# 2011 IEEE Avionics, Fiber-**Optics and Photonics Technology Conference**

(AVFOP 2011)

San Diego, California, USA 4 – 6 October 2011



**IEEE Catalog Number: CFP11AVF-PRT** 

**ISBN**:

978-1-4244-7344-1

### **TABLE OF CONTENTS**

#### Tuesday, October 4, 2011

| TuA  | AVFOP Overview                                                                                    |      |
|------|---------------------------------------------------------------------------------------------------|------|
| TuA1 | Developing Aircraft Photonic Networks - An Overview of the European DAPHNE Project                | 1    |
| TuA2 | Fiber Optics for Use in Air and Space Harsh Environments                                          | 3    |
| TuA3 | Advances in Optical Networking for Aerospace Platform Applications                                | 5    |
| TuA4 | RF Photonics: Status, Challenges and Opportunities                                                | 7    |
| TuB  | Avionics Networking Architecture, Modeling and Standardizat                                       | ion  |
| TuB1 | WDM LAN Network Management and Control                                                            | 9    |
| TuB2 | WDM LAN Node Design and Test Bed                                                                  | 11   |
| TuB3 | Monte Carlo WDM Network Identification and Evaluation Tool                                        | 13   |
| TuB4 | Wavelength and Fiber Assignment Problems on Avionic Networks                                      | 15   |
| TuB5 | Satellite Optical Backplane                                                                       | 17   |
| TuC  | Fiber Optic Transmitters/Receivers for Digital Avionics Netwo                                     | orks |
| TuC1 | Harsh Environment Transceivers for the Post-Module Era                                            | 19   |
| TuC2 | PCIe Optical Interconnects                                                                        | 21   |
| TuC3 | Widely Tunable Optical Transceiver for Avionic WDM Networks                                       | 23   |
| TuC4 | Coarse Wavelength Division Multiplexed Multimode Transceiver Technology for Avionics Applications | 25   |
| TuC5 | High Speed Vertical Cavity Surface Emitting Lasers for Harsh Environment Applications             | 27   |
| TuC6 | High-Speed Electro-Absorption Modulator Based on SiGe HBT                                         | 29   |
| TuD  | RF Photonics - Signal Processing I                                                                |      |
| TuD1 | High-Efficiency Optical Mixers: Principle, Design and Implications for Signal Processing          | 31   |
| TuD2 | Characterization of a Compressively Sampled Photonic Link                                         | 33   |
| TuD3 | Optical Under-Sampling for High Resolution Analog-to-Digital Conversion                           | 35   |
| TuD4 | Simultaneous Optical Phase and Intensity ModulationFor Analog Signal Processing                   | 37   |

#### Wednesday, October 5, 2011

#### WA Photonic Sub-Systems Demonstrations and Concepts

| WA1 | Optical Functions for Microwave Signals in Airborne Radar and Communication Systems                                                          | 39 |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------|----|
| WA2 | Development of an Integrated Photonic Beamformer for Electronically-Steered Ku-Band Phased Array Antenna                                     | 41 |
| WA3 | Feasibility of Airborne Large Baseline Antennas                                                                                              | 43 |
| WA4 | Fiber Delivery of High Power Nanosecond Pulses for Ignition in Aerospace<br>Engines                                                          | 45 |
| WA5 | Optical Frequency Domain Reflectometry for High-Resolution Distributed Strain Sensing                                                        | 47 |
| WA6 | Characterization of Fiber Wave Retarders for Interferometric Fiber-Optic Current Sensors                                                     | 49 |
| WB  | RF Photonics - Links                                                                                                                         |    |
| WB1 | Microwave Photonic Link Architectures                                                                                                        | 51 |
| WB2 | Frequency Modulated Microwave Photonic Links for High Dynamic-Range Antenna<br>Remoting Systems                                              | 53 |
| WB3 | Optical Fiber Induced Noise in RF-Photonic Links                                                                                             | 55 |
| WB4 | A Compact, Unamplified RF Photonic Transmitter with High Efficiency and High Optical Power                                                   | 57 |
| WB5 | Assessment of Noise Impact on UWB Signals in R-EAM Based Optical Links                                                                       | 59 |
| wc  | Next Generation Networks                                                                                                                     |    |
| WC1 | Terabit Optical Ethernet for Avionics                                                                                                        | 61 |
| WC2 | Next Generation Space Interconnect Standard (NGSIS)                                                                                          | 63 |
| WC3 | Utilization of Route Diversity in Free-Space Optical Networks                                                                                | 65 |
| WD  | Test and Measurement                                                                                                                         |    |
| WD1 | Lightwave Component Analysis for Balanced and On-Wafer Measurement of Opto-Electronic Components for 100GB/S Transmission and RF-Over-Optics | 67 |
| WD2 | Mode Conditioner and Portable High-Resolution Reflectometer for Maintenance and Diagnostics of Single and Multi-Mode Avionic Fiber Networks  | 69 |
| WD3 | Power Budget and System Performance Analysis of the POF Link for Future Avionic Applications                                                 | 71 |
| WE  | Opticall Device Technology for Avionics                                                                                                      |    |
| WE1 | Semiconductor Optical Amplifiers in Avionics                                                                                                 | 73 |
| WE2 | Chip-Scale Photonic Routing Fabrics for Avionic And Satellite Applications                                                                   | 75 |
| WE3 | Performance Modeling and Analytical Verification of POF Transmissive Star Couplers for Avionics System Applications                          | 77 |
| WE4 | Polymer Cladding Materials Under High Temperatures                                                                                           | 79 |
|     |                                                                                                                                              |    |

## Thursday, October 6, 2011

| ThA<br>ThA1 | Harsh Environment Systems and Components; COTS Insertion Optical Component/Hardware Insertion into Tactical/Sensor Systems: Risks and Lessons Learned | 83  |  |  |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|--|
| ThA2        | Leveraging COTS Opto-Electronics for Military Use                                                                                                     | 85  |  |  |
| ThA3        | . Dfc[fYgg'cb'U' <yfa `y``<="" b]zyffi="" td="" yf`duw_u[y`ubx`i="" yh]wd][hj]`yx`hfubgwf]j=""><td>87</td></yfa>                                      | 87  |  |  |
| ThA4        | Highly Hermetic Fiber Pigtailed Electro-Optics Components for High-Reliability<br>Avionics Applications                                               | 89  |  |  |
| ThB         | Photodetectors for Analog Applications; Transmitters for Sens                                                                                         | ing |  |  |
| ThB1        | Applications Photodetectors for Analog Applications                                                                                                   | 91  |  |  |
| ThB2        | Discussion of Resonant Enhancements of the Output IP3 in High Power Phototodetectors                                                                  | 93  |  |  |
| ThB3        | High-Power Linear Balanced INP Photodetectorsfor Coherent Analog Optical Links                                                                        | 95  |  |  |
| ThB4        | All-Fiber Widely-Tunable Transmitter for Remote Sensing in Short-Wave Infrared Band                                                                   | 97  |  |  |
| ThC         | Fiber, Connector, Terminus, Cable and Splice Solutions for Harsh                                                                                      |     |  |  |
| ThC1        | Environments  Durable Fiber Optic Mating Surface with Integrated Lens                                                                                 | 99  |  |  |
| ThC2        | Harsh Environment Fiber Optic Connector Selection                                                                                                     | 101 |  |  |
| ThC3        | Wiring Replacement, Access and Aggregation Interfaces and WDM Networking                                                                              | 103 |  |  |
| ThC4        | Aerospace Cable Repair via Field-Portable Fiber Optic Tip Shaping and Permanent Mechanical Splice Technology                                          | 105 |  |  |
| ThC5        | Single Mode Connector Options for Sensor Networks                                                                                                     | 107 |  |  |
| ThD         | RF Photonics - Signal Processing II                                                                                                                   |     |  |  |
| ThD1        | Photonic Methods for RF Phase Shifting                                                                                                                | 109 |  |  |
| ThD2        | Practical Silicon Photonics True-Time-Delay Devices for Phased Array Systems                                                                          | 111 |  |  |
| ThD3        | New Advances in RF Photonic Applications Based on Optical Whispering Gallery<br>Mode Resonators                                                       | 113 |  |  |
| ThD4        | Photonic Frequency Conversion for Wideband RF-to-IF Down-Conversion and Digitization                                                                  | 115 |  |  |
| ThD5        | Laser Noise Considerations For Phase Modulated Links                                                                                                  | 117 |  |  |