2009 IEEE 13th Digital Signal Processing Workshop &

5th IEEE Signal Processing Education Workshop

DSP/SPE 2009

Proceedings

January 4-7, 2009 Marco Island, Florida, U.S.A.

IEEE
Signal Processing Society

SPONSORED BY

THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS
IEEE SIGNAL PROCESSING SOCIETY

TABLE OF CONTENTS

DSP-1: (DSP) SPEECH AND AUDIO
DSP-1.1: HAAR-LIKE FILTERING WITH CENTER-CLIPPED EMPHASIS FOR
DSP-1.2: A KALMAN FILTER BASED FAST NOISE SUPPRESSION
DSP-1.3: MULTIBAND EXCITATION FOR SPEECH ENHANCEMENT
DSP-1.4: DISTRIBUTED AUDIO CODING WITH EFFICIENT SOURCE
DSP-1.5: A TEMPORALLY VARYING OBJECTIVE AUDIO QUALITY METRIC
DSP-1.6: SPECTRAL MULTI-SCALE ANALYSIS FOR MULTI-PITCH
DSP-1.7: A LOW COMPLEXITY NOISE SUPPRESSOR WITH HYBRID
DSP-1.9: SPEAKER IDENTIFICATION IN ROOM REVERBERATION USING
DSP-1.10: COMPARISON OF LOCALIZATION ALGORITHMS USING
DSP-1.11: LEARNING THE INTRINSIC DIMENSIONS OF THE TIMIT
DSP-1.12: AN INDEX TO MEASURE "TRANSIENT-NESS" OF SPEECH

DSP-2: (DSP) ADAPTIVE SYSTEMS
DSP-2.1: CAPON BEAMFORMING FOR ACTIVE ULTRASOUND IMAGING
DSP-2.2: CLOSED-FORM MSE PERFORMANCE OF THE DISTRIBUTED
Gonzalo Mateos, Ioannis D. Schizas, Georgios B. Giannakis, University of Minnesota, United States DSP-2.3: A SIMPLIFIED PREDISTORTER FOR DISTORTION
Li Gan, Emad Abd-Elrady, Gernot Kubin, Graz University of Technology, Austria
DSP-2.4: STOCHASTIC SEARCH METHODS TO IMPROVE THE
DSP-2.5: FUNDAMENTAL ISSUES IN THE STABILITY OF ADAPTIVE IIR84 FILTERS Mohammad Abu-Naser, Geoffrey A. Williamson, Jianrui Long, Illinois Institute of Technology, United States
DSP-2.6: BLOCK ADAPTIVE ICA WITH A TIME VARYING MIXING MATRIX90 Savaskan Bulek, Nurgun Erdol, FLORIDA ATLANTIC UNIVERSITY, United States
DSP-2.7: IMAGE INTERPOLATION EXPLOITING PHASE DIVERSITY96 Clyde Lettsome, Georgia Institute of Technology, United States; Mark J. T. Smith, Purdue University, United States
DSP-2.8: MEAN AND MEAN-SQUARE ANALYSIS OF THE COMPLEX LMS
DSP-2.9: LATENCY-INFORMATION THEORY: A NOVEL LATENCY THEORY
DSP-2.10: ADAPTIVE ALGORITM FOR PHASE-SHIFT KEYED SIGNAL
DSP-2.11: PERFORMANCE ANALYSIS OF DEFICIENT-LENGTH RLS AND

DSP-2.12: A LOW-COST ACOUSTIC ARRAY FOR DETECTING AND121

Anne Zelnio, Ellen Case, Brian Rigling, Wright State University, United States

TRACKING SMALL RC AIRCRAFT

DSP-3: (DSP) UNDERWATER COMMUNICATIONS
DSP-3.1: ENHANCED CHANNEL ESTIMATION AND SYMBOL DETECTION
DSP-3.2: ADAPTIVE CHANNEL ESTIMATION FOR UNDERWATER ACOUSTIC
DSP-3.3: OFDM DESIGN FOR UNDERWATER ACOUSTIC CHANNELS WITH
DSP-3.4: RATE AND RELIABILITY ORIENTED UNDERWATER ACOUSTIC
DSP-4: (DSP) APPLICATIONS
DSP-4.1: RADIO INTERFEROMETRIC CALIBRATION USING THE SAGE
DSP-4.2: DECOMPOSITION OF HARMONICALLY DISTORTED CHIRPS
DSP-4.3: DECOMPOSITION OF HEAD-RELATED TRANSFER FUNCTIONS
DSP-4.4: COMPARISON OF PUPILLARY LIGHT REFLEX SYTEM
DSP-4.5: COMBINED BLIND EQUALIZATION AND AUTOMATIC
DSP-4.6: ESTIMATION OF THE NUMBER OF SIGNAL SOURCES IN
DSP-4.7: OPENCV IMPLEMENTATION OPTIMIZED FOR A CELL

DSP-4.8: SEPARATING A GAS MIXTURE INTO ITS CONSTITUENT
DSP-4.9: FIXED-POINT IMPLEMENTATION OF NOISE REDUCTION USING
DSP-4.10: EXTRACTING GARCH EFFECTS FROM ASSET RETURNS USING
DSP-4.11: SIGNAL PROCESSING AND ANALYSIS TECHNIQUES FROM THE
DSP-4.12: INTERFERENCE EFFECTS OF NON-IDEAL DYNAMIC
SPED-1: (SPED) EDUCATIONAL SOFTWARE TOOLS
SPED-1.1: ALL ABOUT PHASE
SPED-1.2: A SCENARIO-BASED DSP LEARNING STUDY
SPED-1.3: TO IMPROVE SIGNAL PROCESSING CONCEPT
SPED-1.4: LABVIEW DSP – A HANDS-ON DSP EDUCATIONAL PLATFORM232 Eduardo Perez, Sam Shearman, National Instruments, United States
SPED-1.5: INTERACTIVE MODELS FOR TEACHING DIGITAL SIGNAL
SPED-1.6: USING SOFTWARE-BASED ANIMATIONS OF SIGNAL
DSP-5: (DSP) MONTE CARLO-BASED SIGNAL PROCESSING

DSP-5.2: MONTE-CARLO BASED ESTIMATION METHODS OF	256
DSP-5.3: EVOLUTIONARY MCMC PARTICLE FILTERING FOR TARGET	262
DSP-5.4: SEQUENTIAL MONTE CARLO OPTIMIZATION USING ARTIFICIALSTATE-SPACE MODELS Joaquín Míguez, Cristina Maíz, Universidad Carlos III de Madrid, Spain; Petar M. Djuric, Stony Brook University, United States; Dan Crisan, Imperial College London, United Kingdom	268
DSP-5.5: EFFICIENT IMPORTANCE SAMPLING TECHNIQUES FOR LARGE	274
DSP-5.6: MONTE CARLO TRACKING ON THE RIEMANNIAN MANIFOLD OF	280
DSP-5.7: COST-REFERENCE PARTICLE FILTERS AND FUSION OF	
DSP-5.8: MODULATION CLASSIFICATION IN MULTIPATH ENVIRONMENTS	292
DSP-6: (DSP) WIRELESS CHANNEL MODELING AND ESTIMATION	
DSP-6.1: ML ESTIMATION OF COVARIANCE MATRICES WITH	298
DSP-6.2: EXPERIMENTAL CHARACTERISTICS OF INDOOR WIDEBAND	302
DSP-6.3: SPATIALLY CORRELATED MULTI-USER CHANNELS: LOS VS	308
DSP-6.4: COMMON PITFALLS IN MULTIDIMENSIONAL HIGH	314
DSP-6.5: SPARSE MULTIPATH CHANNELS: MODELING AND ESTIMATION	320

DSP-6.6: SPATIAL DIVERSITY AND SPATIAL CORRELATION EVALUATION OF
DSP-6.7: A NEW MULTI-ANTENNA BASED LOS – NLOS SEPARATION
DSP-6.8: ANALYSIS OF POST-DEMODULATOR ADAPTIVE FILTER
DSP-6.9: JOINT FRAME AND CARRIER FREQUENCY SYNCHRONIZATION:
DSP-6.10: A HIGH EFFICIENCY OUTPHASING TRANSMITTER STRUCTURE
DSP-7: (DSP) SIGNAL PROCESSING AND OBJECT RECOGNITION
DSP-7.1: ESTIMATION OF SIGNAL INFORMATION CONTENT FOR
DSP-7.2: BAYESIAN CLASSIFICATION OF SHAPES HIDDEN IN POINT
DSP-7.3: SPARSE SIGNAL REPRESENTATION FOR COMPLEX-VALUED
DSP-7.4: RECOGNITION SYSTEM DESIGN USING ACTIVE SENSING AND
DSP-7.5: SPECTRAL ANALYSIS OF NON-UNIFORMLY SAMPLED DATA: A

DSP-7.6: INFORMATION PRESERVING EMBEDDINGS FOR
DSP-7.7: ON THE RELATION BETWEEN SPARSE SAMPLING AND
DSP-7.8: A FAST INDSCAL ANALYSIS FOR BLIND UNDERDETERMINED
DSP-7.9: A FEATURE WEIGHTED HYBRID ICA-SVM APPROACH TO
DSP-7.10: IMPROVING THE SAGE ALGORITHM WITH ADAPTIVE PARTIAL
DSP-7.11: CLASSIFICATION OF MULTIPLE TIME-SERIES VIA BOOSTING
SPED-2: (SPED) FIRST YEAR AND K12
SPED-2.1: AN EXPLORATION OF SAMPLING PHENOMENA USING THE
SPED-2.3: CONNECTING ARTISTICALLY-INCLINED K-12 STUDENTS TO
SPED-2.4: FIRST YEAR DSP EDUCATION IN THE CONTEXT OF ECE
Sany L. Wood, Susan C. Kemmizer, Nanonai Science Pointainon, Onica States
SPED-2.5: REAL-TIME DSP IN A FRESHMAN ECE COURSE
SPED-2.5: REAL-TIME DSP IN A FRESHMAN ECE COURSE430

SIGNAL PROCESSING
DSP-8.1: ITERATIVE SPACE-TIME ADAPTIVE PROCESSING
DSP-8.2: A HYBRID MIMO PHASED-ARRAY CONCEPT FOR ARBITRARY
DSP-8.3: ADAPTIVE NOISE WAVEFORM DESIGN FOR RADAR
DSP-8.4: A NOVEL STATISTICAL APPROACH FOR SPECKLE FILTERING OF
DSP-8.5: COGNITION IS THE KEY TO THE NEXT GENERATION OF RADAR
DSP-9: (DSP) FILTERING
DSP-9.1: ITERATIVE DESIGN OF LP FIR AND IIR DIGITAL FILTERS
DSP-9.2: MODEL-FREE INTERVAL-BASED LOCALIZATION IN MANETS
DSP-9.3: DESIGN OF BLOCK LIFTING-BASED DISCRETE COSINE
DSP-9.4: DESIGN OF FIR QUADRATURE MIRROR-IMAGE FILTER BANKS
DSP-9.5: HIGH SPEED DSP BLOCK FOR FPGA DEVICES USING A
DSP-9.6: TURBO ITERATIVE SIGNAL PROCESSING
DSP-9.7: MINIMIZING QUANTIZATION EFFECTS IN DIGITAL FILTERING501 Arulalan Rajan, Jamadagni H. S., INDIAN INSTITUTE OF SCIENCE, India; Ashok Rao, J S S COLLEGE OF ARTS COMMERCE AND SCIENCE, India

DSP-8: (DSP) NOVEL ALGORITHMS AND ARCHITECTURES FOR SENSORS

DSP-9.8: A GENERALIZED LINEAR FILTER APPROACH FOR SONAR507 RECEIVERS
Nabin Sharma, John Buck, University of Massachusetts Dartmouth, United States
DSP-9.9: AN EFFICIENT REAL-TIME METHOD FOR TIME-VARYING
DSP-9.10: A SINGLE-STAGE TARGET TRACKING ALGORITHM FOR
DSP-9.11: DIGITAL SIGNAL PROCESSING WITHOUT ARITHMETIC USING
DSP-10: (DSP) SIGNAL REPRESENTATIONS
DSP-10.1: MODELING AND DENOISING WIGNER-VILLE DISTRIBUTION
DSP-10.3: COCHANNEL FM DEMODULATION VIA THE MULTI
DSP-10.4: EXTRACTING REGIONS OF INTEREST FROM STILL IMAGES: COLOR
DSP-10.5: DEMOSAICING ACCORDING TO EDGE INFORMATION BASED ON
DSP-10.6: GRAY-SCALE FINGERPRINT IMAGE COMPRESSION BASED ON
DSP-10.7: QUADRILATERAL REMESHING WITH GLOBAL ALIGNMENT
DSP-10.8: ERROR CORRECTION FOR RATELESS CODES
DSP-10.9: A CONCATENATED MODEL FOR VIDEO FRAME INTERPOLATION565 Ying Chen, Mark J.T. Smith, Purdue University, United States
DSP-10.10: PRE-BLURRED SPATIAL SAMPLING CAN LEAD TO

DSP-10.11: A DESIGN OF DUAL-TREE COMPLEX WAVELET TRANSFORM
DSP-10.12: MULTIRATE DIGITAL PHASE-LOCK LOOPS WITH RANDOM
DSP-11: (DSP) DETECTION
DSP-11.1: SIGNAL DETECTION WITH NOISE POWER VARIATION
DSP-11.3: NEURAL NETWORK DETECTION OF MSK SIGNALS
DSP-11.4: AFFINE PROJECTION TYPE BLIND MULTIUSER DETECTION
DSP-11.5: A STOCHASTIC DIFFERENTIAL EQUATION FOR WIRELESS
DSP-11.6: DIRECTIONAL ACOUSTIC SOURCE'S POSITION AND
DSP-11.7: LDPC DECODING BY PARITY AUGMENTATION AND
DSP-11.8: A CONTROLLABLE COMPLEXITY SOFT-OUTPUT SUBOPTIMAL
DSP-11.10: EXPERIMENTS ON DECODING LDPC CODES USING TREES
DSP-11.11: ON THE USE OF PHASE CHARACTERISTICS FOR SIGNAL
DSP-11.12: REGION OF INTEREST IDENTIFICATION FOR DAMAGE

DSP-12: (DSP) IMAGE AND VIDEO PROCESSING
DSP-12.1: ARTISTIC STEREO IMAGING BY EDGE PRESERVING
Callet, IRCCyN, France; Nicolai Petkov, RuG, Netherlands
DSP-12.3: UNSUPERVISED BITSTREAM BASED SEGMENTATION OF
Ivan Mecimore, Charles Creusere, New Mexico State University, United States
DSP-12.5: FACIAL EXPRESSION RECOGNITION USING HYBRID
DSP-12.6: WAVELET-BASED EMBEDDED IMAGE CODING USING DYNAMIC
DSP-12.7: ACTIVE POLARIMETRIC IMAGING FOR ESTIMATION OF SCENE659 GEOMETRY Qingsong Wang, Charles Creusere, NMSU, United States; Vimal Thilak, Nvidea Corp., United States; David Voelz, NMSU, United States
DSP-12.8: MULTI-REGION TEXTURE IMAGE SEGMENTATION BASED ON
DSP-12.9: MULTIRESOLUTION IN MULTISCALE: A NEW ROLE FOR
DSP-12.10: HAAR-LIKE FILTERING FOR HUMAN ACTIVITY RECOGNITION
DSP-12.11: A THREAD COUNTING ALGORITHM FOR ART FORENSICS
DSP-12.12: IMAGE ENHANCEMENT USING INTEGER SEQUENCES
DSP-13: (DSP) COMPRESSIVE SENSING
DSP-13.1: COMPRESSED SENSING VIA SPARSE BAYESIAN LEARNING AND

DSP-13.2: NONNEGATIVE COMPRESSED SENSING WITH MINIMAL
DSP-13.3: ADAPTIVE SENSING FOR SPARSE SIGNAL RECOVERY
DSP-13.6: RECONSTRUCTION IN COMPRESSIVE SENSING USING AFFINE
DSP-13.7: COMPRESSED SENSING FOR UWB RADAR TARGET SIGNATURE714 RECONSTRUCTION Ismail Jouny, Lafayette College, United States
SPED-3: (SPED) COURSES & ASSESSMENT
SPED-3.1: UNDERSTANDING NAÏVE REASONINGS IN SIGNALS AND
SPED-3.2: ITEM RESPONSE ANALYSIS OF THE CONTINUOUS-TIME
SPED-3.3: INVESTIGATING THE EFFECTIVE USE OF TABLET PCS IN
SPED-3.4: A "RESEARCH EXPERIENCE FOR UNDERGRADUATES" IN
SPED-3.5: A COURSE IN SPEECH AND IMAGE PROCESSING FOR
SPED-3.6: AN APPLICATION-BASED APPROACH TO PRESENTING RANDOM747 DSP CONCEPTS TO A NON TRADITIONAL STUDENT BODY Monique Fargues, Naval Postgraduate School, United States
SPED-3.7: CONSIDERATIONS FOR PLANNING A DSP HARDWARE CLASS

SPED-4: (SPED) LABS & HARDWARE
SPED-4.1: A COGNITIVE NETWORK TESTBED FOR WIRELESS
SPED-4.2: A LABORATORY-BASED COURSE IN REAL-TIME DIGITAL SIGNAL
SPED-4.3: EFFICIENT IMPLEMENTATION OF VOICE ENHANCEMENT
SPED-4.4: DEVELOPMENT OF DSP BASED NETWORK ECHO
SPED-4.5: THE MODIFIED 'SWITCHING-MODULATOR' FOR GENERATION
SPED-4.6: THE 'PHASE-REVERSAL' IN DSB-SC: A COMMENT
SPED-4.7: AN AFFORDABLE SOFTWARE DEFINED RADIO

AUTHOR INDEX