2009 IEEE Avionics, Fiber-Optics and Photonics Technology Conference

(AVFOP 2009)

San Antonio, Texas, USA 22 – 24 September 2009

IEEE Catalog Number: ISBN:

CFP09AVF-PRT 978-1-4244-3358-2

Table of Contents

Tuesday, 22 September 2009

TuA1	Microwave Photonics Electronic Warfare Technologies for Australian Defence	1
TuA2	Update on DARPA Activities in Microwave Photonics	N/A
TuA3	Impulse Response of the Photonic Time-Stretched Analog-to-Digital Converter	3
TuA4	Power Scaling in Photonic Time-Stretched Analog-to-Digital Converters	5
TuB1	Compact High Power DPSS Laser with Very Low RIN and Phase Noise for 1550nm Wavelength Band	7
TuB2	Highly Linear Dual Photodiodes for Ku-Band Applications	9
TuB3	Modulator Bias Regimes for Analog Optical Links	11
TuB4	Disruption and Damage of an Electrooptic Modulator by Pulsed Microwaves	13
TuC1	Balanced Coherent Heterodyne Detection with Double Sideband Suppressed Carrier Modulation for High Performance Microwave Photonic Lin	15 nks
TuC2	Signal Processing in Analog Optical Links	17
TuC3	VCSEL-based RF Photonics over Multimode Fiber	19
TuD1	Sensor Application Opportunities for Aerospace Propulsion Systems	21
TuD2	High Temperature Fiber Optic Pressure Sensors for Engine Dynamics and Health Monitoring	23
TuD3	Multi-Element Arrays for LADAR	25
TuD4	Optical Methods for Detecting Contamination in Jet Fuel	27
TuD5	High Resolution, Dynamic Strain Measurements with Continuous Fiber Bragg Gratings for Structural Health Monitoring	29
Wednes	day, 23 September 2009	
WA1	Radio Over Fiber Systems for Combined Communication and Sensing Applications	N/A

	Getting More on Lithium Niobate: Vertical Integration	32		
WB1	Aerospace Grade Fiberoptic Components of Bendable Fiber and Multi- Channel Fiber Rotary Joint	34		
WB2	Development and Testing for Through-Life Operation of Fibre-Optic Components and System in Military Air Applications	36		
WB3	Hermetic Fiber Optic Modules for Aerospace	38		
WB4	Fiber Optic System Test and Qualifications Standards for Harsh Environment Applications	40		
WC1	Optical LAN for Avionics Platforms	42		
WC2	Comparison of WDM/Pulse-Position-Modulation (WDM/PPM) with Code/Pulse-Position-Swapping (C/PPS) Based on Wavelength/Time Codes	44		
WC3	Digital Avionics Fiber Optic Link Interface control Document Standardization	46		
WD1	New Developments in Field Splicing of Avionics Fiber Optic Cable	48		
WD2	Advances in Fiber Optic Termination & Field Repair	50		
WD3	Environmental Stress Effects on Fiber Optic Cable End Faces	52		
WD4	Optical Cable Characterization and Troubleshooting for Avionics	54		
WD5	Evolution of Aerospace Fiber Optic Cable	56		
WD6	Hybrid Glass Coatings for Optical Fibers. Progress Toward Optimization for Aerospace Fibers and Cables.	58		
WD7	Large Core Polymer Optical Fibers for Aeromobile Cabling: 100MBPS and 1GBPS Transmission	60		
Thursday, 24 September 2009				
ThA1	Optical Network Architecture, Technology and Component Challenges in Aircraft Network Applications	62		
ThA2	Dynamically Reconfigurable Optical/Electrical Networks for High-Bandwidth Data Centers	64		
ThA3	Space Plug and Play Architecture (SPA)	N/A		
ThB1	High Speed Data Interconnects of Copper, Carbon Nanotubes and Fiber- Optics: An Overview	66		

ThB2	Photonic Technologies for an Integrated Optical Node for Avionic Networks	68
ThB3	Board-to-Board Optical Interconnects Within Aerospace and Missile/Munitions Systems	70
ThB4	Modelling the Power Budget of Amplified Optical Networks for Future Aerospace Applications	72
ThC1	Optical RF Communications Adjunct: Coming of Age	74
ThC2	Naval Free Space Optical Communications – Mission and Technology Requirements	76
ThC3	High Throughput Free Space Optical Communication using White LED Lighting Equipment	78
ThD1	CWDM 40 Gbps+ Multimode Module for Space Qualified Applications	80
ThD2	Review of the State-of-the-Art in Silicon Photonics and Its Potential Aerospace Applications	82
ThD3	Evaluation of Multi-Channel Tunable Transmitter Array Designs for Avionic Applications	84
ThD4	Electro-Optic Polymer Based Nanophotonic Modulator with Ultra High Efficiency	86
ThD5	WIidely Wavelength-Tunable & Wavelength-Selectable Semiconductor lasers Based on Super-Compact Grating	88
	Author Index	