Structures Congress 2012

Chicago, Illinois, USA 29-31 March 2012

Volume 1 of 3

Editors:

John Carrato

Joseph G. Burns

ISBN: 978-1-61839-996-0

Printed from e-media with permission by:

Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571

Some format issues inherent in the e-media version may also appear in this print version.

Copyright© (2012) by the American Society of Civil Engineers All rights reserved.

Printed by Curran Associates, Inc. (2012)

For permission requests, please contact the American Society of Civil Engineers at the address below.

American Society of Civil Engineers 1801 Alexander Bell Drive Reston, VA 20191

Phone: (800) 548-2723 Fax: (703) 295-6333

www.asce.org

Additional copies of this publication are available from:

Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571 USA Phone: 845-758-0400 Fax: 845-758-2634 Email: curran@proceedings.com Web: www.proceedings.com

Structures Table of Contents

Blast

New and Innovative Materials for Blast Protection	
Blast Analysis of Integrated Framing Assemblies at Openings in Insulated Concrete Form Wall Construction Carrie E. Davis, Kirk A. Marchand, and Joe Keith	1
Innovative Material for Protection of Reinforced Concrete Structures against Close Range Detonation Yousef Alostaz, Philipp Hofmann, Peter Feenstra, and Jay Thomas	12
Behavior of Concrete Panels Reinforced with Synthetic Fibers, Mild Steel, and GFRP Composites Subjected to Blasts C. P. Pantelides, T. T. Garfield, W. D. Richins, T. K. Larson, and J. E. Blakeley	23
Insulated Concrete Forms (ICF) As Blast-Resistant Barriers R. F. Oleck, A. C. Habel, and D. W. Herrit	35
Blast Testing and Analytical Evaluation of Polymer Retrofits for Unreinforced Masonry Walls J. S. Idriss and M. J. Lowak	46
Predicting Blast Loads Associated with Complex Threat Environme	nts
A Fast-Running Tool to Characterize Shock Damage on Enclosed Structures Lee Glascoe, Stephanie Neuscamman, Kristin Lennox, William Elmer, Lewis Glenn, and McMichael	58 d Larry
Blast Loads in and Urban Environment Trish Bowles, David Stevens, and Mike Stanley	70
Overview of Analytical Procedures to Predict Concrete Damage under Impulsive Loads Ahmed Ibrahim, Hani Salim, and Ahmed Eisa	80
An Evaluation of Engineering Methods for Predicting Close-In Air Blast David D. Bogosian and Ashley N. Heidenreich	90
Blast Effects on Infrastructure	
Effects of Close-In Charges on Pipeline Components David J. Stevens, John M. H. Puryear, Neil Smith, and Matthew H. Gomez	102
SDOF Isn't Dead—The Role of Single Degree of Freedom Analysis in the Design of Columns against Close-In Blast D. Cormie and M. Arkinstall	114

Collapse Resistance of Steel Frame Structures: Connection Behavior, Slab Effects, and Robustness Assessment

An Energy-Based Partial Pushdown Analysis of Robustness Assessment of Building Structures	126
Guoqing Xu and Bruce R. Ellingwood	
Overview of AISC/NSF Structural Integrity Research and Preliminary Results J. M. Weigand, J. E. Meissner, T. Francisco, J. W. Berman, L. A. Fahnestock, and J. Liu	135
Performance of Steel Shear Connections under Combined Moment, Shear, and Tension	146
S. A. Oosterhof and R. G. Driver	
The New ASCE/SEI Standard for Blast Resistant Design	
Blast Protection of Buildings—Structural Systems, Protected Spaces, Building Envelope, and Glazing Robert Smilowitz and Lorraine Lin	158
Blast Resistant Structures in the Petrochemical Industry	
Blast and Impact Resistant Design of Overhead Protection Structures Guzhao Li, Paul Summers, Keith Clutter, and David Bonaventure	167
Vapor Cloud Explosion Prediction Methods—Comparison of TNO Multi-Energy (ME) and Baker-Strehlow-Tang (BST) Models in Terms of Vulnerability of Structu Damage Caused by an Explosion Trey Turner and Ali Sari	177 ural
Design Aspects of Blast Resistant Electrical Buildings Amol Ganpatye, Jason Turner, and William Bounds	189
Load Shape Influence on Dynamic Structural Response T. H. Anderson and J. L. Kostecki	201
Multi-Hazard Robustness Assessment Building Structural Systems	
Collapse Performance Evaluation of Steel Buildings after Loss of Columns Brian I. Song, Halil Sezen, and Kevin A. Giriunas	213
Role of Composite Action in Collapse Resistance of Steel Frame Buildings Honghao Li and Sherif El-Tawil	225
Fire Induced Progressive Collapse of Steel Building Structures Anil Agarwal and Amit H. Varma	235
Effects of Fire on a Tall Steel Building Designed to Resist Progressive Collapse Morgan C. Neal, Maria E. M. Garlock, Spencer E. Quiel, and Shalva Marjanishvili	246

Design Concepts for Progressive Collapse Mitigation

A New Cable System to Prevent Progressive Collapse of Reinforced Concrete Buildings Muhammad N. S. Hadi and Thaer M. Saeed Alrudaini	257
Applicability of FRP Systems for Retrofitting Existing Buildings to Prevent Progressive Collapse R. M. Galli, K. El-Domiaty, and E. Wolff	268
Numerical Simulation of Demolition of Perna Seca Hospital Using the Applied Element Method H. M. Helmy, A. K. Elfouly, and H. M. Salem	279
Date and Modeling for the Performance of Pristine and Blast Damaged Connections John E. Crawford, Kenneth B. Morrill, Douglas A. Sunshine, and Joseph M. Magallanes	295
Blast Resistant Curtainwall	
Development of a Validated Engineering Model of Laminated Glass under Blast Loading L. M. Pascoe, D. C. Smith, P. del Linz, J. Dear, and D. Cormie	307
Blast Performance of Cable-Supported Curtain Walls C. J. Field, J. A. Godinho, and S. R. Wopschall	322
Development of High Performance Concrete Panels for Curtain Wall Systems L. K. Stewart, K. B. Morrill, and K. Natesaiyer	333
Testing and FEA Analysis of a Cable Supported Polycarbonate Shield System to Protect against Glazing Hazards Matthew Kraemer, Jerry Collinsworth, and Darrell Barker	345
Historic Structures: Balancing Blast Protection and Aesthetics	
Design, Detailing, and Architectural Impacts of Fiber Reinforced Polymers (FRP) and Geotextile Fabrics in the Blast Mitigation of Unreinforced Masonry Wal Historic Buildings P. Georgakopoulos and P. Koklanos	358 <mark>Is in</mark>
Acceptance Criteria to Protect Historic Structures Brian Katz and Sharon Gallant	370
Bridge Practice	
Transit Rail and Movable Bridges	

Use of I-Beam Grillages and Box Girders in High Speed Railway Projects380Chiara Rosignoli and Marco Rosignoli380

A Linkage-Based Movable Bridge Form: Design and Optimization A. P. Thrall, S. Adriaenssens, I. Payá Zaforteza, and T. P. Zoli	391
Dynamic Amplification Factor for Light Rail Vehicle Transiting Box-Girder Bridge Peter Feenstra and Jeremy Isenberg	401
Evaluation and Retrofit of the Austin Congress Avenue Bridge for LRV N. R. Rubiano and L. C. Powell	412
Aesthetics and Special Criteria for Pedestrian Bridge Designs	
The Active Transportation Bridge S. Rothwell	426
Eaton's Center: Design of a Pedestrian Glass Sky Bridge Michal Krynski, David Wittenberg, and David DeLong	438
Pedestrian Bridge Vibration	
Performance-Based Vibration Design Methodology for Pedestrian Bridges Evan Lapointe, Qi Ye, and Erich Baumgartner	448
Retrofitting Steel Joist Supported Footbridges for Improved Vibration Response Onur Avci	460
Multi-Modal Control of Pedestrian Bridges Using Tuned-Mass-Dampers Y. Daniel, O. Lavan, and R. Levy	471
International Bridges	
Integrated Modeling Systems for Bridge Asset Management—Case Study S. DiBernardo	483
Cable Stayed Bridges	
Investigation and Repair Schemes of the Cracks in Steel Box Girders of a Cable Stayed Bridge G. Alan Klevens, Paul Norton, and Jian Huang	494
Bridge Research and Implementation	

Seismic Effects

Application of Negative Stiffness Devices for Seismic Protection of Bridge	506
Structures	
N. Attary, M. Symans, S. Nagarajaiah, A. M. Reinhorn, M. C. Constantinou, D. Taylor, A.	Α.
Sarlis, and D. T. R. Pasala	

Seismic Demand Evaluation for a Three-Span Curved Bridge Crossing Fault-R Zones	upture
Osmar Rodriguez, Bing Qu, and Rakesh K. Goel	
Optimal Intensity Measures for Probabilistic Seismic Response Analysis of Bridges on Liquefiable and Non-Liquefiable Soils	527
Zhenghua Wang, Leonardo Dueñas-Osorio, and Jamie E. Padgett	
Unbonded Prestressed Columns for Earthquake Resistance A. S. Larkin, D. H. Sanders, and M. S. Saiidi	539
Dynamic Interaction Behavior of Pile-Supported Wharves and Container Cranes in Liquefiable Soil Embankments A. Shafieezadeh, B. D. Kosbab, R. DesRoches, and R. T. Leon	549
A Simplified Method of Analysis of Isolated Bridges with Yielding Substructures	559
Chunli Wei and Ian Buckle	
Modeling and Validation of RC Columns Seismically Retrofitted Using Shape Memory Spiral	571
Moochul Shin and Bassem Andrawes	
Concrete Filled Steel Tube Piles to Concrete Pile-Cap Connections L. Kappes, M. Berry, J. Stephens, and L. McKittrick	581
Experimental Investigation of the Seismic Performance of Horizon Curved Bridges	ntally
Live Load Effects on Response of Bridges during Earthquakes Hartanto Wibowo, Danielle M. Smith, Ian G. Buckle, and David H. Sanders	591
Seismic Response of Full and Hybrid Isolated Curved Bridges Eric V. Monzon, Chunli Wei, Ian G. Buckle, and Ahmad Itani	603
A Methodology for the Experimental Evaluation of Seismic Pounding at Seat- Type Abutments of Horizontally Curved Bridges Joseph Wieser, Arash E. Zaghi, Manos Maragakis, and Ian Buckle	613
Impact of Rocking Foundations on Horizontally Curved Bridge Systems Subjected to Seismic Loading Ahmad Saad, David H. Sanders, and Ian Buckle	625
Seismic Response of Columns in Curved Bridges Michael J. Levi, David H. Sanders, and Ian G. Buckle	636
Finite Element Analysis Techniques for Fatigue and Fracture Evaluand Design	uation
Fatigue Testing and Finite Element Analysis of Bridge Welds Retrofitted by Peening under Load	648

K. Ghahremani and S. Walbridge

Fatigue Testing and Finite Element Analysis of Bridge Welds Retrofitted by Ultrasonic Impact Treatment	657
R. Tehrani Yekta, J. Yeung, and S. Walbridge	
Using Finite Element Analysis to Evaluate the Performance of Cracked Bridge Decks	667
Fady Barsoum, Adel El Safty, and Lenny Phillip	
IDOT Ongoing and Recently Completed Research, Development, and Implementation Efforts	
Radar Interferometric Monitoring of Vertical Ground Movements and Imposed Building Deformations Caused by Tunneling S. Schindler, A. Krivenko, P. Mark, W. Niemeier, and E. Ziem	675
Design of Concrete Bridges with Innovative Materials	
Chloride Transport and Service Life in Internally Cured Concrete C. Di Bella, C. Villani, N. Phares, E. Hausheer, and J. Weiss	686
Reducing Cracking in Concrete Structures by Using Internal Curing with High Volumes of Fly Ash T. J. Barrett, I. De la Varga, and W. J. Weiss	699
Mitigating Seismic Bridge Damage through Shape Memory Alloy Enhanced Modular Bridge Expansion Joints E. McCarthy, J. E. Padgett, R. DesRoches, and P. Bradford	708
Ultra High Performance Concrete Bridge Decks Reinforced with High-Strength Steel or Fiber Reinforced Polymers	718
M. A. Saleem, A. Mirmiran, J. Xia, and K. Mackie	
Implementation of Structural Health Monitoring in Management and Inspection of Bridges	
Advanced Visualization and Accessibility to SHM Results Involving Real-Time and Historic Multi-Parameter Data and Camera Images B. Glisic, M. Yarnold, F. Moon, and A. E. Aktan	735
Regression-Based Algorithms for Structural Damage Identification and Localization	747
Ruigen Yao, Michelle L. Tillotson, Shamim N. Pakzad, and Yuchen Pan	
A Comparison of Dynamic Testing Methods for Evaluating a Truss Bridge E. V. Fernstrom, T. R. Wank, and K. A. Grimmelsman	757
Construction and Special Topics	
Congress Street Bascule Bridge Reconstruction	769

Stan-lee C. Kaderbek, Joseph Quattrochi, Luis Benitez, Michael Haas, and David Sutfin

Erection Engineering Analysis for Curved and Skewed Girder Bridges B. Chavel, A. Sanchez, D. White, D. Coletti, C. Ozgur, and J. Jimenez	778
Overheight Collision Protection Measures for Bridges H. Sharma and S. Hurlebaus	790
Buildings	
Wind Loads on Super-Tall Towers	
Interference and Influence of Nearby Buildings: A Discussion of the Design Approach T. G. Mara, T. C. E. Ho, and N. Isyumov	798
Design and Construction Planning of Iconic Tall Buildings with Curre Technologies and Global Perspective	ent
1 Dubai—Engineering and Optimizing a Mega-Structure John Viise, Robert Halvorson, Bujar Morava, Peter Weismantle, and Jeffrey Stafford	809
Hangzhou CBD, Tower A: Structural Challenges in the Design of a Tall, Long, and Slender Tower M. Sarkisian, N. Mathias, J. Gordon, and J. Zhang	824
Using Offset External Bracing to Optimize Tall Building Performance Mark Sarkisian, Neville Mathias, and Eric Long	836
Testing As a Validation Tool for Tall, Non-Prescriptive Buildings in China M. P. Sarkisian and N. J. Mathias	848
Foundation Design Challenges at the 413 m Tall Al Hamra Tower B. Johnson, L. Hu, N. Mathias, A. Mazeika, and M. Sarkisian	860
Floor Vibration Serviceability	
Investigation of the Accuracy of Vibration Response Prediction Methods for High Frequency Floors Di Liu and Brad Davis	875
Impedance Modeling: An Efficient Modeling Method for Prediction of Building Floor Vibrations M. Sanayei, P. Maurya, N. Zhao, and J. A. Moore	886
Integrating Environmental and Seismic Performance Metrics	
Mapping a Structure's Impact on the Environment M. Sarkisian, L. Hu, and D. Shook	898
Environmental Impact Seismic Assessment: Application of Performance- Based Earthquake Engineering Methodologies to Optimize Environmental Perfor Matthew V. Comber, Chris Poland, and Mark Sinclair	910 rmance

Linking Next-Generation Performance-Based Seismic Design Criteria to Environmental Performance (ATC-86 and ATC-58) A. Court, K. Simonen, M. Webster, W. Trusty, and P. Morris	922
Quantification and Optimization of Structural Embodied Energy and Carbon Wolfgang Werner and Joseph G. Burns	929
Achieving Design Build Success with Early Involvement of Specialty Contractors and a Collaborative, Model Driven Process	
BIM-Model Checking in Building Design Nawari O. Nawari	941
Sustainability and Steel	
High Performance Modular Building: Cost Effective Solutions for Design and Construction of a Sustainable Commercial Building Dean DiGiovanni, Bill Jeng, and Agnes Wan	953
2011 Tornado Season: Lessons in Building Design for Structural Eng	ineers
Dual Objective Design Philosophy for Tornado Engineering John W. van de Lindt, Shiling Pei, David O. Prevatt, Thang Dao, William Coulbourne, Ar Graettinger, and Rakesh Gupta	965 Idrew J.
Enhancing Tornado Performance of Critical Facilities: Findings and Recommendations of FEMA's Mitigation Assessment Team Thomas L. Smith, Manuel Perotin, and Erin Walsh	977
Performance of School Buildings in the Joplin, MO, Tornado William L. Coulbourne and John Miller	989
Building Damage Observations and EF Classifications from the Tuscaloosa, AL, and Joplin, MO, Tornadoes	999
David O. Prevatt, David B. Roueche, John W. van de Lindt, Shiling Pei, Thang Dao, Willi Coulbourne, Andrew J. Graettinger, Rakesh Gupta, and David Grau	am
Preliminary Study of the Damage Caused by the 2011 Tohoku Eartho	quake
Overview of 2011 Tohoku Earthquake and Structural Damage Masato Motosaka	1011
Damage of RC Building Structures Due to 2011 East Japan Earthquake Masaki Maeda, Hamood Al-Washali, Kazuki Suzuki, and Kanako Takahashi	1023
Damage to Non-Structural Components in Large Rooms by the Japan Earthquake Ken'ichi Kawaguchi	1035
Earthquake and Tsunami Damage to Steel Structures Mitsumasa Midorikawa and Taichiro Okazaki	1045

Performance of Structures in the Canterbury, New Zealand, Earthqu	ake
Post-Earthquake Building Safety Assessments for the Canterbury Earthquakes	1057
Justin D. Marshall, Jim C. Barnes, Nathan C. Gould, Kishor Jaiswal, Bret Lizundia, David Swanson, and Fred Turner	d B.
Structural and Non-Structural Damage to Industrial Facilities during the February 2011 Christchurch, New Zealand, Earthquake Nathan C. Gould and Justin D. Marshall	1069
Seismic Performance of Concrete Bridges during Canterbury Earthquakes Alessandro Palermo, Liam Wotherspoon, Lucas Hogan, Mitchel Le Heux, Elena Camnasi Maria Brando	1080 o, and
Performance of Retrofitted Unreinforced Masonry Buildings during the Christchurch Earthquake Sequence F. Turner, K. Elwood, M. Griffith, J. Ingham, and J. Marshall	1092
Steel Connection Design	
Finite Element Study of Single-Angle Connection under Tensile Loading W. M. Kim Roddis and Deborah Blass	1104

Innovative Solutions to Challenging Stability Design Problems

Stability Design of the Bow String Trusses of the Virginia Beach Convention	1111
Center	
W F Baker and B S Young	

W. F. Baker and B. S. Young

Stability Design for the Crane Columns of the Wind Technology Testing	1119
Center	

E. M. Hines, R. A. Henige, and C. D. Blanchet

Business

Trial Designs and Building Code Issues

Masonry versus Reinforced Concrete Shear Walls—Should They Be Designed Differently?	1131
Richard E. Klingner, David I. McLean, and P. Benson Shing	
Demarcating the Profession: Where Should We Draw the Line?	
What Makes an Engineering Education an Engineering Education? William M. Bulleit	1143
What Makes an Engineer an Engineer? Erik Anders Nelson	1152
What Makes Engineering, Engineering?	1160

Jon A. Schmidt

Nonbuilding Structures

Wind Loads on Solar Collectors Systems and Rooftops	
Wind Loads on Solar Collectors: A Review Ted Stathopoulos, Ioannis Zisis, and Eleni Xypnitou	1169
Numerical Simulation of Wind Loading on Photovoltaic Panels C. M. Jubayer and H. Hangan	1180
Advances in Analysis and Design of Wind Energy Structures	
Reliability Analysis of Wind Turbines Equipped with Tuned Liquid Column Dampers (TLCD) Akwasi F. Mensah and Leonardo Dueñas-Osorio	1190
The Rapid Evolution of Wind Turbine Tower Structural Systems: A Historical and Technical Overview Nestor A. Agbayani and Rolando E. Vega	1201
Evaluation and Retrofit of Petrochemical Structures and Pipelines	
Structural Design for Replacing Elevated Drums Xiapin Hua	1213
A Case Study on the Use of Advanced Fiber Wrap Composites for Reinforced Concrete Repair of an Industrial Coker Reinforced Concrete Frame Tomás T. Jiménez and Dane Kost	1229
Repair and Retrofit of Open-Framed Steel Structures Eric Wey, Ben Dees, and Dawar Naqvi	1236
Reliability-Based Framework for Determination of Fitness for Service of Corroding Metal Pipes	1247
Naiyu Wang and Mehdi S. Zarghamee	
Tunnel and Underground Structures: Second Avenue Subway Project York	t, New
Second Avenue Subway Project, New York: Refurbishment of an Existing Underground Station Eci Garavito-Bruhn, Alexander Napoli, and Neil Towell	1258
Second Avenue Subway Project, New York: Repair and Refurbishment of Existing Structures Adjacent to Deep Excavations Michael Trabold, Brian Aksman, and Richard Giffen	1270

Second Avenue Subway Project, New York: Design of a New Elevator Only 1282 Entrance Michael Voorwinde and Richard Giffen

Second Avenue Subway Project, New York: Design of New Underground 1293 Stations

Brian Aksman, Renee Grigson, and Richard Giffen

Seismic Response of Nonstructural Systems in the NEES TIPS/NEESNonstructural/NIED Collaborative Tests at E-Defense

Response of Exterior Precast Concrete Cladding Panels in NEES-TIPS/NEES- 1305 GC/E-Defense Tests on a Full Scale 5-Story Building

Kurt M. McMullin, Maggie Ortiz, Lokesh Patel, Siddaiah Yarra, Tatsuo Kishimoto, Caleb Stewart, and Bob Steed

Seismic Response of Ceiling/Sprinkler Piping Nonstructural Systems in 1315 NEES TIPS/NEES Nonstructural/NIED Collaborative Tests on a Full Scale 5-Story Building

Siavash Soroushian, Keri L. Ryan, Manos Maragakis, Eiji Sato, Tomohiro Sasaki, Taichiro Okazaki, Lee Tedesco, Arash E. Zaghi, Gilberto Mosqueda, and Dennis Alvarez

Design, Analysis, and Testing of Nonstructural Components

Dynamic Characteristics of Switchboard Cabinets Subjected to Earthquakes 1327 Using Numerical Models: A Study of Evaluating Seismic Effects on Nonstructural Components

Jieun Hur, Barry I. Goodno, and James I. Craig

Testing Passive Fire-Resistance Systems for Fire Following Earthquakes 1338

M. S. Hoehler, C. Lutz, and P. Schulze

Design and Construction of a Full-Scale 5-Story Base Isolated Building 1349 Outfitted with Nonstructural Components for Earthquake Testing at the UCSD-NEES Facility

M. Chen, E. Pantoli, X. Wang, E. Espino, S. Mintz, J. Conte, T. Hutchinson, C. Marin, B. Meacham, J. Restrepo, K. Walsh, R. Englekirk, M. Faghihi, and M. Hoehler

Seismic Testing, Analysis, Qualification, and Performance-Based Design for Raised-Access Floors and Equipment

Seismic Spectra and Response Analysis for Raised Access Floor and Computer Equipment Systems Considering Vertical Ground Motions	1361
E. J. Swanson, Z. Chen, and H. O. Sprague	
Seismic Protection of Data Centers Using Ball-N-Cone Base Isolation A. M. Nacamuli	1373
Shake Table Testing and Numerical Simulation of Raised Access Floor- Computer Rack Systems in a Full-Scale Five-Story Building X. Wang and T. C. Hutchinson	1385
Seismic Testing and Analysis of Main Frame Computer Structure	1397

Budy Notohardjono, Richard Ecker, Jiantao Zheng, and John Torok

Miscellaneous Topics on Nonbuilding Structures/Nonstructural

Mitigation of Impacts on Petrochemical Projects in Areas of High Seismic Risk Eric Wey and Dawar Naqvi	1413
Design, Certification, and Load Testing of Facade Access Equipment J. E. Lewis, H. J. Hill, G. R. Searer, and T. F. Paret	1423
Wind Loads on Non-Building Structures Using ASCE 7-10 Silky Wong, Ankur Sepaha, Naga Swamy, Samuel D. Amoroso, and Dawar Naqvi	1438
Snow Loads on Non-Building Structures Dawar Naqvi, Eric Wey, and Michael O'Rourke	1452
Design of Unique and Unusual Nonbuilding Structures	
Tuned Mass Damper Control of Cross-Wind Excitation of a Solar Tower P. J. Carrato and K. Santamont	1463
Seismic Design of Elevated Steel Tanks with Concentrically Braced Supporting Frames E. Fagà, G. A. Rassati, and R. Nascimbene	1473
Unique Structures	
Chicago Deep Tunnel Design and Construction Carmen Scalise and Kevin Fitzpatrick	1485
Seismic	
Seismic Design of Midrise Cold-Formed Steel Framing Systems	
Seismic Performance of an Innovative Light-Gauge Cold-Formed Steel Mid- Rise Building	1496
Thang Nguyen Dao and John W. van de Lindt	
Seismic Design of Multi-Story Cold-Formed Steel Buildings: The CFS-NEES Archetype Building N. Nakata, B. W. Schafer, and R. L. Madsen	1507
Archetype Building	1507 1518

Seismic Design and Analysis: General Topics

Comparison of Solid and Perforated Hybrid Precast Concrete Shear Walls for 1529 Seismic Regions

Β.	J.	Smith,	Υ.	С.	Kurama,	and I	M. J.	McGinnis
----	----	--------	----	----	---------	-------	-------	----------

Structural and Non-Structural Seismic Demands on Controlled Rocking Steel Braced Frame Buildings M. Pollino	1541
Nonlinear Seismic Response of Structural System with Gravity Bias Tianyi Yi, Rafael Sabelli, and Viral Patel	1553
Calibration of a Reusable Nonlinear Beam-Column Connection for Use in an Experimental Ground Motion Scaling Study A. P. O'Donnell, Y. C. Kurama, E. Kalkan, and A. A. Taflanidis	1565
Innovative Seismic Solutions	
Practical Design Considerations for Steel Slit Panel Frames Matt Hebdon, Jason Lloyd, and Judy Liu	1577
Experimental Investigation of Self-Centering Steel Plate Shear Walls Patricia M. Clayton, Daniel M. Dowden, Tyler Winkley, Jeffrey W. Berman, Michel Brur Laura N. Lowes	1586 neau, and
Linked Column Framing System Analyses toward Experimental Validation Arlindo Lopes, Peter Dusicka, and Jeffrey Berman	1598
Quasi-Static and Dynamic Tests of a Smart Hybrid Brace Chuang-Sheng Walter Yang, Reginald DesRoches, and Roberto T. Leon	1610
Seismic Retrofit of a Steel Moment Frame California Hospital Building Using Exterior Viscous Damped Frames Christopher Mora, Omar Garza, and Ricardo Hernandez	1620
Centrifuge Testing of Systems with Combined Structural Hinging and Rocking Foundations	1637
W. Liu, T. C. Hutchinson, M. Hakhamaneshi, and B. L. Kutter	
Achieving Economy and Seismic Safety in Low-Ductility Steel Build	lings
Seismic Behavior of Steel HSS X-Bracing of the Conventional Construction Category A. Gélinas, R. Tremblay, and A. Davaran	1649
Seismic Base I solation and Damping	
Condition Assessment of an In-Service Pendulum Tuned Mass Damper Aaron J. Roffel, Sriram Narasimhan, and Trevor Haskett	1661
A Parametric Approach for the Optimization of Passive Friction Dampers	1673

Jon R. Haider and Uksun Kim

From Hazard to Design—A Case Study of the Benefit on Nonlinear Response History Analysis in Practice

Implementation of Site-Specific Seismic Hazard Analysis and Ground Motion Selection and Modification for Use in Nonlinear Response History Analysis	1685
Silvia Mazzoni, Kamalpreet Kalsi, Mark Sinclair, and Mahmoud Hachem	
Implementation of Soil-Foundation-Structure Interaction in Nonlinear Response History Analysis—A Design Case Study Silvia Mazzoni, Timothy Graf, and Mark Sinclair	1697
Use of the Extended Consecutive Modal Pushover Analysis Method to Optimize the Design Process Timothy Graf, James Newell, and Mark Sinclair	1709
Design Considerations for Timber Buildings	
Seismic Performance Variability of Wood-Frame Shear Walls Designed in Accordance to the National Design Specification (NDS) S. M. H. Shirazi and W. Pang	1721
Gravity Design of Post-Tensioned Timber Frames for Multi-Storey Buildings W. van Beerschoten, A. Palermo, and D. Carradine	1733
Experimental Investigations of Post-Tensioned Timber Frames with Advanced Seismic Damping Systems Tobias Smith, David Carradine, Antonio Di Cesare, Felice Ponzo, Stefano Pampanin, A Buchanan, and Domenico Nigro	1745 ndy
Reducing Seismic Risk for Soft-Story Woodframe Buildings	
Numerical Modeling of Soft-Story Woodframe Retrofit Techniques for Design Pouria Bahmani and John W. van de Lindt	1755
Nonlinear Dynamic Analysis of Soft-Story Light-Frame Wood Buildings W. Pang and E. Ziaei	1767
Collapse Limits for Wood Frame Shear Walls: An Experimental Investigation S. Pei, J. W. van de Lindt, N. Wehbe, H. Liu, and J. Paul	1778
High-Performance Seismic Retrofit of Soft-Story Wood-Framed Buildings Using Energy Dissipation Systems Jingjing Tian and Michael D. Symans	1790
Informing a Retrofit Ordinance: A Soft-Story Case Study Keith A. Porter and Kelly Cobeen	1802

Special Topics

How Digital Databases Are Changing the Ways in Which Engineers Do Research and Write Codes

Databank of Concentric Punching Shear Tests of Two-Way Concrete Slabs without Shear Reinforcement at Interior Supports Carlos E. Ospina, Gerd Birkle, and Widianto	1814
Finite Element Analysis of Nuclear Structures	
Behavior of Reinforced Concrete Nuclear Containment Structures Subjected to Tri-Directional Shear Stresses Moheb Labib, Yashar Moslehy, and Ashraf Ayoub	1833
Rapid Heating of Concrete: Is Spalling an Issue of Poromechanics? Kaspar Willam, Yunping Xi, Keun K. Lee, and Ashraf Ayoub	1843
Underground Structure D-Wall-Soil Interactive Finite Element Analytical Model for Huge TPS2 M. A. El-Nabarawy and E. S. Khalifa	1853
Analysis Recommendations for Steel-Composite (SC) Walls of Safety- Related Nuclear Facilities	1871
 A. H. Varma, S. R. Malushte, K. C. Sener, and P. N. Booth Impact Analysis of Steel Plated Concrete Wall T. R. S. Mullapudi, Paul Summers, and II-Hwan Moon 	1881
Life-Cycle Performance of Structural Systems under Multiple Hazar	rds
Corrosion Related Bond Deterioration and Seismic Resistance of Reinforced Concrete Structures A. Kivell, A. Palermo, and A. Scott	1894
Life-Cycle Performance of Concrete Bridges Exposed to Corrosion and Seismic Hazard	1906
Fabio Biondini, Elena Camnasio, and Alessandro Palermo Probabilistic Assessment of Structural Performance of Bridges under Tsunami Hazard	1919
M. Akiyama, Dan M. Frangopol, M. Arai, and S. Koshimura	
Examining the Integration of Sustainability and Natural Hazard Risk Mitigation into Life Cycle Analyses of Structures Citlali Tapia and Jamie E. Padgett	1929
Topics in Structural Engineering Education and Research	
Integrating the Science of Computing into Undergraduate Engineering	1941

- Jr aung Curricula Ian F. C. Smith

Robust Loop Shaping Force Feedback Controller for Effective Force Testing Narutoshi Nakata	1946
3-D Digital Image Correlation—An Underused Asset for Structural Testing Michael J. McGinnis, Brian Smith, Michelle Holloman, Michael Lisk, Andrew O'Donnell, C. Kurama	1958 and Yahya
Design of Timber Buildings: General Considerations	
Failure of Wood Connections and the Evolution of Connection Design Jaret Lynch and John Cocca	1970
LifeCycle Tower—High-Rise Buildings in Timber Harald Professner and Christina Mathis	1980
Retrofit of Concrete	
Load Testing and Fiber-Reinforced Polymer Reinforcement of 1920s Vintage Chicago Public School Building John F. Duntemann, Brian R. Greve, Adam Allan, and Scott Arnold	1991
Seismic Performance of RC Moment Resisting Frame with Steel, GFRP, and SMA-FRP Reinforcement Adeel Zafar and Bassem Andrawes	2003
Effectiveness of Repair and Strengthening Methods for Reinforced Concrete Columns and Beam-Column Joints H. Sezen	2015
Sustainability	
Sustainable Structural Engineering—Gaining Greater Benefits to Communities in Developing Nations	
Sustainable Structural Engineering—Gaining Greater Benefits to Communities in Developing Nations Hayley Gryc	2025
Sustainability and the Structural Engineer: The First World Challen TEJH Synopsis	ge—
Sustainability and the Structural Engineer: The First World Challenge Tristram E. J. Hope	2037
Posters	
Stress Concentrations in Elevated Steel Storage Tanks and Silos	2046

Hazim Sharhan

Detail LRFD Based Design of Bottomless Culverts Ahilan Selladurai, Bob Fish, and Ahmad M. Abdel-Karim	2058
A Practical Approach to Optimum Biaxial Column Design and Detailing Using Evolutionary Computing Yaqub Rafiq	2073
Various Approaches for Mitigating Progressive Collapse of Asymmetrical RC Building Paresh V. Patel and Digesh D. Joshi	2084
Investigation of Time-Dependent Buckling of Steel Columns Exposed to Fire Temperatures M. A. Morovat, M. D. Engelhardt, T. A. Helwig, and E. M. Taleff	2095
Seismic Design of Hybrid Masonry Type I Structural Systems Maryam Eidini	2107
Effectiveness of Horizontal Ties Anchoring in Progressive Collapse Design of Floor Slabs Nabil A. Rahman, Ayman M. Elfouly, and Charles Haynes	2119
Design Aids for Determining Deflection of Beams Reinforced along Part of Their Length Robert Zofkie	2131
Structural Health Monitoring of Railroad Bridges—Research Needs and Preliminary Results F. Moreu, J. LaFave, and B. Spencer	2141
Dynamic Behaviour and Performance Evaluation of Tuned Liquid Dampers (TLDs) Using Real-Time Hybrid Simulation Ali Ashasi Sorkhabi, Hadi Malekghasemi, and Oya Mercan	2153
Hybrid Testing in NEESR Projects Xiaoyun Shao and Chelsea Griffith	2163
Impedance Control As a Strategy for Alleviating Actuator-Structure Interaction in Dynamic Testing Jochen Carl and Mettupalayam V. Sivaselvan	2175
Real-Time Substructure Shake Table Tests Incorporating Interface Boundary Force by an Inertial Mass Narutoshi Nakata and Matthew Stehman	2187
Modeling and Fragility Analysis of Non-Ductile Reinforced Concrete Buildings in Low-to-Moderate Seismic Zones J. S. Jeon, R. DesRoches, I. Brilakis, and L. N. Lowes	2199
A Comparative Study of Seismic Retrofitting of a Steel Benchmark Structure Using Various Types of Passive Controllers	2211

S.	Dogruel	and	О.	Lavan

Performance Based Design Approach for RC Square Bridge Columns under Combined Loadings Including Torsion Qian Li and Abdeldjelil Belarbi	2223
In Situ Dynamic Characteristics of Reinforced Concrete Shear Wall Buildings D. Gilles and G. McClure	2235
Sensitivity of the Seismic Response of a Deeply Embedded Structure with Backfilled Construction Clearances L. M. Anderson and M. D. McHood	2246
Rheological and Mechanical Behavior of Concrete Mixtures with Recycled Concrete Aggregates Adam M. Knaack and Yahya C. Kurama	2257
Structural Reliability and Sustainable Resilience H. L. Bonstrom and R. B. Corotis	2268
Ambient Vibration Measurements of Dynamic Properties of School Buildings in Montreal, Quebec H. Tischer, D. Mitchell, and G. McClure	2279
Progressive Collapse of Post-Tensioned Box Girder Bridges under Blast Loads Using Applied Element Method Ahmed Ibarhim, Hani Salim, and Nabil A. Rahman	2291
Behavior of Reduced Beam Section Moment Connections under Fire Yasser Khodair and Ahmed Ibrahim	2301