ISSMGE Technical Committee TC 211 International Symposium on Ground Improvement (IS-GI BRUSSELS 2012)

Recent Research, Advances & Execution Aspects of Ground Improvement Works

Brussels, Belgium 31 May – 1 June 2012

Volume 1 of 4

Editors:

Nicolas Denies

Noel Huybrechts

ISBN: 978-1-62748-907-2

Printed from e-media with permission by:

Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571

Some format issues inherent in the e-media version may also appear in this print version.

Copyright© (2012) by ISSMGE TC211 and BBRI All rights reserved.

Printed by Curran Associates, Inc. (2014)

For permission requests, please contact ISSMGE TC211 and BBRI at the address below.

ISSMGE TC211 and BBRI c/o Nicolas Denies Avenue P. Holoffe 21 B-1342 Limelette, Belgium

Phone: +32-2-655.77.11 Fax: +32-2-653.07.29

nde@bbri.be

Additional copies of this publication are available from:

Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571 USA

Phone: 845-758-0400 Fax: 845-758-2634

Email: curran@proceedings.com Web: www.proceedings.com

Table of contents

VOLUME I

GENERAL REPORTS

Session 1 - VIBRO AND IMPACT COMPACTION Johannes F. Kirstein	I-5
Session 2 - VERTICAL DRAINS, VACUUM CONSOLIDATION & PRELOADING Buddhima Indraratna	I-47
Session 3 - SOIL MIXING 1 – SOIL STABILISATION: SURFACE MIXING AND LABORATORY MIXTURES Abir Al-Tabbaa	I-63
Session 4 - SOIL MIXING 2 – DEEP MIXING Nicolas Denies & Gust Van Lysebetten	I-87
Session 5 - RIGID INCLUSIONS AND STONE COLUMNS Bruno Simon	I-127
Session 6 - SOIL REINFORCEMENT IN FILL AND IN CUT John Sankey & Turan Durgunoglu	I-171
Session 7 - BIOGROUT & OTHER GROUTING METHODS Jian Chu	I-177
LOUIS MENARD LECTURE	
Recent Advances and Execution Aspects in Ground Improvement in Dredging and Environmental Marine Engineering Patrick Mengé	I-191
SPECIALTY LECTURE	
Design Guidelines and Full Scale Verification for MSE Walls with Traffic Barriers Impacted by Vehicles JL. Briaud & D. Saez	I-233
VARIOUS CONTRIBUTIONS	
Study on pore water pressure dissipation phenomena of soft clays through consolidation using vertical drains Manish V. Shah & Arvind V. Shroff	I-261
Monitoring HEIC using Landpac CIR and CIS Technologies Dermot Kelly & José Gil	I-273
Controlled Modulus Columns (CMC): A New Trend in Ground Improvement and Potential Applications to Indonesian Soils Kenny Yee, Ryan Ade Setiawan & Olivier Bechet	I-287
SPONSORS	I 301

VOLUME II

Session 1 - VIBRO and IMPACT COMPACTION

Soil dynamic response after ground improvement by heavy dynamic compaction or vibrocompaction <i>S. Brûlé and E. Javelaud</i>	II-3
Ground improvement tank terminal Amsterdam - The Netherlands J.W. Dijkstra & A.H. Nooy van der Kolff	II-11
Laboratory study of disc rotation for densification of loose sands Feng Tao-Wei	II-23
Lessons Learned from Millions of Square Metres of Ground Improvement B. Hamidi and S. Varaksin	II-29
Quantifying the Zone of Influence of the Impact Roller M. B. Jaksa, B. T. Scott, N. L. Mentha, A. T. Symons, S. M. Pointon, P. T. Wrightson and E. Syamsuddin	II-41
A comparison of soil improvement achieved using different vibro methods <i>R. Jimenez, F. Roman and JM. Garcia-Gutierrez</i>	II-53
Sand Compaction Pile Technology and its Performance in both Sandy and Clayey Grounds H. Kinoshita, K. Harada, M. Nozu and J. Ohbayashi	II-63
Ground improvement works on large scale projects in the North of Morocco B. Meulewaeter, D. Bourlon and J. Maertens	II-75
Assessment of Grid Spacing for Dynamic Compaction R. Moyle and R. Turner	II-83
The Effect of Different Tamper Geometries on the Dynamic Compaction of Sandy Soils <i>Y. Nazhat and D. Airey</i>	II-93
Vibro Ground Improvement Techniques – A UK Perspective C.J. Serridge	II-107
Effects of Fines on Vibro-compaction C. H. Wong, K. C. Yeo, S. H. Yung and S. J. Liu	II-115
Stone Column and Vibro-compaction of Soil Improvement for liquefaction K. C. Yeo, S. H. Yung and S. J. Liu	II-125
Session 2 – VERTICAL DRAINS, VACUUM CONSOLIDATION and PRELOADING	
Numerical 3D comparison between real PVD and equivalent permeability in consolidation process <i>B. M. Bacas and F. Schmidt</i>	II-137
Performance and prediction of surcharge and vacuum consolidation via prefabricated vertical drains with special reference to highways, railways and ports <i>B. Indraratna, Ch. Rujikiatkamjorn and G. Xueyu</i>	II-145
Use of Temporary Water Drawdown for Site Improvement R. A. Jewell	II-169
Back analysis of a trial embankment settlement based on CPTu and oedometric test results <i>T. Mateos</i>	II-177

Preloading of a hydraullic fill for foundation of LNG tanks F. Román, R. Jimenez, J. C. García Suarez and A. Coz	II-18′
Radial Consolidation Modelling Incorporating Downdrag Effect for a Multi-Layer Soil <i>Ch. Rujikiatkamjorn and B. Indraratna</i>	II-20
EKGs Application for Hydro-Mechanical Behaviour Changing in Saturated Clay Shariatmadari Nader, Karbalaieali Sogand and Saeidijam Saeid	II-21
Finite Element Modeling of Vacuum Consolidation using Drain Elements and Unsaturated Soil Conditions R. Witasse, J. Racinais, F. Maucotel, V. Galavi, R. Brinkgreve and C. Plomteux	II-219
Electro-osmotic Consolidation for Improvement of Geotechnical Engineering Properties of Tropical Peat J.H.S. Yee, A.M.R.G. Athapaththu and H.H. Lau	II-23
Multi-dimensional electro-osmosis consolidation of clays J. Yuan, M. A. Hicks and J. Dijkstra	II-24
Session 3 – SOIL MIXING 1 - SOIL STABILIZATION (surface mixing & laboratory mixtures)	
Improvement of Geotechnical Properties of Silty sand Soils Using Natural Pozzolan and Lime N. Abbasi, M. Mahdieh and M. Hadi Davoudi	II-25
Volume Change Behaviour of a Sand-Bentonite Mixture Improved by Potassium Silicate <i>M. Ajdari and H. Bahmyari</i>	II-26
Nucleation centres in lime stabilised soils <i>P. Beetham, T. Dijkstra and N. Dixon</i>	II-269
A non-traditional treatment for the compaction of fine-grained soils G. Blanck, O. Cuisinier and F. Masrouri	II-28
Chemical Stabilization of Subgrades for Better Support of Highway Infrastructure B. Chittoori and A.J. Puppala	II-289
Rational criteria for the assessment of the target mechanical strength and stiffness of artificially sand-cement mixtures N. Cesar Consoli and A. Viana da Fonseca	II-297
Application of Polypropylene and Carpet Fibres to Improve Mechanical Properties of Cement Treated Clay B. Fatahi, H. Khabbaz and B. Fatahi	II-303
Numerical analysis of the behavior of cement treated sand H. Ghorbanbeigi, H. Mroueh, L. Lancelot and J. F. Shao	II-309
Soil Cement Stabilization - Mix Design, Control and Results during Construction J. N. Gomez S. and D.M. Anderson	II-319
Influence of tire chips on the mechanical properties of cement treated soil M. Grisolia, E. Leder, I. P. Marzano, TA. Mizutani and Y. Morikawa	II-325
Laboratory study on the applicability of molding procedures for the preparation of cement stabilised specimens M. Grisolia, M. Kitazume, E. Leder, I.P. Marzano and Y. Morikawa	II-335
On the strength and durability of cement-stabilised sands A. Guimond-Barrett, F. Szymkiewicz, Ph. Reiffsteck, A. Pantet, A. Le Kouby and S. Guédon	II-345

Rheological properties of cement-stabilised kaolin A. Guimond-Barrett, A. Touati, A. Pantet, Ph. Reiffsteck and A. Le Kouby	II-355
Influence of the clay content of a lime-treated soil on its compression strength M. A. Hashemi, H. Kadiri, Th. Massart, JCl. Verbrugge and B. François	II-365
Recycled Bassanite in Conjunction with Coal Ash for Stabilization of Soft Clay Soil T. Kamei, A. Ahmed and T. Shibi	II-373
Influence of specimen preparation on unconfined compressive strength of cement-stabilized Kaolin clay <i>M. Kitazume</i>	II-385
Immediate modification of clays with quicklime: alteration of grain-size distribution A. J. Lutenegger	II-395
Stabilizing clays using basic oxygen steel slag (BOS) H. Mirzaeifar and M.R. Abdi	II-403
Effectiveness of lime stabilisation in organic clay N.Z. Mohd Yunus, D. Wanatowski and L. R. Stace	II-411
Strength increase in time of an alluvial clay, typical of the coast of Brazil's Northeastern, mixed with different dosages of cement G. Vanzolini Moretti, A. Viana da Fonseca, J. A. Paschoalin Filho, D. de Carvalho	II-421
Case Study Analysis of OPMC Improved Foundation Ground, Pavement and Other Geo-structures Employing the GECPRO Model J.N. Mukabi	II-431
Remedy of Deep Soil Mixing Quality for Montmorillonite Clay Deposited in the Mekong and Mississippi Deltas M. Nozu, N. Tuan Anh, N. Shinkawa and K. Matsushita	II-443
Stiffness of Soil-Cement-Fly Ash by means of Shear Wave Velocity K. Piriyakul and S. Pochalard	II-451
A study on strength and swelling characteristics of three expansive soils treated with fly ash T. L. Ramadas, N. Darga Kumar and G. Yesuratnam	II-459
Alkali Activation of Industrial By-Products for use in Soil Stabilisation P. Sargent, M. Rouainia, P. N. Hughes and S. Glendinning	II-467
Soils treatment with hydraulic binders: physicochemical and geotechnical investigations of a chemical disturbance L. Saussaye, M. Boutouili, F. Baraud and L. Leleyter	II-479
Effect of fabric on elastic properties of a lime treated clayey sand B. Sonon, M. A. Hashemi, JC. Verbrugge, B. François and T.J. Massart	II-489
Laboratory study of the workability of the Deep Soil-Mixing material and in situ applications F. Szymkiewicz, FS. Tamga, A. Le Kouby, Ph. Reiffsteck and JL. Tacita	II-501
Some laboratory soil mixing trials of Irish peats M. Timoney, P. Quigley and B.A. McCabe	II-511
Consolidation of dredged mud in the Venice Lagoon D. Vanni and G. Preda	II-521

VOLUME III

Session 4 – SOIL MIXING 2 - DEEP MIXING

Partial Factor Design for a Highway Embankment Founded on Lime-cement Columns M. S. Al-Naqshabandy and S. Larsson	III-3
Soil Mix Technology for Integrated Remediation and Ground Improvement: Field Trials A. Al-Tabbaa, M. Liska, R. McGall and C. Critchlow	III-13
Long-term performance of CSM walls in slightly overconsolidated clays D. Bellato, A. Dalle Coste, FW. Gerressen, P. Simonini	III-23
Geomix Caissons against liquefaction L. Benhamou and F. Mathieu	III-33
Foundation Soils Improvement by "Cutter Soil Mixing" J. Bilé Serra and B.F. Mendes	III-41
Ground improvement works for an LNG storage tank foundation G. Chapman, J. Gniel, M. Greenough and A. Bouazza	III-53
Lateral displacements due to installation of soil-cement columns J. Chai and J. Carter	III-63
Quality Assurance and Quality Control for Deep Soil Mixing (DSM) in Punggol Waterway Project, Singapore S.H Chew, C.Y. Tan, T.Y. Yap, K.E Chua, H.M Yim, S.Y Kee, T.K. Khoo and Ja Naw	III-73
SOIL MIX WALLS as retaining structures – Belgian practice N. Denies, N. Huybrechts, F. De Cock, B. Lameire, J. Maertens and A. Vervoort	III-83
SOIL MIX WALLS as retaining structures – mechanical characterization N. Denies, N. Huybrechts, F. De Cock, B. Lameire, A. Vervoort, G. Van Lysebetten and J. Maertens	III-99
Mechanical characterization of DEEP SOIL MIX material – procedure description N. Denies, N. Huybrechts, F. De Cock, B. Lameire, A. Vervoort and J. Maertens	III-117
Mechanical characterization of large scale soil mix samples and the analysis of the influence of soil inclusions 4. Vervoort, A. Tavallali, G. Van Lysebetten, J. Maertens, N. Denies, N. Huybrechts, F. De Cock and B. Lameire	III-127
Foundations reinforced by soil mixing: Physical and numerical approach M. Dhaybi, A. Grzyb, R. Trunfio and F. Pellet	III-137
Design, Construction and Monitoring of a Test Section for the stabilization of an Active Slide Area utilizing Soil Mixed Shear Keys installed using Cutter Soil Mixing. S. Gaib, B. Wilson and E. Lapointe	III-147
CSM-Cutter Soil Mixing – Worldwide experiences of a young soil mixing method in challenging soil conditions F.W. Gerressen and Th. Vohs	III-159
Deep mixing for reinforcement of railway platforms with a spreadable tool A. Guimond-Barrett, JFr. Mosser, N. Calon, Ph. Reiffsteck, A. Pantet and A. Le Kouby	III-169
Soil-cement columns, an alternative soil improvement method S. Lambert, F. Rocher-Lacoste and A. Le Kouly	III-179

Soil mixing in highly organic materials: the experience of LPV111, New Orleans, Louisiana (USA) <i>F. M. Leoni and A. Bertero</i>	III-189
Stability Analyses of a Floodwall with Deep-Mixed Ground Improvement at Orleans Avenue Canal, New Orleans <i>M. McGuire, E. Templeton and G. Filz</i>	III-199
Assessing the feasibility of a foundation treatment solution based on CSM panels at a river dock in Lisbon <i>B. Mendes, E. Maranha das Neves, L. Caldeira and J. Bilé Serra</i>	III-211
Earth Retaining Structure using Cutter Soil Mixing technology for the "Villa Paradisio" Project at Cannes, France A. Peixoto, E. Sousa and P. Gomes	III-223
Permanent Excavation Support in Urban Area using Cutter Soil Mixing technology at Cannes, France A. Peixoto, E. Sousa and P. Gomes	III-233
Solutions for soil foundation improvement of an industrial building using Cutter Soil Mixing technology at Fréjus, France A. Peixoto, E. Sousa and P. Gomes	III-243
Solution of earth retaining structure using Cutter Soil Mixing technology: "Parking Saint Nicolas" Project at Cannes, France A. Peixoto, E. Sousa, P. Gomes	III-251
The application of Cutter Soil Mixing to an urban excavation at the riverside of Lagos, Portugal A. Peixoto, M. Matos Fernandes, E. Sousa, P. Gomes	III-261
Ground Improvement Solutions using CSM Technology A. Pinto, R. Tomásio, X. Pita, P. Godinho and A. Peixoto	III-271
State of the art in "Dry Soil Mixing" – Basics and case study P. Quasthoff	III-285
Parametric study of embankments founded on soft organic clay using numerical simulations <i>K. Suganya and P. V. Sivapullaiah</i>	III-299
Design of in-situ soil mixing M. Topolnicki and P. Pandrea	III-309
Session 5 - RIGID INCLUSIONS and STONE COLUMNS	
Reliability-based design of stone columns for ground improvement considering settlement and bulging as failure <i>modes</i> J. A. Alonso and R. Jimenez	III-319
Ordinary and Encased Stone Columns Under Repeated Loading N. K.S.Al-Saoudi, M. R. Mahmoud, F.H. Rahil and Z. W.S.Abbawi	III-329
Assessment of software for the design of columnar reinforced soil M. Bouassida, L. Hazzar and A. Mejri	III-339
Possibilities and limitations of embedded pile elements for lateral loading <i>R.B.J. Brinkgreve, E. Engin and T. Dao</i>	III-347

Full Scale Instrumented Load Test for Support of Oil Tanks on Deep Soft Clay Deposits in Louisiana using Controlled Modulus Columns Br Buschmeier, Fr. Masse, S. Swift and M. Walker	III-359
Theoretical analyses of laboratory tests of kaolin clay improved with stone columns J. Cañizal, J. Castro, A. Cimentada, A. Da Costa, M. Miranda and C. Sagaseta	III-373
Numerical modelling of stone column installation in Bothkennar clay J. Castro, D. Kamrat-Pietraszewska and M. Karstunen	III-383
Settlement reduction and stress concentration factors in rammed aggregate piers determined from full- scale group load tests A. ÇEVİK ÖZKESKİN, O. EROL and Z. ÇEKİNMEZ	III-393
Behavior of a Pile-Supported Embankment using rigid piles with variable inertia D. Dias, J. Grippon and M. Nunez	III-401
Spread foundations on rigid inclusions subjected to complex loading: Comparison of 3D numerical and simplified analytical modelling <i>D. Dias and B. Simon</i>	III-411
Improvement of soft soils using reinforced sand over stone columns N. A. H. El Mahallawy	III-423
Determination of pore size distribution to identify plastic zones around stone columns J.N.F. Gautray, J. Laue and S. M. Springman	III-433
Optimisation of Stone Column Design Using Transparent Soil and Particle Image Velocimetry (PIV) P. Kelly and J. A. Black	III-443
Ground improvement methods for establishment of the federal road B 176 on a new elevated dump in the brown coal area of MIBRAG J. F. Kirstein, C. Ahner, S. Uhlemann and P. Uhlich	III-453
Rigid inclusions in combination with fast wick drain consolidation as soil improvement method in very soft and fat northern German clay <i>J. Kirstein and N. Wittorf</i>	III-469
Critical Height of Column-Supported Embankments from Bench-Scale and Field-Scale Tests M. McGuire, J. Sloan, J. Collin and G. Filz	III-481
Load-settlement responses of columnar foundation reinforcements G. Modoni, J. Bzówka, A. Juzwa, A. Mandolini and F. Valentino	III-491
Axial Capacity of Vibro-Concrete Columns A. B. Reeb and J. G. Collin	III-503
A Study on the Use of Drilled Shafts to Reinforce Stiff Clay with Very Weak Sliding Planes R. Sancio, O. Safaqah, P. Wong, Ch. Li, P. Sabatini, B. Villet	III-509
Behaviour of a shallow foundation on soil reinforced by Mixed Module Columns® – Experimental study H. Santruckova, P. Foray, S. Grange, A. Cofone, S. Lambert, Ph. Gotteland and J. Wher	III-519

A model study on settlement behaviour of granular columns in clay under compression loading M. Tekin and M. Ufuk Ergun	III-529
Basal reinforced piled embankments in the Netherlands, Field studies and laboratory tests S.J.M. Van Eekelen and A. Bezuijen	III-539
Design risks of ground improvement methods including rigid inclusions J. Wehr, M. Topolnicki and W. Sondermann	III-551
VOLUME IV	
Session 6 – SOIL REINFORCEMENT IN FILL AND IN CUT	
15 years of experience with geotextile encased granular columns as foundation system D. Alexiew, M. Raithel, V. Küster and O. Detert	IV-3
Modelling and analysis of the pullout behaviour of Granular Pile Anchor in expansive soils A. N. Aljorany	IV-21
Bearing Capacity of Foundations Reinforced with Micropiles J. Bolouri Bazaz and H. Jalilan	IV-29
Numerical Analysis of walls constituted by fine soil reinforced with Geosynthetics D.M. Carlos, M. Pinho-Lopes and M.L. Lopes	IV-41
The undrained mechanical behaviour of a fibre-reinforced heavily over-consolidated clay <i>A. Ekinci and P.M.V. Ferreira</i>	IV-53
A simple expression of the shear strength of anisotropic fibre-reinforced soils <i>A. Flora and S. Lirer</i>	IV-63
Comparison of the performance of rectangular footings on cohesionless soils reinforced with geogrid and geotextile C. Gel, S. Oguzhan Akbas and O. Anil	IV-75
Drilled shafts for slope stabilization in expansive soils Ramanuja Chari Kannan	IV-85
Soil Reinforcement Vegetation Effect An analysis applied to the Earth moving volume of California High Speed Railway System L. Fort López-Tello and C. Fort Santa-María	IV-95
Realization of a railway enlargement in unstable excavations alongside the existing line at Dilbeek (Belgium) W. Maekelberg, J. Verstraelen and E. De Clercq	IV-107
Performance of multi-anchor walls under cyclic transient flooding Y. Miyata, R. J. Bathurst, T. Konami and K. Dobashi	IV-123
Laboratory study of displacements in a geogrid reinforced soil model under lateral earth pressures L. Ruiz-Tagle and F. Villalobos	IV-133
Case studies on application of sandwich connection design for shored reinforced earth walls J. E. Sankey and S. Rafalko	IV-141
Study of shored mse walls (smse) in high earthquake K Truong, J. Sankey and J. Sullivan	IV-151

Ice-Soil Composites Created by Method of Cryotropic Gel Formation: A preliminary report of direct shear and permeability tests N. Vasiliev, A. Ivanov, V. Sokurov, I. Shatalina and K. Vasilyev	IV-161
Realisation of integrated steep landscape slopes within existing railway embankments J. Verstraelen, C. Lejeune and E. De Clercq	IV-169
Session 7 - BIOGROUT and other GROUTING METHODS	
Numerical Studies on the Design of Compaction Grouting A. Anthogalidis, U. Arslan and O. Reul	IV-183
Grand Carré de Jaude: an exceptional building site of soil treatement by jet-grouting in the middle of a volcano P. Berthelot, Fr. Durand, O. Madec and A. Reynaud	IV-193
A large diameter jet grouting method for arrival of shield tunnelling machine S. H. Cheng, R. K. N. Wong and H. J. Liao	IV-205
Prediction of jet grouting efficiency and columns average diameter P. Croce, A. Flora, S. Lirer and G. Modoni	IV-215
Offshore Jet Grouting - A Case Study T. Durgunoglu, F. Kulac, S. Ikiz, O. Sevim and O. Akcakal	IV-225
Construction of the Bellinzona Portal Ceneri Base Tunnel, AlpTransit Gottard Tunnel R. D. Essler and Fr. M. Rossi	IV-235
Modelling of Jet Grouting and its interactions with surrounding soils J. M. Gesto, A. Gens and M. Arroyo	IV-247
Laboratory investigations on groutability of the alluvial used in ground improvement for construction metro tunnels M. Gharouni Nik, M. Esmaeili, and H. Hosseinpour	IV-257
The design and execution of Settlement Mitigation Measures for Bridge 404, North South Metro Project, Amsterdam <i>F.J. Kaalberg, R.D.Essler and R. Kleinlugtenbelt</i>	IV-267
Jet grouting foundation under the overpass of the A27 in the polder construction sealed with a foil at Amelisweerd O.S. Langhorst	IV-281
Injections of microfine cement grouts into sand columns for penetrability and effectiveness evaluation I.N. Markou, D.N. Christodoulou and A.I. Droudakis	IV-291
Ground Improvement Solutions for the new Cruise Terminal in Lisbon <i>A. Pinto, R. Tomásio and J. Ravasco</i>	IV-303
Analysis of soil solidification with the help of "jet grouting" method when constructing a municipal collector A.B. Ponomaryov, A.L. Novodzinsky and A.V. Zakharov	IV-311
Application of a sensitivity analysis procedure to interpret uniaxial compressive strength prediction of jet grouting laboratory formulations performed by SVM model <i>J. Tinoco, A. Gomes Correia and P. Cortez</i>	IV-317
Innovative monitoring tools for on line monitoring of excavations. A monitoring test site	IV-327

Preservation of Panorama Mesdag, The Hague A.E.C. van der Stoel and M. de Koning	IV-339
Groutability of clean sand using sodium pyrophosphate modified bentonite suspensions <i>J. Yoon, C. El Mohtar</i>	IV-349
OTHER	
Ground freezing of diaphragm wall joints in Amsterdam J.K. Haasnoot and D.G. Goeman	IV-361
SHRP 2 R02: Geotechnical Solutions for Transportation Infrastructure: A Web-Based Toolkit V. R. Schaefer, R. R. Berg and S. Caleb Douglas	IV-367