Nissan, Japan

7-1 Successful Development of 1.2 kV 4H-SiC MOSFETs with the Very Low On-Resistance of 5 mohmcm²
Naruhiisa Miura, Keiko Fujihira, Yukiyasu Nakao, Tomokatsu Watanabe, Yoichiro Tarui, Shin-iichi Kinouchi, Masayuki Imaizumi and Tatsuo Oomori
Advanced Technology R&D Center, Mitsubishi Electric Corporation, Japan

7-2 10 kV, 5A 4H-SiC Power DMOSFET
Sei-Hyung Ryu, Sumi Krishnaswami, Brett Hull, James Richmond, Anant Agarwal, and Allen Hefner*
Cree, Inc., Durham, USA
*Natl. Inst. of Standards and Tech., USA

7-3 „2nd Generation“ SiC Schottky diodes: A new benchmark in SiC device ruggedness.
Roland Rupp1, Michael Treu2, Stephan Voss1, Fanny Björk2, Tobias Reimann3
1Infineon Technologies AG Munich, Germany
2Infineon Technologies AG Villach, Austria
3ISLE Steuerungstechnik und Leistungselektronik GmbH Ilmenau, Germany

7-4 Dose designing and fabrication of 4H-SiC double RESURF MOSFETs
M. Noborio, J. Suda, and T. Kimoto
Department of Electronic Science and Engineering, Kyoto University, Japan

Session 8: SiC Bipolar
Chair: P. Chow - Rensselaer Polytechnic Institute, USA
Jean L. Sanchez - LAAS-CNRS, France

8-1 A 180 A/4.5 kV 4H-SiC PiN Diode for High Current Power Modules
Cree, Inc., Durham, USA
*Powerex, Inc., Youngwood, USA
8-2 Analysis of SiC BJTs RBSSOA
North Carolina State University, Raleigh, USA
* Cree Inc, Durham, USA
US Army Research Laboratory, 2800 Powder Mill Road, Adelphi, USA

8-3 Design and Fabrications of High Voltage IGBTs on 4H-SiC
Qingchun Zhang, Charlotte Jonas, Sei-Hyung Ryu, Anant Agarwal and John Poulmou
Cree, Inc., Durham, USA

8-4 4 kV, 10 A Bipolar Junction Transistors in 4H-SiC
Sumi Krishnaswami, Anant Agarwal, James Richmond, T. Paul Chow*,
Bruce Geil**, Ken Jones**, and Charles Scozzie**
Cree, Inc., 4600 Silicon Drive, USA
*Rensselaer Polytechnic Institute, USA
**Army Research Laboratory, USA

Session 9: SuperJunction devices
Chair: D. Pattanayak - Vishay-Siliconix, USA
L. Lorenz - Infineon Technologies, Germany

9-1 A 15.5 mOhmcm2-680V Superjunction MOSFET Reduced On-Resistance by Lateral Pitch Narrowing
Wataru Saito, Ichiro Omura, Satoshi Aida, Shigeo Koduki, Masaru Izumisawa,
Hironori Yoshioka, Hideki Okumura, Masakazu Yamaguchi and Tsuneo Ogura
Toshiba Corp, Semiconductor Company, Kawasaki, Japan

9-2 20 mohm-cm2 660V Super junction MOSFETs fabricated by deep trench etching and epitaxial growth
K. Takahashi, H. Kuribayashi, T. Kawashima, S. Wakimoto, K. Mochizuki and H. Nakazawa
Fuji Electric Advanced Technology Co., Ltd., Nagano, Japan

9-3 Electrical and Physical Characterization of 150-200V FLYMOSFETs
Jaume Roig, Yann Weber*, J-M. Reynès, F. Moranco, E. Stefanov, M. Dilhan,
G. Sarrabayrouse
LAAS / CNRS, Toulouse, France

9-4 A 600V, 8.7Ohmm2 Lateral SuperJunction Transistor
C. Tolkisdorfer**, A. Willemothc**
Infineon Technologies Austria AG, Villach
*Infineon Asia Pacific Pte. Ltd., Singapore
**Infineon Technologies AG, Neubiberg

Session 10: GaN devices
Chair: H.R. Chang ASCE Power, USA
P. Mawby University of Wales Swansea, UK

10-1 Enhancement-Mode n-Channel GaN MOSFETs on p and n- GaN/Sapphire substrates
W. Huang, T. Khan and T. P. Chow
Center for Power Electronics Systems, Rensselaer Polytechnic Institute, USA
10-2 High temperature operation AlGaN/GaN HFET with a low on-state resistance, a high breakdown voltage and a fast switching capability
TAKEHICO NOMURA, KAMAYASHI HIROSHI, MITSURU MASUDA, SONOMI ISHII, NARIKI IKEDA AND SEIKOH YOSHIDA
The Furukawa Electric Co., Ltd., Yokohama, Japan

10-3 Fabrication of an AlGaN/GaN HFET with a high breakdown voltage of over 1050 V
S. YOSHIDA, J. LI, H. TAKEHARA, K. KAMAYASHI, AND N. IKEDA
The Furukawa Electric Co., Ltd., Yokohama, Japan

10-4 GaN Switching Devices For High-Frequency, KW Power Conversion
K. S. BOUTROS, S. CHANDRASEKARAN, W.B. LUO, AND V. MEHROTRA
Rockwell Scientific Company LLC, , Thousand Oaks, CA, USA

Thursday, June 8th 2006

Session 11: Integration - power devices
Chair: T. Efland - Texas Instruments, USA, Chair
W.T. Ng - University of Toronto, Canada

11-1 Novel power transistor design for a process independent high voltage option in standard CMOS
A. HERINGA AND J. ŠONSKÝ
Philips Research Leuven, Leuven, Belgium

11-2 Low gate charge 20V class trench-aligning lateral power MOSFET
S. MATSUNAGA, M. SAWADA, A.SUGI, K. TAKAGIWA AND N. FUJISHIMA
Device Technology Laboratory, Fuji Electric Advanced Technology, Nagano, Japan

11-3 Stepped-Drift LDMOSFET: A Novel Drift Region Engineered Device for Advanced Smart Power Technologies
R. ZHU, V. KHEKMA, A. BOSE, T. ROGGENBAUER
Freescale Semiconductor, , Tempe, USA

11-4 Experimental Implementation and Characterization of a CMOS Compatible Buffered Super Junction LDMOST
IL-YONG PARK AND C. ANDRE T. SALAMA
Edward S. Rogers Sr. Dept. of ECE, University of Toronto, Toronto, Canada

Session 12: Integration technology 1
Chair: J. Sin - Hong Kong University of Science and Technology, China
S. Ekkanath Madathil - De Montfort University, UK

12-1 Wide Voltage Power Device Implementation in 0.25um SOI BiC-DMOS
RENESAS TECHNOLOGY CORP. JAPAN
* Renesas Semiconductor Engineering Corp., Japan

12-2 LDMOSFETs with Current Diverter for Advanced Smart Power Technologies
VISHNU KHEKMA, RONGHUA ZHU, TODD ROGGENBAUER AND AMITAVA BOSE
SMARTMOS Technology Center, Freescale Semiconductor, USA
12-3 High Voltage (up to 20V) Devices Implementation in 0.13 um A035 BiCMOS Process Technology for System-On-Chip (SOC) Design
Texas Instruments Inc., , Dallas, USA
349

12-4 High Voltage CMOS Line-up for Display Driver Applications based on 0.13µm CMOS with Aluminum metallization Scheme
TAKAHIRO OOHORI, HIROSHI SAIJO*, HI DEHIKO KAMIZONO, HIROYUKI MIYAKAWA and TOSHIRO KUBOTA
Toshiba Corporation Semiconductor Company, Japan
353

Session 13: Integration technology 2

Chair: R. Zhu Freescale Semiconductor, USA
D. Disney Advanced Analogic Technologies, USA

13-1 650V SOI LIGBT for Switch Mode Power Supply Application
T. LETAVIC1, J. PETRUZZELLO1, J. CLAES2, P. EGGENKAMP2, E. JANSSEN2, A. VAN DER WAL2
1 PHILIPS RESEARCH NORTH AMERICA, , NY, USA
2 PHILIPS SEMICONDUCTORS, NIJMEGEN, THE NETHERLANDS
357

13-2 Development of ESD protection structures for BULK and SOI BCD6 technology
A. TAZZOLI, L. CERATI*, M. DISSEGNA*, A. ANDREINI*, E. ZANONI, G. MENEGHESO
UNIVERSITY OF PADOVA, DEI, PADOVA, ITALY.
* STMicroelectronics FTM R&D , Italy
361

13-3 Self-Heating Driven Vth Shifts in Integrated VDMOS Transistors
*AMI Semiconductor Belgium, Oudenaarde, Belgium
**Institute for Material Research, Diepenbeek, Belgium
***Now with Infineon Technologies, Munich, Germany.
365

13-4 1200V Interconnection Technique with Isolated Self-Shielding Structure
SUNG-LYONG KIM, CHANG-KI JEON, MIN-SUK KIM and JONG-JIB KIM
Fairchild Semiconductor, Kyonggi-Do, Korea
369

Session 14: Applications

Chair: G. Majumdar Mitsubishi, Japan
D. Silber University of Bremen, Germany

14-1 A Digitally Controlled DC-DC Converter Module with a Segmented Output Stage for Optimized Efficiency
O. TRESCAES1, WAI TUNG NG1, H. NISHIO2, MASAHARU EDO2 and TETSUYA KAWASHIMA2
1University of Toronto, Toronto, Canada
2Fuji Electric Advanced Technology Co., Japan
373

14-2 Design of a CMOS Integrated Controller for High Current Low Voltage DC-DC Converters with Variable Switching Frequency
XIAOMING DUAN, JINSEOK PARK, KENDY WU*, ALEX Q. HUANG
Semiconductor Power Electronics Center, NCSU, Raleigh, USA
* NIKO Semiconductor Co., Ltd. Taipei, Taiwan
377

14-3 Simulation, Design and Testing of Integrated Power Supply for Insulated Gate Transistors
N. ROUGER, J-C CREBIER, R. MITOVA, L. AUBARD, C. SCHAFFER
LEG - ENSIEG, INPG, St Martin d'Hères, France
381