2012 IEEE Photonics Conference

(IPC 2012)

Burlingame, California, USA 23 – 27 September 2012

IEEE Catalog Number: CFP12LEO-PRT ISBN:

978-1-4577-0731-5

TABLE OF CONTENTS

Monday, September 24, 2012

MA	Tutorial I	
MA1	Solar Cell	N/A
MB MB1	Microscopy and Imaging Non Linear In-Vivo Flourescence Microscopy	1
MB2	High-Speed Second Harmonic Generation Holographic Imaging of Biological Specimens at over 1000 Volumes per Second	2
MB3	Optical Time-Stretch Microscopy Using Few-Mode Fibers	4
MB4	Comparison of Singular Value Decomposition and Principal Component Analysis applied to Hyperspectral Imaging of Biofilm	6
MB5	Theory of Diffraction and Defocus Effects in Spatial Frequency-ModulatedImaging	8
MC MC1	Microwave Photonic Signal Generation High Spectral Purity Microwave Generation via Optical Division	10
MC2	Tunable Optoelectronic Oscillator with 10 ⁵ Finesse Fabry Perot Etalon as a Photonic Filter and Optical Frequency Reference	12
MC3	Shot Noise Correlations in the Detection of Ultrashort Optical Pulses	14
MC4	Stabilization of a Dual-Frequency VECSEL Free of Relaxation Oscillations for Microwave Photonics Applications	16
MC5	Transient Response of a Modulated Microwave Subcarrier Generated Using Optical Injection	18
MD MD1	Single Photon Counting Systems Overview of Single Photon Detection Technologies	20
MD2	CMOS SPAD Pixels for Indirect Time-of-Flight Ranging	22
MD3	SPAD Detector for Long-Distance 3D Ranging with Sub-Nanosecond TDC	24
MD4	A Compact Time-to-Digital Converter (TDC) Module with 10 ps Resolution and Less than 1.5% LSB DNL	26
MD5	Phototransistor Based Time-of-Flight Range Finding Sensor in an 180 nm CMOS Process	28
ME ME1	PON Bidinational Unagranused UD Video Distribution Over Fiber France in VCCFI a	20
ME1	Bidirectional Uncompressed HD Video Distribution Over Fiber Employing VCSELs	30
ME2	Extended Gain Bandwidth low Ripple Hybrid Raman-Parametric Amplifier Design for PON Applications	32
ME3	WDM-PON Upstream Budget Extension for 4×10 Gbit/s DPSK Directly Modulated	34

ME4	Fiber-Pigtailed Optical Switch based on Gigantic Bloch-Surface-Wave-Induced Goos-Hanchen Shifts	36
ME5	High-Bandwidth Parallel Data Transmission Using GaN/CMOS Micro-LED Arrays	38
ME6	Demonstration of WDM-PON System Based on Injection-Locked SFP Transceivers	40
MF MF1	Quantum Dot Sources Quantum Dots for Lasers and Light-Emitting Diodes	42
MF2	Design of Multiple Quantum Dot Semiconductor Lasers with Enhanced Modulation Capabilities using Spatially Resolved Time Dependent Model	44
MF3	Modelling the Gain Compression Effects in Semiconductor Quantum-Dot Lasers through a New Modulation Transfer Function	46
MF4	Relation between Small and Large Signal Modulation Capabilities in Highly Nonlinear Quantum Dot Lasers for Optical Telecommunication	48
MF5	Stimulated Emission in Red, Green, and Blue from Colloidal Quantum Dot Films by Single Exciton Optical Gain	50
MG	Plasmonic based Photovoltaics	
MG1	Light Trapping in Plasmonic Photovoltaics	52
MG2	Plasmonic Near-Field Enhancement for Planar Ultra-Thin Absorber Solar Cells	54
MG3	Plasmonics for III-V Semiconductor Solar Cells	56
MG4	Embedded Ag@SiO2 Nanoparticles for Enhanced Solar Absorption in Thin Film Photovoltaics	58
мн	OI I - Devices	
MH1	Nano-Photonic Technologies for Optical Interconnects	N/A
MH2	A New Approach to Ge Lasers with Low Pump Power	60
MH3	Low-Power Monolithic COMB Laser for Short-Reach WDM Optical Interconnects	62
MH4	Low Power Wavelength Division Multiplexed Photonics	N/A
MI	SS:MRP I	
MI1	Mechanical Stabilization of Frequency Combs from Laser Machined Microrod- Resonators	64
MI2	Hyper-Parametric Oscillations in Multimode Microresonators	66
MI3	On-Chip Microresonator Frequency Combs Formation: Observation of Comb Line Dependent Mutual Coherence	68
MI4	Optical Communication Test of Multiple-Wavelength Comb Source from Silicon Nitride Microresonators	70
MI5	Observation of Second Harmonic Generations from X-Cut BBO Whispering Gallery Mode Resonators	72
MJ	Bioimaging dand Analysis Techniques	74
MJ1	Functional Optical Biopsy of Epithelial Tumors	74

MJ2	Lab on a Chip Imaging and Quantitative Phase Contrast in Turbid Microfluidic Channel	76
МЈЗ	Flexible Pyramids Array 2D Diffraction Grating for In-Situ Measurement of Refractive Index and Pressure of Fluid	78
MJ4	Analysis of Laser Light Reflectance on the Human Skin for Optoelectronic Devices	80
MJ5	All-Optical Sensing of the Components of the Internal Local Electric Field in Proteins	B#5
MK	Microwave Photonic Integrated Circuits	
MK1	Integrated Microwave Photonics for Phase Modulated Systems	84
MK2	Meta-Material Enhanced Photonic RF Receiver	86
MK3	170 GHz Photodiodes for InP-based Photonic Integrated Circuits	88
MK4	Two-layer Integrated Optical Tapped Delay Line for RF Spectrum Analysis	90
ML	Single Photon Counting Detectors	
ML1	InGaAs/InP Single Photon Avalanche Diodes with Negative Feedback	92
ML2	InGaAs/InP Single-Photon Avalanche Diode with Narrow Photon Timing Response	94
ML3	Extended Wavelength InGaAs-based Avalanche Photodiodesfor Single Photon Counting Applications	96
ML4	Single Photon Detection with Sine GatedDual InGaAs/InP Avalanche Diodes	98
ML5	Theory for Spatial Distribution of Impact-Ionization Events in Avalanche Photodiodes	100
MM MM1	All-Optical Signal Processing Integrated-Photonic Signal Processing for High-Speed Optical Communication	102
MM2	Femtosecond Optical Waveform Generation Based on Space-to-Time Mapping in	102
111112	Long Period Gratings	104
ММ3	All-Optical Modulation Format Conversion from 4-channels NRZ-OOK to RZ-16QAM using SOA-MZI Wavelength Converters	106
MM4	All-Optical 2R Regeneration of a 160-Gbit/s RZ-OOK Serial Data Signal Using a FOPA	108
MM5	Numerical Investigation of Power Requirements for Ultra-High-Speed Serial-to-Parallel Conversion	110
MN	Vertical-Cavity Surface Emitting Lasers I	
MN1	Recent Results on Long-Wavelength VCSELs: Device Structures, Performance and Applications	112
MN2	1310 nm Wafer Fused VCSELs - A New Generation of Uncooled 10 Gbps Telecom Lasers	114
MN3	Ultra-Compact Intra-Cavity Contacts for Multi-Terminal VCSEL Power Enhancement	116
MN4	Measurement of Optical Loss in Oxide-Confined VCSELs	118
	Simultaneous Measurements of the Optical Phase & Amplitude Modulation of Inject	ion-

MN5	Locked VCSELs Modulated at GHz Rates	120
МО	Photonic Crystal Photovoltaics	
MO1	3D Photonic Crystals for Photon Management in Solar Cells	123
MO2	Photocurrent Enhancement in Ultrathin Silicon by the Photonic Band-Edge Effect	124
MO3	Light Trapping and Solar Energy Harvesting with 3D Photonic Crystals	126
MO4	Low-Cost Approach for Broadband Enhancement of Ultraviolet to Visible Light Downconversion in Fluorescent Media	127
MP	OI II - Applications	
MP1	TBD	N/A
MP2	A 25-Gb/s 49-mW CMOS-Driven Equalized Optical Link	129
MP3	P-Type D-Doping of Highly-Strained VCSELs for 25 Gbps Operation	131
MP4	Low Loss and Flatband Si-wire Optical MUX/DeMUX based on Microring Resonator assisted Delayed Mach-Zehnder Interferometers	133
MP5	Sub pJ/bit WDM Silicon Photonics for Dense Computing Systems	N/A
MQ	SS:MRP II	
MQ1	Coupled Ring Resonators: Physical Effects and Potential Applications	135
MQ2	Transmission Amplitudes and Modeling of SNAP Devices	137
MQ3	Modeling Sagnac Effect in Micro Resonators Using FDTD Method	139
MQ4	Integrated Si3N4/SiO2 Ultra High Q Ring Resonators	141
MQ5	High-Q ZBLAN Microcavities for Mid-Infrared Applications	143
MR	Photonic Biosensors I	
MR1	Integrated Lab on Chip for Detection of Cells and Micro-Organisms	145
MR2	A Point-of-Care Diagnostic Prototype for High-Throughput, Multiplexed Single-Virus Detection	147
MR3	Experimental Detection of 1Pico-Molar Concentration from High-Q Photonic Crystal Microcavity Biosensors	149
MR4	External Cavity Laser Biosensor	151
MR5	Infrared Detection of Flu Viruses	153
MS	Microwave Photonic Devices	
MS1	Developments in High-Performance Photodiodes	%) U
MS2	Phase of Intermodulation Distortion Products in High-Linearity Photodiode: Measurement Technique and Theoretical Model	155W
MS3	Compact Optical/THz Signal Converter using Photo-generated Carrier Gate in THz Waveguide	157
MS4	Effects of Injection Power and Frequency Detuning on Noise Characteristics of an Injection-Locked VCSEL	159
MS5	Traveling Wave Electrodes for Wide-Bandwidth Substrate-Removed	161

Electro-Optic Modulators

MT	Infrared Detectors	
MT1	Graded-Barrier Heterostructures for Photovoltaic Split-Off Infrared Detection	163
MT2	Planar InAs photodiodes fabricated using He ion implantation	165
MT3	InAs Quantum Dot Photodetector Operating at 1.3 µm Grown on Silicon	167
MT4	Charge-Compensated High Gain InAs Avalanche Photodiode	169
MT5	Polarization-Dependent Photocurrent Enhancement in Metamaterial-integrated Quantum Dot Infrared Detectors	171
MU	DSP for Coherent System I	
MU1	CD Equalization with Non-maximally Decimated DFT Filter Bank	173
MU2	A New Cycle Slip Compensation Technique for Ultra High Speed Coherent Optical Communications	175
MU3	Real-time Comparison of Blind Phase Search with Different Angle Resolutions for 16-QAM	177
MU4	On the Performance of Timing Synchronization Techniques for Optical OFDM IMDD Transmission	179
MU5	A Low Complexity and High Accuracy Frame Synchronization for Optical OFDM and PolMux-Optical OFDM	181
MV	Optical Interconnect and Hybrid Laser Sources	
MV1	Optical Interconnects for Computing Applications	183
MV2	Hybrid III-V on Silicon Lasers	185
MV3	VCSEL Bonding to Silicon and Plastic Substrates	187
MW	Nanostructures in Solar Cells	
MW1	Enhancing the Efficiency of Photovoltaic Solar Cells With Photonic Nanostructures	189
MW2	Inverse Electromagnetic Design for Subwavelength Light Trapping in Solar Cells	191
MW3	Plasmonics and Photovoltaics on the Cheap	193
MW4	A Comparison of Bulk and Quantum Dot GaAs Solar Cells	194
MX	Photon Management & Gratings	
MX1	Light Management for Sunlight and Thermal Emission	N/A
MX2	Resonant Dielectric-Grating Polarizers for Normal Incidence Operation	196
MX3	Experimental Characterization on High Contrast Grating Reflectivity	198
MX4	Low-Contrast Top Gratings in High-Contrast SOI Waveguides for Integrated Holographic Filters	200
MX5	Vertical Coupling for Silicon Nitride Waveguides Using Silicon Grating Couplers	202

PLE1 PLE1.1	Plenary Session I Large-Area, Flexible, Organic Photonics and Electronics	N/A
PLE1.2	Driving Optical Interconnects to Brutal Area and Energy Efficiencies for Future Computing Systems	N/A
Tuesda	ry, September 25, 2012	
TuA	Tutorial II	
TuA1	Cavity Optomechanics	N/A
TuB TuB1	Photonic Biosensors II High-Sensitivity Sensing based on Intensity-Interrogated Bloch Surface Wave Sensors	204
TuB2	DNA Biosensor Based On A Double Tilted Fiber Bragg Grating	206
TuB3	A Highly Optimized Plasmon Waveguide Resonance Biosensor	208
TuB4	Distributed Feedback Laser Biosensor Noise Reduction	210
TuB5	Photonic Biosensors for Determining Simultaneous Parameters via Multiple Resonance Peaks	212
TuB6	Optical Cavity-based Biosensor Utilizing Differential Detection	214
TuC TuC1	Microwave Photonic Techniques Optical Time-Domain Processing of Broadband Microwave Signals	216
TuC2	Interferer Cancellation in Coherent Optical RF Receivers via Optical Phase Modulation	218
TuC3	Photonics-Enabled Ka-band Subscale Radar Ranging Feasibility Demonstration	220
TuC4	A Subranging Photonic ADC Based on Cyclic Code	222
TuC5	Parametric Sampling Gate Linearization by Pump Intensity Modulation	224
TuD TuD1	Imaging Detector Arrays: Visible to Tera Hertz Detectors for THz Astronomical Imaging and Spectroscopy	226
TuD2	Highly Efficient, Polarization Insensitive Terahertz Metamaterial Perfect Absorber and Imaging	228
TuD3	Spectral-Polarization Imaging with CMOS-Metallic Nanowires Sensor	230
TuD4	Pixel-to-Pixel Cross-Talk of Infrared Focal Plane Arrays	232
TuE TuE1	Coherent Transmission Comparison of ISI-Mitigation Techniques for 128 Gb/s PDM QPSK Channels in Ultra-Dense Coherent Systems	234
TuE2	100 Gbps DP-QPSK Performance over DCF-Free and Legacy System Infrastructure	236
TuE3	Novel Optical Quaternary Minimum Shift Keying Technology with Direct Modulation of Conventional DFB Laser and Digital Coherent Detection	238

TuE4	Colorless Reception of a Single 100Gb/s Channel from 80 Coincident Channels via an Intradyne Coherent Receiver	240
TuF	Vertical-Cavity Surface Emitting Lasers II	
TuF1	Beam Steering Modulation with Phased Vertical Cavity Laser Arrays	242
TuF2	On-Chip Electro-Thermal Beam Steering based on Slow-light Bragg Reflector Waveguide Laterally Integrated with VCSEL	244
TuF3	Frequency Dependent Polarization Dynamics in Vertical Cavity Surface Emitting Lasers with Electrical Injection	246
TuF4	Electro-Thermal Tuning of Athermal 850nm VCSELs with Thermally Actuated T-shape Membrane Structure	248
TuF5	Buried Heterostructure VCSEL Using Epitaxial Mirrors	250
TuF6	VCSELs for Neuronal Dynamics Emulation	252
TuG	MRP III	
TuG1	Determination of Waveguide Core and Cladding Refractive Indices using Single Wavelength Microring Reflectors	254
TuG2	High-Speed Silicon Microring Modulator based on Zigzag PN Junction	256
TuG3	Electro-Mechanically Induced GHz Rate Optical Frequency Modulation in Silicon	258
TuG4	An On-chip Tunable Add-Drop Filter using a Microtoroid Resonator	260
TuG5	Chemically-Etched Ultra-High-Q Resonator on a Silicon Chip	262
TuH	Photonic Crystals and Devices I	
TuH1	Multifunctional Fiber Sensors Based on Photonic Crystals	264
TuH2	Wideband Tunable Photonic Crystal Cavity with Electrostatic Actuation	266
TuH3	Electromagnetic Modes Localized at the Edges of a Three-Dimensional Photonic Crystal	268
TuH4	Novel Photonic Crystal Nanocavity Design with high Tolerance to Disorder	270
TuH5	Design of Photonic Crystal Cavity for Hexagonal Islands	272
TuI TuI1	OI III - Architecture & Devices Large-Scale Integrated Photonics for High-Performance Interconnects	274
TuI2	Chip-scale Optical Interconnects Based on Hybrid Integrated Multiple Quantum Well Devices	276
TuI3	49 Gbit/s Optical Transmission through Long-Range Surface Plasmon Polariton Waveguide	278
TuI4	Reduced Surface Roughness with Improved Imprinting Technique for Polymer Optical Components	280
TuI5	Short SiGe HBT Electro-Absorption Modulator	282
TuI6	All-Optical Token Technique for Distributed Contention Resolution in AWGR-based Optical Interconnects	284

TuJ	Photonic Tools for Biology and Manipulation	
TuJ1	Polarization Maintaining Single Mode Color Combining Using TriPleXTM based Integrated Optics for Biophotonic Applications	286
TuJ2	Pulsewidth Switchable, Wavelength Tuneable Ultrafast Fiber Laser Mode-locked by Carbon Nanotubes	288
TuJ3	Generation and Potential Applications of White-Light Propelling Beams	290
TuJ4	Growth Pattern of Yeast Cells Studied Under Optical Tweezers	292
TuJ5	Simulation and Experiment on Manipulation of Micro Particles by using a Flexural Acoustic Wave	294
TuK	Microwave Photonic Processing and Measurements	
TuK1	Microwave Photonic Filters Based on Optical Frequency Combs	296
TuK2	Femtometer-Resolution Wavelength Interrogation Using an Optoelectronic Oscillator	298
TuK3	Sensitivity and Dynamic Range of a Wideband RF Analyzer Based on Parametric Multicasting	300
TuK4	Fast Arbitrary Waveform Generation by Using Digital Micro-Mirror Arrays	302
TuL	High Speed Detectors	
TuL1	Ultra-Fast Near-Ballistic Uni-Traveling Carrier Photodiode for Photonic Few-Cycle Sub-THz Pulse Generation and Wireless Communication	304
TuL2	High-Power High-Bandwidth Flip-Chip Bonded Modified Uni-traveling Carrier Photodiodes	306
TuL3	A High Linear and High Power Photoreceiver Suitable for Analog Applications	308
TuL4	Mushroom-Mesa GaAs/In0.5Ga0.5P Based Laser Power Converter for Simultaneous 10 Gbit/sec Data Detection and DC Electrical Power Generation	310
TuL5	High-Speed High-Responsivity Low Temperature Grown GaAs Detector	312
TuL6	Integrated 180 nm CMOS Phototransistor with an Optimized Responsivity-Bandwidth-Product	314
TuM TuM1	Constellation Optimization & Nonlinearities Satellite Constellations: Towards the Nonlinear Channel Capacity	316
TuM2	Multidimensional Optimum Signal Constellation Design for Few-Mode Fiber based High-Speed Optical Transport	318
TuM3	BER Calculation of a Single Channel Nonlinear Fiber Optic Transmission System Based on QPSK	320
TuM4	Direct Measurement of Nonlinear WDM Crosstalk Using Coherent Optical Detection	322
TuN	Integrated Laser Sources and Communication Lasers	
TuN1	Integrated Laser Sources for WDM Coherent Transmission	324
TuN2	Passive Polarization Mode Convertor Monolithically Integrated Within a Semiconductor Laser	326

TuN3	Monolithic Tunable Laser based on Selectively Intermixed GaAs/AlGaAs QW Structure	328
TuN4	Single-Mode Narrow-Linewidth and Tunable Two-Electrode Corrugated-Ridge Waveguide DFB Lasers	B#5
TuN5	Influence of Facet Phases on Adiabatic Chirp Behavior of Index-Coupled Distributed-Feedback Lasers	332
TuO	MRP IV	
TuO1	Optical Resonator-based Biosensors: Plasmonic Enhancements for Label-free Single Molecule Detection	334
TuO2	Interference Between Nanophotonic Resonances	N/A
TuO3	Beating the Diffraction Limit with Perfect Confinement Inside a Right-Handed Cavity	336
TuO4	Quality Factor for High Contrast Grating Resonators	338
TuP	Photonic Crystals and Novel Devices II	
TuP1	Integrated Optical Auto-Correlator based on THG in a Silicon Photonic Crystal Waveguide	340
TuP2	High Light Extraction Efficiency of InGaN-Based Light-Emitting Diodes Using the Systematic Design of Sub-Wavelength Photonic Crystals	342
TuP3	Wide-Bandwidth Sub-100 μm Si Photonic Crystal MZI Optical Modulators at 10 Gb/s	344
TuP4	Larger-Area Single-Mode Photonic Crystal Surface-Emitting Lasers Enabled by the Accidental Dirac-Point	346
TuP5	Wide-Band Vertical Waveguide for Three-Dimensional Light Guiding in Photonic Crystals	348
TuP6	CMOS Compatible Subwavelength Grating Couplers for Silicon Integrated Photonics	350
TuP7	Tunable Narrowband Filters Based on SiN-on-SOI Platform	352
TuQ	OI IV - Technology Platforms	
TuQ1	Heterogeneous Photonic Integrated Circuits	354
TuQ2	A CMOS Photonics Platform for High-Speed Optical Interconnects	356
TuQ3	TBD	N/A
TuR	Photonic Lattices & Solitons	
TuR1	Optical Control with Specially-Engineered Photonic Lattices and Intelligently- Designed Optical Beams	358
TuR2	Interactions of Gap Solitons in Linearly Coupled Bragg Gratings with Dispersive Reflectivity	360
TuR3	Dynamics of Moving Bragg Grating Solitons in Cubic-Quintic Non-Linear Media	362
TuR4	Cavity Soliton Oscillations in a One-Dimensional Fiber Resonator	364
TuR5	Disturbance of Soliton Pulse Propagation from Higher-Order Dispersive	B#5

Waveguides

TuS TuS1	Microwave Photonic Links and Systems Injection Locked VCSELs for Microwave Photonic Applications in Analog RF Links and Real Time Arbitrary Waveform Generation	368
TuS2	Digital Broadband Linearization of Analog Optical Links	370
TuS3	Optical Phase Feed Network and Ultra-wideband Phased Array	372
TuS4	SOA based Switchable Photonic Delay Line for Broadband Phased Array Antenna Control	374
TuS5	Development of Optical-RF Transmitter Modules for an Optically Addressed 2-40-GHz Phased Array	376
TuT	Thin Film Detectors	
TuT1	High Responsivity, Low Dark Current, Large Area, Heterogeneously Bonded Annular Thin-Film Silicon Photodetectors	378
TuT2	Flexible Thin-Film Nanocrystal Quantum Dot Photodetectors on Unmodified Transparency Films	380
TuT3	Filterless Vacuum Ultraviolet Photoconductive Detector Fabricated on NdF3 Thin Film	382
TuT4	Tunable Visible Response of ZnO Thin-Film Phototransistors with Atomic Layer Deposition Technique	384
TuT5	Solution-Processed Photodetectors Using Colloidal Germanium Nanoparticles	386
TuU	Nonliearity Compensation in Coherent Transmission	
TuU1	Complexity Reduction Algorithms for Nonlinear Compensation using Digital Backpropagation	388
TuU2	Intra-Channel Nonlinear Compensation for 112 Gb/s Dual Polarization 16QAM Systems	390
TuU3	Digital Pre-Compensation of Inter-Channel Crosstalk for Superchannel System	392
TuU4	Performance Limitation of Coherent Optical OFDM Systems with non-ideal Optical Phase Conjugation	394
TuV TuV1	Dynamics of Semiconductor Lasers Ultrashort Pulse Generation in Diode Laser Devices	396
TuV2	Direct RF Synchronization of a 22 GHz Monolithic AlInGaAs Quantum Well Laser with Sub-picosecond Pulse Generation	398
TuV3	Theoretical Demonstration of Stabilization of Active Modelocking in Quantum Cascade Lasers with Quantum Coherent Absorption	400
TuV4	Increased Laser Modulation Bandwidth by Exploiting the Photon-Photon Resonance	B#5
TuV5	Steady State and Resonance Free Small Signal Response of a Transistor Laser with Multiple Quantum-Wells in the Base	404

TuW MRP V

TuW1	Integrable All-Optical Random-Access Memories on InP-based Photonic Crystal Platform	406
TuW2	Quantum Light from CMOS-Compatible Silicon Microresonators	408
TuW3	Brillouin MEMS	N/A
TuX TuX1	Special Symposium on Quantum Photonics I Entangbling: Quantum Correlations in Room-Temperature Diamond	410
TuX2	Interactions Between Entangled Photons Emitted by a Diode	411
TuX3	Ultrafast Switching of Photonic Entanglement	413
PLE2 PLE2.1	Plenary Session II 3D Photonic Metamaterials and Transformation Optics	415
PLE2.2	The Opto-Electronic Physics That Just Broke the Efficiency Record in Solar Cells	N/A
Wedn	esday, September 26, 2012	
WA WA1	Tutorial III Microwave Photonic Filters	N/A
WB WB1	NLO & Linear-Optical Devices Nonlinear Diffusion Model for Annealed Proton-Exchanged Waveguides in Zirconium-doped Lithium Niobate	416
WB2	Novel Technology for Producing LiNbO3 Nonlinear Optical Waveguides	419
WB3	Instantaneous Phase Conjugation at mW Pump Power based on Backward Difference-Frequency Generation	421
WB4	Optical Parametric Oscillator Longitudinal Modes Suppression Based on Smith Predictor Control Scheme	423
WB5	Efficient Conversion Between Counter-Propagating Fundamental and High-Order Modes in Optical Fiber with Tilted Gratings Being Incorporated for Applications in Optics	425 Nonlinear
WC WC1	Novel Inorganic LEDs Advances in GaN Semiconductors for Energy Efficienct Solid State Lighting	427
WC2	Ultrahigh-Efficiency Phosphor-Free InGaN/GaN Nanowire White Light-Emitting Diodes on Silicon	429
WC3	Characteristics of InGaN Quantum Wells Light-Emitting Diodes with Thin AlGaInN Barrier Layers	431
WC4	FDTD Modeling of InGaN-Based Light-Emitting Diodes with Microsphere Arrays	433
WC5	Directly Color-Tunable Smart Display based on a CMOS-Controlled Micro-LED Array	435
WC6	Monolithic Single Output Dual Wavelength LED	437
WD	Integrated Ontical Sensors	

WD1	Ultra-Compact Multiplexed Lab-on-Chip Sensors Using Miniaturized Integrated Photonic Resonators	439
WD2	Light-Emitting Diodes Operating Above Unity Efficiency for Infrared Absorption Spectroscopy	441
WD3	Silicon Photonic Crystal Microcavity Biosensors for Label Free Highly Sensitive and Specific Lung Cancer Detection	443
WD4	Integrated Differential Pressure Sensor in Silicon-on-Insulator	445
WD5	Multiplexed Gas Sensing Based on Raman Spectroscopy in Photonic Crystal Fiber	447
WE	DSP for Coherent Systems II	
WE1	Training Sequences in 16-QAM and QPSK Coherent Pol-Mux Single-Carrier Systems	449
WE2	Two-Stage Frequency Domain Blind Equalization for Coherent Pol-Mux 16-QAM System with CD Prediction and Dual-Mode Adaptive Algorithm	451
WE3	Fixed Point Precision Requirements of the CMA for Digital Coherent Access	453
WE4	Frequency Domain Training-Aided Channel Estimation and Equalization in Time-Varying Optical Transmission Systems	455
WE5	Real Time 1.55 µm VCSEL-based Coherent Detection Link	457
WF	Nanocavity and Ring Resonator Lasers	
WF1	Photonic Crystal Nanocavity Lasers and Modulators	459
WF2	95°C CW Operation of InGaAlAs Multiple-Quantum-Well Photonic-Crystal Nanocavity Laser with Ultra-low Threshold Current	461
WF3	Single Mode Photonic Crystal Vertical Cavity Surface Emitting Lasers with Modulation Bandwidth > 13 GHz at Low Current Density	463
WF4	Coupled Semiconductor Ring Lasers	465
WF5	Semiconductor Ring Lasers as Optical Neurons	467
WG	Special Symposium on Quantum Photonics II	
WG1	New Results in Quantum Nonlinear Optics	469
WG2	A Photonic Quantum Interface for Visible-to-Telecommunication Wavelength Conversion	471
WG3	Linear-Optics Realization of the Qubit Amplitude-Damping Channel using Phase Modulation	473
WG4	Tamper-Indicating Quantum Optical Seals	475
WH	Large-Area Nanophotonics and Novel Fabrication Techniques	
WH1	Large-Area (> 50 cm x 50 cm), Freestanding, Flexible, Optical Membranes of Cd-Free Nanocrystal Quantum Dots	477
WH2	Large-Area Semi-Transparent Light-Sensitive Nanocrystal Skins	479
WH3	Transfer Printing of Nanoplasmonic Color Filters onto Flexible Polymer Substrates from a Rigid Stamp	481

WH4	Design of Three-Dimensional Photonic Crystals for Large-Area Membrane Stacking	483
WH5	Fabrication Technique of Highly Dense Aligned Semiconducting Single-Walled Carbon Nanotubes Devices	485
WH6	ZnO Nanowire Manipulation and Transportation using Thermoplastic and Tapered Silica Nanowire	487
WI	Optical Frequency Combs	
WI1	Generation, Characterization, and Applications of High Repetition Rate Optical Frequency Combs	489
WI2	Self-referenced Spectral Phase Retrieval of Dissimilar Optical Frequency Combs via Multiheterodyne Detection	491
WI3	Novel Terabit Optical Waveform Synthesizer and Digital Holographic Analyzer based on 400 GHz Optical Frequency Comb	493
WI4	Comparison of Semiconductor-based, Etalon-Stabilized 10 GHz Frequency Comb Sources	495
WI5	Measuring the Temporal Focusing of Ultrashort Airy-Bessel Wave Packets	497
WJ	Fiber Lasers & Applications	
WJ1	High Power Monolithic Pulsed Fiber Lasers in Nanosecond Regime for Nonlinear Frequency Applications	499
WJ2	Fiber Taper based Raman Spectroscopic Sensing	501
WJ3	All Normal Dispersion Erbium-Doped Fiber Oscillator with Tunable Intracavity Phase Modulation	503
WJ4	Dual-Wavelength, Carbon Nanotube Mode-Locked Fiber Laser	505
WJ5	40 Gb/s All-Optical Clock Recovery Using a Semiconductor Fiber Laser and Nonlinear Optical Loop Mirror	507
WK	Organic LEDs & AMOLED Displays	
WK1	Recent Advances in Printable OLED Materials and Devices	509
WK2	Considerations in Device Design and Materials Selection in Organic Light Emitting Diodes	510
WK3	Transparent Composite Electrode for High-Efficiency Polymer OLEDs	512
WK4	Optical Outcoupling by Oriented Emission in Top and Bottom Emitting OLEDs	514
WK5	A Novel 4-TFT Pixel Circuit with Threshold Voltage Compensation for AMOLED Displays	516
WL	Interferometric Sensors	
WL1	Ultra-Low-Loss Delay Lines and Resonators on a Silicon Chip	518
WL2	A Novel Modified Mach-Zender Interferometer For Highly Sensitive Sensing	520
WL3	Sensitive Waveguide-Coupled Surface Plasmon Resonance Imaging	522
WL4	Experimental Study of the Supercontinuum Laser Propagation Characteristics in the Atmosphere	B#5

WM WM1	FEC Techniques Nonhippy J DDC coded Modulation for Multi-Th/c Optical Transport	F26
WM1	Nonbinary LDPC-coded Modulation for Multi-Tb/s Optical Transport	526
WM2	Soft-Information Quality Analysis for Optimum Soft-Decision Forward Error Correction	528
WM3	Use of High Gain FEC to Counteract XPM in Metro Networks Combining 40G Coherent DP-QPSK and 10G OOK Channels	530
WM4	A 45 GS/s Optical Soft-Decision Front-end	532
WN	High-Power and Quantum Cascade Lasers	
WN1	Recent Advances in Modeling of High-Power Single Mode Diode Lasers	534
WN2	Adiabatically Tapered Slab-Coupled Optical Waveguide Lasers	536
WN3	In-Situ Wavelength Aging Study and Reliability Thermal Model of C-band 100mW High-Power DWDM Lasers	538
WN4	Terahertz Quantum Cascade Laser Sources Based on Cherenkov Intra-Cavity Difference-Frequency Generation	540
WN5	Effects of Resonant Tunneling on Intrinsic Linewidth of Quantum Cascade Lasers	542
wo	Special Symposium on Quantum Photonics III	
WO1	Microwave Quantum Photonics in Superconducting Circuits	544
WO2	On-Chip Quantum Plasmonics	N/A
WO3	Optomechanical Crystals and Their Quantum Optical Applications	546
WP	Bio-Nanophotonics	
WP1	Nanoscale Optofluidics	N/A
WP2	Breaking the Diffusion Barrier with Optofluidic-Nanoplasmonic Devices and Surface Enhanced Isolation of Rare Circulating Tumor Cells	B#5
WP3	On-Chip Multiplexed Photonic Gas Sensing for VOC Detection	548
WP4	Double-Layer Silicon Photonic Crystal Fiber Tip Temperature Sensor	550
WP5	Integrations of Slanted Silicon Nanostructures on 3D Microstructures and It Application in Surface Enhanced Raman Spectroscopy	552
WQ	Mid-IR/THz & NLO Phenomena	
WQ1	Nonlinear Terahertz Metamaterials	554
WQ2	Investigation of Giant Kerr Nonlinearity in Quantum Cascade Lasers Using fs Mid-IR Pulses	556
WQ3	Dispersion Engineering and Mid-IR Supercontinuum Generation in As2S3 Step-Index Fiber	558
WQ4	Indirect Modulation of a Terahertz Quantum Cascade Laser Using Gate Tunable Graphene	B#5
		F63
WQ5	Trapping a Terahertz Wave in a Photonic-Crystal Slab	562
WQ5 WQ6	Trapping a Terahertz Wave in a Photonic-Crystal Slab Dynamic Characterization of Silicon Nanowires Using a Terahertz Optical Asymmetric Demultiplexer-based Pump-Probe Scheme	562 564

WR WR1	NLO Applications Efficient, Phase Matched keV High Harmonic Generation using Mid-IR Driving Laser Wavelengths	566
WR2	Multiphoton Microscope Using Spatially-Modulated Line-Cursor	568
WR3	Event horizon and four-wave mixing in optical fibers	570
WR4	Controllable Hysteresis Characteristics via Spatial Gain Overlap in Multimode Interferometer-based Bistable Laser Diodes	572
WR5	A Graphene based Saturable Absorber on Stable Mode-Locked Fiber Lasers Employing Nano-Mica Dispersant	574
WS WS1	Radio over Fiber Techniques Fully Fiber-Remoted 80 GHz Wireless Communication with Multi-Subcarrier 16-QAM	576
WS2	Enabling Uncompressed Video Transmission in Double-Sideband 60 GHz Radio-over-Fiber Links	578
WS3	Modulation Depth Enhancement in Radio-over-Fiber Systems Using a Si ₃ N ₄ Ring Resonator Notch Filter for Optical Carrier Reduction	580
WS4	X-Cut LiNbO3 Microwave-Lightwave Converters Using Patch-Antennas with a Narrow-Gap for Wireless-Over-Fiber Networks	582
WS5	UWB Doublet Pulse Generation Using the Combination of Parametric Amplification and Cross Phase Modulation	584
WT	Compressive and Spectral Imaging	
WT1	Compressed Sensing for Practical Optical Imaging Systems	586
WT2	Classifier-Enhanced Algorithm for Compressive Spatio-Spectral Edge Detection	587
WT3	Virtual Contrast EnhancementIntelligent Illumination Adjustment Processing with Field Programmable Gate Array based Camera Systems for Imaging Applicatio enhancing Contrast in multi AOI Applications	589 ns
WT4	Smart Multispectral Imager	591
WT5	Novel Tomography of Simultaneous Imaging and Material Characterization by Spatially-Resolved Spectroscopy	593
wu	Space Divsion Multiplexing	
WU1	Spatial Multiplexing for Long-Haul Transmission	595
WU2	Effect of Bend Radius on Equalizer Complexity for Multimode Coherent MIMO Transmission	596
WU3	Nonbinary LDPC-Coded OFDM Over Four/Eight-Mode Fibers with Mode-Dependent Loss	598
WU4	Demonstration of Add/Drop Multiplexer for 100-Gbit/s RZ-QPSK Channels over Spatially Multiplexed Orbital Angular Momentum Modes	600

New Semiconductor Laser Materials

WV

WV1	Bismide Alloys for Photonic Devices: Potential and Progress	602
WV2	III-Nitride Lasers Based on Bulk Nonpolar/Semipolar GaN	N/A
WV3	Gain and Laser Characteristics of InGaN Quantum Wells on Ternary InGaN Substrates	604
ww	Special Symposium on Quantum Photonics IV	
WW1	Efficient Generation and Wavelength Conversion of Single Photons from Quantum Nanophotonic Devices	606
WW2	Low Photon Number Nonlinear a Single Quantum Dot Coupled to a Photonic Crystal Cavity	608
WW3	Intra-Cavity Frequency Doubling in Photonic Crystal Nanocavity Quantum Dot Lasers	610
wx	Gain and Loss in Plasmonics	
WX1	Laser Science in a Nanoscopic Gap	N/A
WX2	Spontaneous Emission Rate Enhancement using Gold Nanorods	612
WX3	Metal Quenching of Radiative Emission in Metal-Clad Nanolasers	614
WX4	Estimation of the Upper Bound of the Modal Gain Sustainable by MDM Waveguides	B#5
WX5	Comparison of Confinement and Loss of Plasmonic Waveguides	618
WY	Attosecond & Supercontinuum	
WY1	Attosecond Photonics	620
WY2	Probing Attosecond Electron Dynamics in Atoms	622
WY3	Practical Supercontinuum Source for Few Hundred Femtosecond Seed Pulses	624
WZ	Silicon Nanophotonics and Other Integration Platforms	
WZ1	Monolithic Integration of Silicon Nanophotonics with CMOS	626
WZ2	Low Dark Current Ge PIN Photodiode for a High-Performance, Photonic BiCMOS Process for Radio-over-Fibre Applications	628
WZ3	Silicon Waveguide Wavelength-selective Switch for On-chip WDM Communications	630
WZ4	Encapsulation of a Microtoroid Resonator Side-Coupled to a Fiber Taper into a Polymer Matrix	632
WZ5	Compact TE/TM-pass Polarizer Based on Lithium Niobate on Insulator Ridge Waveguides	634
WAA	Optical Wireless	
WAA1	Coherent Wired/Wireless Seamless Transmission with Combination of Photonic Digital and Analogue Techniques	636
WAA2	High-Speed Optical Wireless Communication System with Steering-Mirror Based Receiver for Personal Area Applications	638
WAA3	BER Performance of Non-Line-of-Sight Ultraviolet Links with Spatial Diversity in	640

Turbulence Atmosphere

WBB1	High-Resolution Digital Holographic Microscopy	642
WBB2	Diffraction Phase Microscopy for Wafer Inspection	644
WBB3	Compensation of Group Delay Ripple in Chirped Fiber Bragg Gratings and its Application in Chirped Pulse Laser Radar	646
WBB4	Optoelectronic 3D Laser Scanning Technical Vision System based on Dynamic Triangulation	648
WBB5	Holographic Capability for Imaging Through Scattering Colloidal Flowing Fluids	650
wcc	All Optical Signal Processing II	
WCC1	Optics in the Signal Processing Chain	652
WCC2	Stereopsis-Inspired Time-Stretched Amplified Real-Time Spectrometer (STARS)	654
WCC3	Ultra-Fast All-Optical Nth-Order Differentiators based on Transmission Fiber Bragg Gratings	656
WCC4	Time-Domain Holography	658
WCC5	Arbitrary-Order Photonic Differentiators Based on Phase-Shifted Long-Period Gratings	660
WDD	Fiber Lasers	
WDD1	Pulse Repetition Frequency Tunability in a Highly-Compact Erbium-Doped Mode-Locked Fiber Laser	B#5
WDD2	Q-switched Mode-Locking of an Erbium-doped Fiber Laser through Subharmonic Cavity Modulation	664
WDD3	Analysis of Fiber Optical Parametric Oscillator for High-Repetition-Rate Pulse Generation	666
WDD4	Dual-Wavelength Lasing Around 800 nm in a Tm:ZBLAN Fibre Laser	668
WDD5	Investigation of Strain-Induced Effects on Microwave Signals from an PM-EDF based Short Cavity DBR Laser	670
WDD6	Down-conversion Praseodymium Doped Fiber Laser: Modeling and Analysis	672
WEE	Special Symposium on Quantum Photonics V	
WEE1	Deterministic Photon Cascade from Resonant Two-Photon Excitation of a Single InAs Quantum Dot	674
WEE2	Alignment Between a Single Quantum Dot and a Photonic Crystal Nanocavity by a Microscopic Photoluminescence Imaging	676
WEE3	Blue Single Photon Emission from a Single InGaN/GaN Quantum Dot in Nanowire up to 200K	678
WFF	Integrated Plasmonic Devices	
WFF1	Broadband Efficient Hybrid Plasmonic Nano-Junctions	680
WFF2	Dual Structures for Ultra-compact On-Chip Plasmonic Light Concentration on	682

	Silicon Platforms	
WFF3	Long-Range Plasmonic Waveguides Controlled by Nematic Liquid Crystals	684
WFF4	Optical-Frequency Signal Transmission via Localized Surface Plasmons	686
WFF5	Spectral Deformation of Propagating Surface Plasmon Polaritons	688
WFF6	Novel Polarization Splitting Through Asymmetric Plasmonic-Dielectric Coupling	690
WGG WGG1	Compound Material Growth I Selective Area Epitaxial Growth of III-V Semiconductors though 3D Templates: Pathway to Optoelectronically Active 3D Photonic Crystals	692
WGG2	Twinning Superlattice in VLS Grown Planar GaAs Nanowires Induced by Impurity Doping	693
WGG3	Dilute-As GaNAs Semiconductor for Visible Emitters	695
WGG4	P-Doped Effect on Dot density in InP/AlGaInP Laser Diode Structures	697
WGG5	Transmission Electron Microscopy Study of Metamorphic III-Sb VECSELs on GaAs/AlGaAs Distributed Bragg Reflectors	699
Thursd	ay, September 27, 2012	
ThA	Tutorial IV	
ThA1	Coherent Communication	N/A
ThB ThB1	Silicon Photonics Integration of Ultra-Low-Loss Silica Waveguides with Silicon Photonics	701
		701 703
ThB1	Integration of Ultra-Low-Loss Silica Waveguides with Silicon Photonics Nonreciprocal Transmission of 10 Gbps OOK Data through an All-Silicon Passive	
ThB1 ThB2	Integration of Ultra-Low-Loss Silica Waveguides with Silicon Photonics Nonreciprocal Transmission of 10 Gbps OOK Data through an All-Silicon Passive Optical Diode Highly Compact Ultra-low Loss Polarization Insensitive 1-to-2 Multimode	703
ThB1 ThB2 ThB3	Integration of Ultra-Low-Loss Silica Waveguides with Silicon Photonics Nonreciprocal Transmission of 10 Gbps OOK Data through an All-Silicon Passive Optical Diode Highly Compact Ultra-low Loss Polarization Insensitive 1-to-2 Multimode Interference Splitter	703 705
ThB1 ThB2 ThB3 ThB4	Integration of Ultra-Low-Loss Silica Waveguides with Silicon Photonics Nonreciprocal Transmission of 10 Gbps OOK Data through an All-Silicon Passive Optical Diode Highly Compact Ultra-low Loss Polarization Insensitive 1-to-2 Multimode Interference Splitter On-chip Mode Multiplexer Based on a Single Grating Coupler	703 705 707
ThB1 ThB2 ThB3 ThB4 ThB5	Integration of Ultra-Low-Loss Silica Waveguides with Silicon Photonics Nonreciprocal Transmission of 10 Gbps OOK Data through an All-Silicon Passive Optical Diode Highly Compact Ultra-low Loss Polarization Insensitive 1-to-2 Multimode Interference Splitter On-chip Mode Multiplexer Based on a Single Grating Coupler Ultra-Compact Integrated Hybrid Plasmonic Mode Evolution Polarization Rotator	703 705 707 709
ThB1 ThB2 ThB3 ThB4 ThB5 ThB6 ThC	Integration of Ultra-Low-Loss Silica Waveguides with Silicon Photonics Nonreciprocal Transmission of 10 Gbps OOK Data through an All-Silicon Passive Optical Diode Highly Compact Ultra-low Loss Polarization Insensitive 1-to-2 Multimode Interference Splitter On-chip Mode Multiplexer Based on a Single Grating Coupler Ultra-Compact Integrated Hybrid Plasmonic Mode Evolution Polarization Rotator OSNR Measurements Using Silicon Grating Coupler and Integrated Photodiode Optical Access	703 705 707 709 711
ThB1 ThB2 ThB3 ThB4 ThB5 ThB6 ThC ThC1	Integration of Ultra-Low-Loss Silica Waveguides with Silicon Photonics Nonreciprocal Transmission of 10 Gbps OOK Data through an All-Silicon Passive Optical Diode Highly Compact Ultra-low Loss Polarization Insensitive 1-to-2 Multimode Interference Splitter On-chip Mode Multiplexer Based on a Single Grating Coupler Ultra-Compact Integrated Hybrid Plasmonic Mode Evolution Polarization Rotator OSNR Measurements Using Silicon Grating Coupler and Integrated Photodiode Optical Access Optoelectronic Integration for Broadband Optical Access Networks 40 Gb/s REAM-based WDM-PON Utilizing Dicode Encoding and Electrical	703 705 707 709 711
ThB1 ThB2 ThB3 ThB4 ThB5 ThB6 ThC ThC1 ThC2	Integration of Ultra-Low-Loss Silica Waveguides with Silicon Photonics Nonreciprocal Transmission of 10 Gbps OOK Data through an All-Silicon Passive Optical Diode Highly Compact Ultra-low Loss Polarization Insensitive 1-to-2 Multimode Interference Splitter On-chip Mode Multiplexer Based on a Single Grating Coupler Ultra-Compact Integrated Hybrid Plasmonic Mode Evolution Polarization Rotator OSNR Measurements Using Silicon Grating Coupler and Integrated Photodiode Optical Access Optoelectronic Integration for Broadband Optical Access Networks 40 Gb/s REAM-based WDM-PON Utilizing Dicode Encoding and Electrical Equalization A 20-GSample/s (10 GHz x 2 clocks) Burst-Mode CDR based on Injection-	703 705 707 709 711 713 715

ThD2	Stacked Fano Resonance Photonic Crystal Nanomembrane High-Q Filters	721
ThD3	Photonic Crystal Materials Realized by High Aspect Ratio Micro-Rod Arrays	723
ThD4	Si Photonic Device Uniformity Improvement Using Wafer-Scale Location Specific Processing	725
ThD5	Demonstration of High-Q Microspheres in Indium Fluoride, a New Mid-IR Glass Host	727
ThE ThE1	High-Intensity, Short-Pulse Lasers and Their Applications Break Ti:sapphire Laser Power to Petawatt with High Contrast Ratio	729
ThE2	Experimental Demonstration of PW Beamline based on an Injected Elliptical Beam	731
ThE3	Ultrabroadband Phase-Matching Optical-Parametric Chirped-Pulse Amplification with a Diverged Pump Beam	733
ThE4	High Temporal Contrast Femtosecond Petawatt Ti:Sapphire Laser Facility and Its Applications	735
ThF	Fiber Measurements and Sensors	
ThF1	Optical Dispersion Spectroscopy using Optical Frequency Comb	737
ThF2	Verification of Reflection at Optical Connector in High-power range using Coherent-OTDR	739
ThF3	A Ferrofluid Infiltrated Polymeric Microstructured Optical Fiber Sensor for Magnetic Field Measurements	741
ThF4	Sagnac Interferometer based Temperature Sensor byUsing Selectively Filled Photonic Crystal Fiber	743
ThF5	Fiber-Optic Current Sensors for Applications in the Electrowinning Industry and in Electrical Power Transmission	745
ThG	Heterogenious Integration Technology and Devices	
ThG1	Advances in III-V Heterogeneous Integration on Silicon	747
ThG2	Status of Bonding Technology for Hybrid Integration - A Review of the Surface Activated Bonding (SAB)	749
ThG3	An Integrated and Compact Hybrid Silicon 2R Regenerator	751
ThH	Quantum Confined Light Sources	
ThH1	Si Nanocrystals for Photon Management	753
ThH2	Individually-Addressed Planar Nanoscale InGaN-based Light Emitters	754
ThH3	Observation of Biexcitons in the presence of Trions generated via Sequential Absorption of Multiple Photons in Colloidal Quantum Dot Solids	756
ThH4	High-Quality InP/ZnS Nanocrystals with High Photometric Performance and Their Application to White Quantum Dot Light-Emitting Diodes	758
ThH5	Phonon-Assisted Nonradiative Energy Transfer from Colloidal Quantum Dots to Monocrystalline Bulk Silicon	760

ThI	Ultrafast & Nonlinear Plasmonics	
ThI1	Ultrafast Nanoplasmonic Circuits and Devices	762
ThI2	Nonlinear Fiber Plasmonics: Discovery of the Self-Frequency Blueshift of Solitons	B#5
ThI3	Nonlinear "Rainbow" Trapping effect for Broadband Third-Harmonic Generation	766
ThI4	Enhancing Nonlinear Effects with Micron-Scale Graphene-Coated Plasmonic Structures	768
ThJ	Photonic Crystals & Integration	
ThJ1	Photonic Crystal Lasers on Silicon	770
ThJ2	Low Insertion Loss Nanocavity Optical Modulators	772
ThJ3	Photonic-Crystal Slab for Terahertz-Wave Integrated Circuits	774
ThJ4	Nanopores and Quantum Dots by Selective Area Metalorganic Chemical Vapor Deposition	776
ThK	Optical Networking	
ThK1	SDN Based Unified Control Architecture	778
ThK2	Optical Networking Solutions for Data Centre LANs	780
ThK3	Hybrid Reconfiguration for Upgrading Datacenter Interconnection Topology	782
ThL	Nonlinear and Meta-Materials	
ThL1	Direct Observation of Optical Magnetism from a Dielectric Resonator Metamaterial Using Time-Domain Spectroscopy in the Mid-Infrared	784
ThL2	Mid-Infrared Designer Metals	786
ThL3	Silver-doped Arsenic Selenide (Ag-As2Se3) Waveguides for Compact Nonlinear Optical Devices	788
ThL4	Nonlinear Optical Responses of Photopolymerizable CdSe Quantum Dot-Polymer Nanocomposites Capable of Holographically Patterning Photonic Lattice Structures	790
ThL5	Giant Light-induced Capacitance Enhancements in an Unconventional Capacitor with Two-dimensional Hole Gas	792
ThM	High-Power Fiber and Solid-State Lasers	
ThM1	Spectral Beam Combining of High Power Fiber Lasers	794
ThM2	All-Fiber Wavelength Tunable Tm-Doped Fiber Laser Using FBG Tuning Methods	B#5
ThM3	Orthogonally Coded Frequency-Tagging for Active Coherent Beam Combination	798
ThM4	Passive Mode-Locking of Fiber Laser Based on Diamond Thin Film	800
ThM5	Long Term Performance of NASA's High Output Maximum Efficiency Resonator (HOMER) Laser for Earth and Planetary Altimetry	B#5
ThN	Novel Fibers and Applications	
ThN1	Longitudinally-Graded Optical Fibers	804
ThN2	Hybrid Photonic Crystal Fiber Selectively Infiltrated with Liquid Crystal	N/A

ThN3	A Directional Coupler based on Nematic Liquid Crystal Filled Photonic Crystal Fiber	806
ThN4	Liquid Core Photonic Crystal Fiber with the Enhanced Light Coupling Efficiency	808
ThN5	Thermal-Induced Refractive Index Change Effects on Distributed Modal Filtering Properties of Rod-Type Photonic Crystal Fibers	810
ThO	Hybrid Lasers	040
ThO1	Hybrid Silicon Lasers for Optical Interconnect	812
ThO2	Thermal Analysis of Self-Heating Effect in GaInAsP/InP Membrane DFB Laser on Si Substrate	814
ThO3	A Hybrid Silicon Colliding Pulse Mode-locked Laser with Integrated Passive Waveguide Section	816
ThO4	GaInAsP/Si Hybrid Fabry-Perot Laser using N2 Plasma Activated Low Temperature Bonding	818
ThO5	III-V Quantum Dot Lasers on Si Substrates by Wafer Bonding	820
ThP	Infrared Nanophotonics	
ThP1	Probing Vibrational Absorption of Ultra-Thin Samples by Tip-Enhanced Photoexpansion Nano-Spectroscopy	N/A
ThP2	Mid-infrared Guided Mode Resonance Filters for Applications in High Power Laser Systems	822
ThP3	Optimizing Motheye Antireflective Structures forMaximum Coupling Through As2S3 Optical Fibers	824
ThP4	2.78 µm Fluoride Glass Fiber Laser Using Guided Mode Resonance Filter as External Cavity Mirror	826
ThP5	Resolving Split Resonant Modes in Microrings	828
ThP6	High Spatial Resolution Subsurface Microscopy using Radially Polarized Beam	830
ThQ	Si Photonics & Ultrafast Techniques	
ThQ1	40 Gbit/s serial data signal regeneration using self-phase modulation in a silicon nanowire	832
ThQ2	Silicon Single Microring Resonator Mach-Zehnder Modulator with Low-Power Consumption Using Thermo-Optic Effect	834
ThQ3	Monte Carlo Simulations of Timing Jitter Attenuation in Silicon Nanowires	836
ThQ4	Ultrashort Flat-Top Pulse Generation Using an Integrated Mach-Zehnder Interferometers	838
ThQ5	Spectral Pulse Shaping with Adaptive Feedback in Fiberized CPA Systems for Sub-Picosecond, High Contrast Pulses	840
ThQ6	Generation of 1.5 Cycle Phase Stabilized Intense Laser Pulses at 1.8 um	N/A
ThR	III-V Photonic Integration I	
ThR1	Very Fast (>10^7 degree/s) 2D Optical Beam Steering through an InP Photonic Integrated Circuit	842

ThR2	A Highly Integrated Optical Phase-locked Loop for Laser Wavelength Stablization	844
ThR3	Offset Locking of an SG-DBR to an InGaAsP/InP Mode-Locked Laser	846
ThR4	Coherent Comb Generation using Integrated Slotted Fabry-Pérot Semiconductor Lasers	848
ThR5	EAM Integrated SOA for Low-Pattern Dependence and Chirp Compensation	850
ThR6	Semiconductor Laser Integrated with a Thermoelectrophotonic Light Emitting Diode Heat Pump	852
ThS ThS1	Optical Transmission Super-Channels: DWDM Transmission Beyond 100 Gb/s	854
ThS2	Realtime Processed 12 x 120 Gb/s Unrepeatered Transmission over 383.5 km PSC Fiber and 342.7 km SMF without ROPA	856
ThS3	Optimal Home Circuit Grouping in LOBS-HC Rings	858
ThS4	Accurate PMD Measurement by Observation of Data-Bearing Signals	860
ThS5	In-Band Crosstalk Tolerance of Direct Detection DQPSK Optical Systems	862
ThT	Compound Material Growth II	
ThT1	Tunable 1550-nm VCSEL Using High Contrast Gratings	864
ThT2	2D and 3D Photonic Crystal Nanocavity Lasers with Quantum Dot Gain	866
ThT3	Cavity Design of Nanomembrane MR-VCSELs on Silicon	868
ThT4	Instabilities in Optically-Pumped 1300nm Dilute Nitride Spin-VCSELs: Experiment and Theory	870
ThU	High-Order Harmonic Generation	
ThU1	Isolated High-Harmonics Pulse from Two-Color-Driven Bloch Oscillations in Bulk Semiconductors	872
ThU2	High-Harmonic Generation using a kHz, 2.1 - μm OPCPA Pumped by a ps Cryogenic Yb:YAG Amplifier	874
ThU3	Improved Efficiency and Divergence of Intense High-Order Harmonics from Carbon Plasma	876
ThV ThV1	Multicore Fibers Multicore Optical Fibers and Connectors for Short Reach, Computer Compatible, High Density Links	878
ThV2	Recent Advance in Multicore Fibers for Spatial Division Multiplexing	N/A
ThV3	Laminated Polymer Waveguide Fan-out Device for Uncoupled Multi-core Fiber	880
ThW	Direct Growth on Si	
ThW1	InAs/GaAs Quantum-Dot Lasers Monolithically Grown on Si Substrate	882
ThW2	Monolithic Integration of III/V Devices on Si(001)	884
ThW3	Growth of InAs Quantum Dot Laser Structures on Silicon	885

ThW4	Development of Lattice-Matched GaPN/AlGaPN DBR on Si	887
ThX	Nanoplasmonics I	
ThX1	Symmetry Related Phenomena in Metamaterials	N/A
ThX2	Coupling of Light from Microdisk Lasers to Nano-Antennas with Nano-Tapers	889
ThX3	Amplifying Optical Gradient Forces with Metamaterials	891
ThX4	Designing a Nanoantenna-Superlens System for Sensing Applications	893
ThX5	2D Plasmon Propagation Inside a Two-Dimensional Electron Gas Layer with a Low Loss Metallic Gate	895
ThY ThY1	Phosphor and Displays Phosphors and Quantum Dots for Solid State Lighting	N/A
ThY2	High-Mobility Low-Power Flexible ZnO Thin Film Transistors on Plastic Substrates	, 897
ThY3	10-bit HD Monochrome Display for Medical Applications	B#5
ThY4	Effect of SiO2 Coatings on Halophosphate Phosphors for Near UV-Emitting LEDs	901
ThY5	White-Emitting Solid State Lighting by Electrophoretic Deposition of Phosphors	903
ThZ ThZ1	III-V Photonic Integration II An InP-based Generic Integration Technology Platform	905
ThZ2	On-Chip Wavelength-Division (De)Multiplexers for Multi-Guide Vertical Integration in InP	907
ThZ3	GaInAsP Mach-Zehnder Interferometric Waveguide Optical Isolator Integrated with Spot Size Converter	909
ThZ4	Monolithic Integration of Passive Components with High Performance Quantum Dot Lasers	911
ThZ5	Giant Electro-thermal Phase-shift in Low-Polarization Dependent Slow Light Bragg Reflector Waveguide	913
ThAA	Optical Nodes	
ThAA1	Optical Networking Systems-on-a-Chip	N/A
ThAA2	160 Gbit/s Optical Packet Switching Using a Silicon Chip	915
ThAA3	Quasi-Passive and Reconfigurable Optical Node: Implementations with Discrete Latching Switches	917
ThBB ThBB1	Emerging Material Technologies Optical Properties of Ge1-zSnz/ SixGe1-x-ySny Heterostructures	919
ThBB2	Thermal Annealing Induced Relaxation of Compressive Strain in Porous GaN Structures	921
ThBB3	Process and Device Uniformity of Low-Loss a-Si:H	923
ThBB4	Sub-Wavelength Diffraction Losses in a Silicon Nano-Patterned Membrane Reflector	925

40Gb/s NRZ All-Optical Wavelength Converter Using InGaAsP/InAlGaAs Quantum Wells	927
Theoretical Study of Continuous-Wave Lasing in Cr:ZnSe:Glass Composite Waveguides	929
Applications of Attosecond and Short-Wavelength Sources Imaging of Valence Shell Dynamics using Intense Laser Pulses	931
A Narrow Linewidth Picosecond Pulsed Laser System for Hydrogen Ion Beam Stripping	933
Development of Highly Spatial-Coherent, 13.5-nm High-Order Harmonics for EUVL Mask Inspection Using Coherent EUV Scatterometry Microscope	935
Fiber Biophotonics and Devices Nonlinear Optical Fiber Endomicroscopy Towardds Clinical Applications	937
The Optical Manipulation of Micron Particles and Bio-Samples with Counter- Propagating Bessel-Like Beam of All Fiber Structure	939
Radiation Pressure Induced Optical Syringe Within Micro Fluidic Channel	941
Analyses of Micro-Fluid Flow in a Hollow Core Fiber based on Optical Interference	943
Fiber Bragg Sensors Made with IR Femtosecond Radiation	B#5
Novel Hybrid Devices High-Density Hybrid Integrated Light Sources for Photonics-Electronics Convergence System	947
CMOS-Compatible VCSEL	949
Nanomembrane Transfer Printing for MR-VCSELs on Silicon	951
Nanoplasmonics II Nonlinear MIM Nanoplasmonic Waveguide Based on Electron Tunneling for Ultrafast Optical Pulse Rectification	953
Surface Enhanced Raman Scattering Excited by Dielectric-loaded Surface Plasmon Polariton Waveguides	955
Closed-Form Modelling of Plasmonic Mesh Structures	957
Minimal Formulation of the Resonance Properties of Metallic Nanoslit Arrays	959
The Mie Theory and Its Nanocircuits and Nanoimpedances for Plasmonic Nanoparticles	961
Modal Analysis of a Novel Nanophotonic Plasmon Hollow Waveguide	963
Post Deadline Hybrid III-V Silicon Photonic Steerable Laser	····
1-Tb/s Dual-Carrier 80-GBaud PDM-16QAM WDM Transmission at 5.2 b/s/Hz over	er 3200 km ^{···} - * +
Demonstration of a Novel Single-Mode Hybrid Silicon Microlaser	*-
A Photonic Integrated Circuit for a 40 Gbaud/s Homodyne Receiver Using a Optic Loop	
A 55Gb/s Directly Modulated 850nm VCSEL-Based Optical Link	- +%
	Quantum Wells Theoretical Study of Continuous-Wave Lasing in Cr:ZnSe:Glass Composite Waveguides Applications of Attosecond and Short-Wavelength Sources Imaging of Valence Shell Dynamics using Intense Laser Pulses A Narrow Linewidth Picosecond Pulsed Laser System for Hydrogen Ion Beam Stripping Development of Highly Spatial-Coherent, 13.5-nm High-Order Harmonics for EUVL Mask Inspection Using Coherent EUV Scatterometry Microscope Fiber Biophotonics and Devices Nonlinear Optical Fiber Endomicroscopy Towardds Clinical Applications The Optical Manipulation of Micron Particles and Bio-Samples with Counter- Propagating Bessel-Like Beam of All Fiber Structure Radiation Pressure Induced Optical Syringe Within Micro Fluidic Channel Analyses of Micro-Fluid Flow in a Hollow Core Fiber based on Optical Interference Fiber Bragg Sensors Made with IR Femtosecond Radiation Novel Hybrid Devices High-Density Hybrid Integrated Light Sources for Photonics-Electronics Convergence System CMOS-Compatible VCSEL Nanomembrane Transfer Printing for MR-VCSELs on Silicon Nanoplasmonics II Nonlinear MIM Nanoplasmonic Waveguide Based on Electron Tunneling for Ultrafast Optical Pulse Rectification Surface Enhanced Raman Scattering Excited by Dielectric-loaded Surface Plasmon Polariton Waveguides Closed-Form Modelling of Plasmonic Mesh Structures Minimal Formulation of the Resonance Properties of Metallic Nanoslit Arrays The Mie Theory and Its Nanocircuits and Nanoimpedances for Plasmonic Nanoparticles Modal Analysis of a Novel Nanophotonic Plasmon Hollow Waveguide Post Deadline Hybrid III-V Silicon Photonic Steerable Laser 1-Tb/S Dual-Carrier 80-GBaud PDM-16QAM WDM Transmission at 5.2 b/s/Hz over Demonstration of a Novel Single-Mode Hybrid Silicon Microlaser A Photonic Integrated Circuit for a 40 Gbaud/s Homodyne Receiver Using a Optic Loop