5th National Conference on Computational Mechanics 2009

(MekIT 2009)

Trondheim, Norway 26-27 May 2009

Editors:

Bjorn Skallerud

Helge I. Andersson

ISBN: 978-1-61738-864-4

Printed from e-media with permission by:

Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571

Some format issues inherent in the e-media version may also appear in this print version.

Copyright© (2009) by Tapir Academic Press All rights reserved.

Printed by Curran Associates, Inc. (2010)

For permission requests, please contact Tapir Academic Press at the address below.

Tapir Academic Press Nardoveien 12 NO-7005 Trondheim Norway

Phone: +47 73 59 32 10 Fax: +47 73 59 32 04

forlag@tapir.no

Additional copies of this publication are available from:

Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571 USA Phone: 845-758-0400 Fax: 845-758-2634 Email: curran@proceedings.com Web: www.proceedings.com

Table of contents MekIT09

Esau, I (invited) Large-eddy simulations of geophysical turbulent flows with applications to planetary boundary layer research 7
Holmås, T (invited) and Hansen M O Design of floating wind turbines
Irgens, F (invited) Non-linear continuum mechanics and constitutive modelling
Ristinmaa, M (invited) and Harryson M <i>Texture evolution in large strain plasticity</i>
Barri, M, Andersson H I, El Khoury G K and Pettersen B Massive separation in one-sided expansion channel
Bastani, A F and Aukrust, T FEM simulations of temperature evolution in aluminum extrusion: Identification of numerical problems in Altair HyperXtrude
Bihs, H and Olsen N R Three dimensional numerical modeling of complex surface flow over a backward facing step
Bjøntegaard, T and Rønquist E Accurate interface-tracking for arbitrary Lagrangian-Eulerian schemes
Dahl, S K, Vierendeels, J, Degroote, J, Annerel, S, Skallerud, B and Hellevik L R Implicit interaction of two rigid mitral leaflets in a partitioned fluid-structure approach
Elboth, T, Wasberg, C E, Helgeland, A, Andreassen, Ø, and Reif, B A P Flow noise simulation around a cylinder
Fossum, H, and Reif, B A P Predicting particle deposition in the human airways with RANS turbulence modeling
Grue, J Time-integration of nonlinear internal waves over bathymetry
Haga, J B, Langtangen, H P, Nielsen, B F and Osnes, H On the performance of an algebraic multigrid preconditioner for the pressure equation with highly discontinuous media

Hoang, N-H, Porcaro, R, Langseth, M and Hanssen, A-G Self-piercing riveting of two aluminium alloy sheets using an aluminium rivet
Holmedal, L E and Myrhaug, D Wave-induced steady streaming and net sediment transport in ocean bottom boundary layers
Jøsendal, H B and Thorvaldsen, T A study of ballistic protection mechanisms in composite shields
Kvarving, A M, Bjøntegaard, T and Rønquist, E Fast tensor-product solvers for partially deformed three-dimensional domains 249
Larsson, M and Muller, B Numerical simulation of fluid-structure interaction in human phonation
Leinan, P R, Hellevik, L R, Prot, V, Kiserud, T and Skallerud, B On modelling of the umbilical vein
Narasimhamurthy, V D and Andersson, H I Turbulent flow simulation in a rotating rough channel
Nygård, F and Andersson, H I Numerical simulation of swirling flow
Ong, M C, Utnes, T, Holmedal, L E, Myrhaug, D and Pettersen, B Numerical simulation of flow around a marine pipeline close to a flat seabed at high Reynolds numbers
Pacio, J and Dorao, C A Application of high order methods for the simulation of heat exchanger models 341
Panjawi, B, Ertesvåg, I S, Gruber, A and Rian, K E Large eddy simulation of backward facing step flow
Pettersen, S H, Aamodt, A, Foss, O A and Skallerud, B Subject specific finite element analysis of callus distraction – a preliminary study 371
Pierre, B and Gudmundsson, J S Modelling of pressure wave propagation in pipelines: steady-state and transient friction
Ruspini, L C, Dorao, C A and Fernandino, M Solving thermo-hydraulic models using a high order method

Selim, K and Logg, A <i>Simulating heart valve dynamics in FEniCS.</i>
Skeie, G and Rusten, T What is the future shell analysis?
Tutkun, M, Reif, B A P, Johansson, P B V and Werne, J Proper orthogonal decomposition of velocity and scalar fields in shear generated turbulence
Valen-Sendstad, K, Mortensen, M, Langtangen, H P, Reif, B A P and Mardal, K-A Implementing a k - ε turbulence model in the FEniCS finite element programming environment
Vartdal, M and Reif, B A P Numerical modeling of aerosol dispersion inside a rotating aerosol chamber 459
Verschaeve, J C G A new immersed boundary condition for the lattice Boltzmann method
Vik, T and Reif, B A P Large eddy simulations of the evaporation from a liquid pool beneath a turbulent air flow
Wilbers, I M, Langtangen, H P and Ødegård, Å Using Python to speed up numerical python programs
Wingstedt, E and Reif, B A P Unsteady RANS modelling of pollutant dispersion in an idealized urban area 513
Zhao, L H, Andersson, H I, Gillissen, J J J and Boersma, B J Simulation of fibre suspension flow by an Eulerian-Lagrangian approach