2012 IEEE International SOC Conference

(SOCC 2012)

Niagara Falls, New York, USA 12 – 14 September 2012

IEEE Catalog Number: GISBN:

CFP12ASI-PRT 978-1-4673-1294-3

TABLE OF CONTENTS

Keynote: Driving Innovation in the "Post-Silicon" World ""%

Bernard S. Meyerson, IBM Fellow, Vice President, Innovation & Global University Relations IBM Systems and Technology Group

Session PL1: Plenary Session

Chair: Norbert Schuhmann, Fraunhofer Institute for Integrated Circuits - IIS, Germany

PL1.1 "Low Power Solutions for a Smarter Future" ""

Richard Grisenthwaite, ARM Fellow, VP of Technology, ARM

PL1.2 "Era of SoCs: Challenges and Opportunities"(

Raj Yavatk ar, Intel Fellow, Director, System-on-Chip Architecture, Intel Corporation

Session WPA1: Green Circuits & Design Methodologies

Chair: Kenneth Hsu, Rochester Institute of Technology, Rochester, NY

WPA1.1 An Energy-Efficient Level Converter with High Thermal Variation Immunity for Sub-****) threshold to Super-threshold Operation

Mei-Wei Chen, Ming-Hung Chang, Wei Hwan³ National Chiao Tung University, Taiwan

WPA1.2 An On-Chip 250 mA 40 nm CMOS Digital LDO Using Dynamic Sampling Clock Frequency "% Scaling with Offset-Free TDC-Based Voltage Sensor

Kazuo Otsuga Renesas Electronics Corporation, Japan

WPA1.3 A BETTER-THAN-WORST-CASE CIRCUIT DESIGN METHODOLOGY USING TIMING-*****%) ERROR SPECULATION AND FREQUENCY ADAPTATION

Sebastian Moreno Londoño and Jose Pineda de Gyvez Eindhoven University of Technology, Netherlands

Na Gong, Shixiong Jiang, Anoosha Challapalli, Manpinder Panesar, Ramalingam Sridhar University at Buffalo

WPA1.5 pbCAM: probabilistically-banked Content Addressable Memory "" &+

Tolga Soyata and John Liobe

WPA1.6 A "Free" Razor: A Novel Adaptive Voltage Scaling Low Power Technique for Data Path "" 'SoC Designs

Yuejian Wu, Sandy Thomson, Han Sun, David Krause, Song Yu, George Kurio Infinera

Session WPB1: Analog, Mixed Signal and Biomedical Circuits

Chair: Poki Chen, National Taiwan University of Science and Technology, Taiwan
WPB1.1 ADPLL Variables Determinations based on Phase Noise, Spur and Locking Time "" -

Bo Jiang and Tian Xia University of Vermont

WPB1.2 A NOVEL DIGITAL LOOP FILTER ARCHITECTURE FOR BANG-BANG ADPLL ""()

Moataz Abdelfattah¹, Amr Lotfy², Mohamed Abdelsalam², Mohamed Abdel-moneum², Nasser Kurd², Maged Ghoneima¹, Greg Taylor², Yehea Ismail¹

¹American University in Cairo, ²Intel Corporation

WPB1.3 A 1.7GS/s 6-BIT FLASH A/D CONVERTER WITH DISTRIBUTED OFFSET CANCELLING ****) % SAMPLE-ANDHOLD

Lampros Mountrichas, Theodore Laopoulos, Stylianos Sisk os Aristotle University of Thessaloniki, Greece

WPB1.4 A 1.62/2.7/5.4Gbps clock and data recovery circuit for DisplayPort 1.2 "") +

Jin-Cheol Seo, Sang-Soon Im, Kwan Yoon, Seung-Wook Oh, Taek -Joon An, Gi-Yeol Bae, Jin-Ku Kang Inha university, South Korea

WPB1.5 Gray-level image recognition on a dynamically reconfigurable vision architecture *** %

Yuk i Kamik ubo, Minoru Watanabe, Shoji Kawahito Shizuoka University, Japan

WPB1.6 A Read-Assist, Write-Back Voltage Sense Amplifier for Low-Voltage Operated SRAMs *****

Tahseen Shak ir and Manoj Sachdev Univesity of Waterloo, Canada

Session WPA2: Reconfigurable and Programmable Logic

Chair: Poki Chen, National Taiwan University of Science and Technology, Taiwan
WPA2.1 SYNTHESIZABLE DELAY LINE ARCHITECTURES FOR DIGITALLY CONTROLLED ****+&
VOLTAGE REGULATORS

Omar Haridy¹, Harish Krishnamurthy², Amr Helmy¹, Yehea Ismail¹ ¹The American university in Cairo, Egypt. ²Intel Lab, USA

WPA2.2 A Novel Design Flow for a 3D Heterogeneous System Prototyping Platform +,

Chun-Ming Huang, Chih-Chyau Yang, Chien-Ming Wu, Chun-Chieh Chiu, Yi-Jun Liu, Chun-Chieh Chu, Nien-Hsiang Chang, Wen-Ching Chen, Chih-Hsing Lin, Hua-Hsin Luo National Chip Implementation Center, Taiwan

WPA2.3 An FPGA Implementation for a High-Speed Optical Link With a PCIe Interface "", '

Edin Kadric¹, Naraig Manjik ian², Zeljk o Zilic¹

¹McGill University, Canada, ²Queen's University, Canada

Session WPB2: Emerging Technologies

Chair: Thanh Tran, Texas Instruments

WPB2.1 Invited Talk: Noise and mismatch in sub 28nm silicon processes ",,

Andrew Marshall, Texas Instruments

WPB2.2 Reconfigurable RRAM for LUT Logic Mapping: A Case Study for Reliability Enhancement "-- (

Matthew Catanzaro and Dhireesha Kudithipudi Rochester Institute of Technology

Aveek Dutta and Sanjiv Sambandan Indian Institute of Science, Bangalore, India

Session WPP: Poster & Reception

Chair: Norbert Schuhmann, Fraunhofer IIS CoChair: Kaijian Shi, Cadence Design Systems

WPP1.1 Efficient Generation of Analog Circuit Models for Accelerated Mixed-Signal Simulation ""%(

Stefan Hoelldampf, Hyun-Sek Luk as Lee, Daniel Zaum, Mark us Olbrich, Erich Barke Institute of Microelectronic Systems, Leibniz Universität Hannover, Germany

Susie Kim, Seung-In Na, Tae-Hoon Kim, Hyunjoong Lee, Sunkwon Kim, Cyuyeol Rhee, Suhwan Kim Seoul National University, South Korea

WPP1.3 Methodology to Determine Dominant Noise Source in a System-On-Chip Based ***** My Implantable Device

Zhihua Gan, Emre Salman, Milutin Stanacevic Stony Brook University

WPP1.4 A Wide Tuning Range QCCO Based on CMOS Active Inductors ""% \$\$

Jun Zhang and Huihua Liu Research Institution of Electronic Science and Technology of UESTC, China

WPP1.5 Evaluation of Layout Design Styles using a Quality Design Metric **** & WPP1.5 Evaluation of Layout Design Styles using a Quality Design Metric ***** & WPP1.5 Evaluation of Layout Design Styles using a Quality Design Metric ***** & WPP1.5 Evaluation of Layout Design Styles using a Quality Design Metric ***** & WPP1.5 Evaluation of Layout Design Styles using a Quality Design Metric ***** & WPP1.5 Evaluation of Layout Design Styles using a Quality Design Metric **** & WPP1.5 Evaluation of Layout Design Styles using a Quality Design Metric **** & WPP1.5 Evaluation of Layout Design Metric **** & WPP1.5 Evaluation of Layout Design Metric *** &

Sergio Gomez and Francesc Moll Universitat Polit'ecnica de Catalunya, Spain

WPP1.6 Lightweight Energy Prediction Framework for Solar-Powered Wireless Sensor Networks "% %

Cory Merkel, Dhireesha Kudithipudi, Andres Kwasinski Rochester Institute of Technology

WPP1.7 Design of Near Threshold All Digital Delay Locked Loops **** +

Mehdi Sadi and Mircea Stan University of Virginia

WPP1.8 A stable Chip-ID Generating Physical Uncloneable Function using Random Address "% 'Errors in SRAM

Hidehiro Fujiwara, Makoto Yabuuchi, Yasumasa Tsukamoto, Hirofumi Nakano, Toru Owada, Hiroyuki Kawai, Koji Nii

Renesas Electronics Corporation, Japan

WPP1.9 STT-MRAM Memory Cells with Enhanced On/Off Ratio ""%,

Ravi Patel, Engin Ipke, Eby Friedman University of Rochester

WPP1.10 Efficient High-speed Current-mode Links for Network-on-Chip Performance Optimization "%)

Hamed Sajjadikia and Cristinel Ababei North Dakota State University

WPP1.11 Electrical and Fluidic Microbumps for 3D-IC and Silicon Interposer ""%) -

Li Zheng and Muhannad Bakir Georgia Institute of Technology

Jiangjiang Liu and Jianyong Zhang Lamar University

WPP1.13 Ventti: a Vertically Integrated Framework for Simulation and Optimization of Networks-"%+% On-Chip

Young Jin Yoon, Nicola Concer, Luca Carloni Columbia University

WPP1.14 Reconfigurable Framework for High-Bandwidth Stream-Oriented Data Processing "%++

Alexander Mykyta¹, Dorin Patru¹, Eli Saber¹, Gene Roylance², Brad Larson²
¹Rochester Institute of Technology, ²Hewlett-Packard

WPP1.15 A Testability-aware Low Power Architecture **** (

Gang Wang, Jian Wang, Zi-Chu Qi Chinese Academy of Sciences, Beijing, China

Session PL2: Plenary Talk

Chair: Kaijian Shi, Cadence Design Systems

PL2.1 Connectivity Driven Systems: On-Chip, Off-chip and In-between **** \$

Robert Geer, College of Nanoscale Science and Engineering (CNSE), University of Albany, SUNY

Session TA1: Wireline and Wireless Communication Circuits

Chair: Sao-Jie Chen, National Taiwan University, Taiwan

TA1.1 Multi-Objective Optimization of Radio-Frequency Front-Ends *** &

Josef Dobes¹, Jan Michal², Viera Biolk ova³

¹Czech Technical University in Prague, ²CertiCon Corporation, ³Brno University of Technology

TA1.2 Continuous-Time Single-Symbol IR-UWB Symbol Detection **** ,

Shanthi Sudalaiyandi, Tuan-Anh Vu, Hak on Hjortland University of Oslo, Norway

TA1.3 A 1Gbps FPGA-Based Wireless Baseband MIMO Transceiver *** \$\&\text{8}\$

Ciaran Toal¹, Sakir Sezer¹, Dwayne Burns¹, Pei Xiao², Vincent Fusco¹
¹ECIT, Queen's University Belfast, Northern Ireland, UK ²University of Surrey, UK

TA1.4 Implementation of a network flow lookup circuit for next-generation packet classifiers *** &\$.

Xin Yang and Sakir Sezer Queen's University Belfast, Northern Ireland, UK

TA1.5 DESIGN OF A SENSOR NODE CRYPTO PROCESSOR FOR IEEE 802.15.4 APPLICATIONS ***

Goran Panic, Thomas Basmer, Henry Schomann, Steffen Peter, Frank Vater, Klaus Tittelbach-Helmrich IHP, Germany

Session TB1: Embedded Systems, Multi-Core

Chair: Yuejian Wu, Infinera, Ottawa, Canada

TB1.1 A 55nm 0.5V 128Kb Cross-Point 8T SRAM with Data-Aware Dynamic Supply Write-Assist **** &%

Yung-Wei Lin¹, Hao-I Yang¹, Mao-Chih Hsia¹, Yi-Wei Lin¹, Chien-Hen Chen¹, Ching-Te Chuang¹, Wei Hwang¹, Nan-Chun Lien¹, Kuen-Di Lee², Wei-Chiang Shih², Ya-Ping Wu², Wen-Ta Lee², Chih-Chiang Hsu²

¹National Chiao Tung University, Taiwan ²Faraday Technology Corporation, Taiwan

TB1.2 LOW POWER 6T-SRAM WITH TREE ADDRESS DECODER USING A NEW EQUALIZER **** &&(PRECHARGE SCHEME

YUAN REN, MICHAEL GANSEN, TOBIAS G. NOLL RWTH Aachen University, Germany

TB1.3 Efficient, Snoopless, SoC Coherence ""&" \$

Stefanos Kaxiras I and Alberto Ros2 1Uppsala University, Sweden, 2University of Murcia, Spain

TB1.4 SOLARCAP: Super Capacitor Buffering of Solar Energy for Self-Sustainable Field Systems ""&" *

Amal Fahad, Tolga Soyata, Tai Wang, Gaurav Sharma, Wendi Heinzelman, Kai Shen University of Rochester

Session TPA1: System Level Design EDA Tools

Chair: Hai (Helen) Li, Polytechnic Institute of NYU, New York, USA

TPA1.1 AN APPROACH FOR QUANTITATIVE OPTIMIZATION OF HIGHLY EFFICIENT DEDICATED ***- &(& CORDIC

MACROS AS SoC BUILDING BLOCKS UPASNA VISHNOI, MICHAEL MEIXNER, TOBIAS G. NOLL RWTH Aachen University, Germany

TPA1.2 Workload and Task Characterization based on Operation Modes Timing Analysis """&(,

Gustavo Patino¹, Jorge Gonzalez², Wang Jiang Chau³ University of São Paulo, Brazil

TPA1.3 Direction-Constrained Layer Assignment for Rectangle Escape Routing &) (

Jin-Tai Yan and Zhi-Wei Chen Chung-Hua University, Taiwan

TPA1.4 Schematic-Driven Physical Verification: Fully Automated Solution for Analog IC design *** \$

Ahmed Arafa¹, Hend Wagieh¹, Rami Fathy¹, John Ferguson¹, Doug Morgan², Mohab Anis³, Mohamed Dessouky¹

¹Mentor Graphics Corporation, ²ON Semiconductor Corporation, ³The American University in Cairo

Session TPB1: Signal Integrity, DFT and Verification

Chair: Yuejian Wu, Infinera, Ottawa, Canada

TPB1.1 Multi-Clock DFT Architecture for Interface Characterization and Power **** TPB1.1 Multi-Clock DFT Architecture for Interface Characterization and Power ***** TPB1.1 Multi-Clock DFT Architecture for Interface Characterization and Power ****** TPB1.1 Multi-Clock DFT Architecture for Interface Characterization and Power ****** TPB1.1 Multi-Clock DFT Architecture for Interface Characterization and Power ****** TPB1.1 Multi-Clock DFT Architecture for Interface Characterization and Power ***** TPB1.1 Multi-Clock DFT Architecture for Interface Characterization and Power **** TPB1.1 Multi-Clock DFT Architecture for Interface Characterization and Power **** TPB1.1 Multi-Clock DFT Architecture for Interface Characterization and Power *** TPB1.1 Multi-Clock DFT Architecture for Interface Characterization and Power *** TPB1.1 Multi-Clock DFT Architecture for Interface Characterization and Power *** TPB1.1 Multi-Clock DFT Architecture for Interface Characterization and Power *** TPB1.1 Multi-Clock DFT Architecture for Interface Characterization and Power *** TPB1.1 Multi-Clock DFT Architecture for Interface Characterization and Power *** TPB1.1 Multi-Clock DFT Architecture for Interface Characterization and Power *** TPB1.1 Multi-Clock DFT Architecture for Interface Characterization and Power *** TPB1.1 Multi-Clock DFT Architecture for Interface Characterization and Power *** TPB1.1 Multi-Clock DFT Architecture for Interface Characterization and Power *** TPB1.1 Multi-Clock DFT Architecture for Interface Characterization and Power *** TPB1.1 Multi-Clock DFT Architecture for Interface Characterization and Power *** TPB1.1 Multi-Clock DFT Architecture for Interface Characterization and Power *** TPB1.1 Multi-Clock DFT Architecture for Interface Characterization and Power *** TPB1.1 Multi-Clock DFT Architecture for Interface Characterization and Power *** TPB1.1 Multi-Clock DFT Architecture for Interface Characterization and Power *** TPB1.1 Multi-Clock DFT Architecture for Interface Characterization and Power *** TPB1.

Chris Ryan Maxim Integrated Products

Vijay Sheshadri, Vishwani Agrawal, Prathima Agrawal Auburn University

TPB1.3 Efficient Fault Emulation using Automatic Pre-Injection Memory Access Analysis ****

Johannes Grinschgl¹, Armin Krieg¹, Christian Steger¹, Reinhold Weiss¹, Holger Bock², Josef Haid² Graz University of Technology, Austria ²Infineon Technologies Austria AG

TPB1.4 MUTATION-ANALYSIS DRIVEN FUNCTIONAL VERIFICATION OF A SOFT **** &, 'MICROPROCESSOR

Tao Xie¹, Wolfgang Müller¹, Florian Letombe²

¹University of Paderborn, Germany ²SpringSoft Inc.

Session TPT1: Embedded Tutorial I

Chair: Nagi Naganathan, LSI Corporation

TPT1.1 Intellectual Property Protection and Security ".... &, -

Susmita Sur-Kolay, Indian Statistical Institute

Session TPT2: Embedded Tutorial II

Chair: Yiran Chen, University of Pittsburgh

TPT2.1 Neuromorphic Computing: A SoC Scaling Path for the Next Decade *** & \$

Organizer: Yiran Chen, University of Pittsburgh Moderator: Qing Wu, Air Force Research Laboratory

TPT2.2 Exploiting Memristive Device Behavior for Emerging Digital Logic and Memory **** & Applications

Garrett Rose Air Force Research laboratory

TPT2.3 Massive Parallel Neuromorphic Computing Model for Intelligent Text Recognition **** &- '

Qinru Qiu Syracuse University

TPT2.4 Memristor in Neuromorphic Computing *** (

Hai (Helen) Li Poly-NYU

Session FA1: Network on Chips, 3D-ICs

Chair: Danella Zhao, University of Lousiana at Lafayette

FA1.1 Power-Area Analysis of NoCs in FPGAs **** &-)

Mohammadreza Binesh Marvasti and Ted. H Szymanski McMaster University, Canada

FA1.2 DVFS-ENABLED SUSTAINABLE WIRELESS NoC ARCHITECTURE """ \$%

Jacob Murray, Partha Pande, Behrooz Shirazi Washington State University

FA1.3 Design Space Exploration for Robust Power Delivery in TSV Based 3-D Systems-on-Chip ** \$+

Suhas Satheesh and Emre Salman Stony Brook University

FA1.4 A Scalable Electrical Characterization Method for Inter-Strata Interconnects in 3-D ICs """ %&

Tian Xia¹ and Guoan Wang²

¹University of Vermont, ²University of South Carolina

Session FB1: Digital Signal Processing & Multimedia Systems

Chair: Nagi Naganathan, LSI Corporation

FB1.1 Stacking Memory Architecture Exploration for Three-Dimensional Integrated Circuit in 3-D **** %-PAC

Hsien-Ching Hsieh, Po-Han Huang, Chi-Hung Lin, Huang-Lun Lin Industrial Technology Research Institute, Taiwan

FB1.2 Aging-Aware Reliable Multiplier Design "" &&

Yu-Hung Cho, Ing-Chao Lin, Yi-Ming Yang National Cheng Kung University, Taiwan

FB1.3 A Digital Neuromorphic VLSI Architecture with Memristor Crossbar Synaptic Array for &, Machine Learning

Yongtae Kim, Yong Zhang, Peng Li Texas A&M University

FB1.4 A Novel Flexible Foldable Systolic Architecture FIR Filters Generator ""' ' (Hang Yin¹, Weitao Du¹, Yu Hen Hu², Rui Lv¹ ¹Communication University of China, ²University of Wisconsin-Madison Session FA2: Network on Chips, 3D-ICs II Chair: Sakir Sezer, Queen's University Belfast, UK FA2.1 A Sensor-less NBTI mitigation methodology for NoC architectures "" (\$ Davide Zoni and William Fornaciari Politecnico di Milano, Italy FA2.2 Design of a Scalable RF Microarchitecture for Heterogeneous MPSoCs "" (* Danella Zhao and Yi Wang University of Louisiana at Lafayette FA2.3 Design of An NoC with On-chip Photonic Interconnects Using Adaptive CDMA links """) & Soumyajit Poddar, Prasun Ghosa, Priyajit Mukherjee, Suman Samui, Hafizur Rahaman Bengal Engineering and Science University, Shibpur, India FA2.4 Design of Interlock-Free Combined Allocators for Networks-on-Chip """), Ye Lu¹, Changlin Chen², John McCanny¹, Sakir Sezer¹ 1Queen's University of Belfast, 2Delft University of Technology FA2.5 MAZENOC: Novel Approach for Fult-Tolerant NOC Routing "" *(Eduardo Wachter and Fernando Moraes PUCRS. Brazil Session FB2: Design for Manufacturability, Variation aware Methodologies Chair: Nagi Naganathan, LSI Corporation FB2.1 ON-CHIP SELF-CALIBRATED PROCESS-TEMPERATURE SENSOR FOR TSV 3D **** +\$ **INTEGRATION** Tzu-Ting Chiang, Po-Tsang Huang, Wei Hwang National Chiao Tung University, Taiwan FB2.2 Calibration of Propagation Delay of Flip-Flops *** +* Tamer Ragheb and Andrew Marshall Texas Instruments Inc FB2.3 Native-Conflict-Avoiding Track Routing for Double Patterning Technology "", % Bi-Ting Lai, Tai-Hung Li, Tai-Chen Chen National Central University, Taiwan FB2.4 Variation tolerant self-adaptive clock generation architecture based on a ring oscillator "", + Jordi Pérez-Puigdemont, Antonio Calomarde, Francesc Moll Universitat Politècnica de Catalunya, Spain