Conference on Intersociety Energy Conversion Engineering 1970

(ENERGY 70)

Las Vegas, Nevada, USA 21 – 25 September 1970

Volume 1 of 2

ISBN: 978-1-62993-372-6

Printed from e-media with permission by:

Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571

Some format issues inherent in the e-media version may also appear in this print version.

Copyright© (1970) by the American Nuclear Society All rights reserved.

Printed by Curran Associates, Inc. (2014)

For permission requests, please contact the American Nuclear Society at the address below.

American Nuclear Society 555 North Kensington Avenue LaGrange Park, Illinois 60526

Phone: (800) 323-3044 (708) 352-6611 Fax: (708) 352-0499

www.ans.org

Additional copies of this publication are available from:

Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571 USA Phone: 845-758-0400 Fax: 845-758-2634 Email: curran@proceedings.com Web: www.proceedings.com

TABLE OF CONTENTS

PROCEEDINGS / ENERGY 70 / VOLUME 1

SECTION 1-FUSION TECHNOLOGY

MIRROR REACTOR FEASIBILITY COMPARISON WITH TOKAMAK REACTOR/I.N. Golovin/Kurchatov Institute of Atomic Energy/U.S.S.R.	1-1 1-8	STRUCTURAL EFFECTS OF NIOBIUM ION BOMBARDMENT ON NIOBIUM FOILS - A PROGRESS REPORT/P.B. Mohr/B. Myers/W. Brunner/ Lawrence Radiation Laboratory/University of California.	1-72
IGNITION OF TOROIDAL FUSION REACTORS/ R.G. Milis/Plasma Physics Laboratory/ Princeton University.	1-0	of California. HIGH VOLTAGE TEST OF A LARGE CRYOGENIC COIL FOR MAGNETIC ENERGY STORAGE SYSTEM/	1-77
ECONOMIC CONSIDERATIONS AND MAGNETIC ENERGY STORAGE FOR HIGH-E, PULSED REACTORS/ F.L. Ribe/Los Alamos Scientific Laboratory/	1-13	E.R. Lady/D.L. Call/Los Alamos Scientific Laboratory/University of California.	1 00
University of California DIRECT CONVERSION OF FUSION ENERGY TO ELECTRICITY/R.F. Post/Lawrence Radiation Laboratory/University of California.	1-19	MAGNETS FOR OPEN-ENDED FUSION REACTORS/ R.W. Moir/C.E. Taylor/Lawrence Radiation Laboratory/University of California.	1-80
A REVIEW OF THE ORNL FUSION FEASIBILITY STUDIES/D. Steiner/Oak Ridge National	1-29	STABILITY IN SUPERCONDUCTING MAGNETS/ C.D. Henning/Lawrence Radiation Laboratory/ University of California.	1-90
Laboratory ASTRON PLASMA PARAMETERS CONFINED IN THE CLOSED MAGNETIC WELL OF A PROTON E-LAYER/	1-36	THERMONUCLEAR REACTORS AND ELECTRIC POWER GENERATION/A SURVEY/B. Myers/Lawrence Radiation Laboratory/University of California	1-95
N.C. Christofilos/Lawrence Radiation Laboratory/University of California. SOME ENGINEERING ASPECTS OF AN ASTRON	1-44	ULTRA-HIGH-VACUUM TECHNIQUES FOR CONTROLLED FUSION RESEARCH/T.H. Batzer/Lawrence Radia- tion Laboratory/University of California.	1-104
FUSION POWER REACTOR SYSTEM/J.D. Lee/ R.W. Werner/ B. Myers/P.B. Mohr/G.A. Carlson/ N.C. Christofilos/Lawrence Radiation Laboratory/ University of California.		SOME ECONOMIC ASPECTS OF POWER CONVERSION FOR FUSION REACTORS/P.B. Mohr/Lawrence Radiation Laboratory/University of California	1-109
TRITIUM RECOVERY IN FUSION POWER REACTORS/ E.F. Johnson/Princeton University	1-50	SECTION 2-ADVANCED CONCEPTS	
HEAT PIPES FOR RECOVERY OF TRITIUM IN THERMONUCLEAR REACTOR BLANKETS/R.W. Werner/ Lawrence Radiation Laboratory/University of California.	1-53	A SURVEY AND COMPARISON OF THE SUPER- CRITICAL AND DISSOCIATING GAS POWER CYCLES/ S. Luchter/Mechanical Technology Incorporated.	2-1
SOME OBSERVATIONS ON THE RADIOLOGICAL ASPECTS OF FUSION/J.D. Lee/Lawrence Radiation Laboratory/University of	1-58	ELECTROKINETIC POWER GENERATION/D. Burgreen/ D. Hildreth/Polytechnic Institute of Brooklyn.	2-6
California. SOME NOTES ON FUTURE INDUCTIVE MPD	1-61	EXPERIMENTS IN ELECTROKINETIC POWER GENERATION/D. Burgreen/A. Notaro/R. Bilenchi/ Polytechnic Institute of Brooklyn.	2-11
CONVERTERS WITH CONTROLLED NUCLEAR FUSION/ W. Peschka/R. Henry/H. Eitel/W. Seeger Deutsche Forschungs-und Versuchsanstalt fur Luft-und Raumfahrt e. V/Germany.		ENERGY CONVERSION BY A VUILLEUMIER CYCLE ENGINE/REFRIGERATOR/G.K. Pitcher/Philips Laboratories.	2-17
GAS COOLING FOR FUSION REACTOR BLANKETS/ G. Melese -d'Hospital and G.R. Hopkins/ Gulf General Atomic Incorporated	1-65	THERMOCOMPRESSORS, SOLVAY AND VUILLEUMIER MACHINES/T.Finkeistein/Trans Computer Associates.	2-20
		MINIATURE TURBOMACHINERY CRYOGENIC REFRIGERATION SYSTEMS/A.L. Jokl/U.S. Army Mobility Equipment Research and Development Cente	2-29 er.

TECHNOLOGICAL PROBLEMS ANTICIPATED IN THE APPLICATION OF FUSION REACTORS TO SPACE PROPULSION AND POWER GENERATION/J. R. Roth/W.D. Rayle/J.J. Reinmann/Lewis	2-36	DEVELOPMENT OF A RESONANT PIEZOELECTRIC PUMP/G.J. Eilers/Stanford Research Institute.	3-31
Research Center/National Aeronautics and Space Administration.		DEVELOPMENT OF AN OXYGEN ELECTRODE FOR AN IMPLANTABLE FUEL CELL/R.J. Brodd/ A. Kozawa/V.E. Zilionis/T. Kalnoki Kis	3-37
REVIEW OF LIQUID-METAL MAGNETOHYDRODYNAMIC SPACECRAFT ENERGY CONVERSION CYCLES/F. Morse/University of Maryland.	2-44	Union Carbide Corporation/Consumer Products Division/Research Laboratory/Ohio.	
A PARAMETRIC SURVEY OF GAS CORE REACTOR- MHD POWER PLANT CONCEPTS/J.R. Williams/ J.M. Kallfelz/S.V. Shelton/Georgia Institute of Technology	2-51	DEVELOPMENT OF AN ELECTRICALLY-ACTIVATED ARTIFICIAL MUSCLE SYSTEM/J. Boyack/J. Enos/ A. LaConti/A. Fragala/General Electric Company.	3-42
ELECTROHYDRODYNAMIC (EHD) FLOWS AND SOME EFFECTS OF TURBULENCE ON THESE FLOWS/ O. Biblarz/Naval Postgraduate School.	2–58	STUDIES RELATING TO BODY IMPLANTABLE BIOLOGICAL FUEL CELLS/J.F. Henry/J.H. Fishman/Leesona Moos Laboratories	3-49
INVESTIGATION OF A LIQUID-METAL MAGNET- OHYDRODYNAMIC POWER SYSTEM/D.G. Elliot/ L.G. Hays/D.J. Cerini/D.W. Bogdanoff/Jet Propulsion Laboratory.	2-64	IMPLANTABLE THERMOELECTRIC ENERGY CON- VERSION SYSTEM WITH RADIOISOTOPE SOURCE/ F.D. Altieri/J.A. Kudrick/Hittman Associates Incorporated.	3-56
OPTIMIZATION OF A LINEAR NON-EQUILIBRIUM MHD GENERATOR/B. Zauderer/General Electric Company	2-74	THE DEVELOPMENT OF LITHIUM/SELENIUM SECONDARY CELLS AND BATTERIES FOR IMPLANTATION/H. Shimotake/A.A. Chilenskas/R.K. Steunenberg/E.J. Cairns/ Argonne National Laboratory.	3-61
DESIGN AND TESTING OF ALTERNATORS WITH SUPER CONDUCTING FIELD WINDINGS/C.J. Heise/ J.H. Ferrick/U.S. Army Mobility Equipment Research and Development Center/J. Teno/ A.M. Hatch/Avco Everett Research Laboratory.	2-81	BIOMEDICAL ENERGY '70/Lowell T. Harmision/ National Heart and Lung Institute. SECTION 4-BRAYTON CYCLE	3-67
COMPONENT DEVELOPMENTS FOR MINATURE TURBOMACHINERY CRYOGENIC REFRIGERATORS/ D.B. Colyer/General Electric Company.	2-89	REVIEW OF THE NASA BRAYTON SYSTEM TECHNOLOGY PROGRAM/H. Rochen/U.S. Office of Advanced Research and Technology.	4-1
NEW CONCEPTS IN MECHANICAL ENERGY STORAGE/ D.W. Rabenhorst/Johns Hopkins University.	2-95	PERFORMANCE OF THE ELECTRICALLY-HEATED 2 TO 15 kWe BRAYTON POWER SYSTEM/J.L. Klann/ R.W. Vernon/D.B. Fenn/H.B. Block/Lewis	4-6
PERFORMANCE OF AN AUXILLARY POWER UNIT ON ANHYDROUS HYDRAZINE/M.W. Reck/Sundstrand Aviation.	2-100	Research Center/National Aeronautics and Space Administration. REQUIREMENTS, DESIGN, AND PERFORMANCE OF A	4-10
THE ELECTRIC HEAT PUMP/R.A. Tynes/Nevada Power Company.	2-104	CONTROL SYSTEM FOR A BRAYTON POWER SYSTEM/ R.L. Thomas/R.S. Bilski/R.A. Wolf/Lewis Research Center/National Aeronautics and	4-10
A TIME-OPTIMAL RESPONSE INVERTER/M.A. Geyer/A. Kernick/Westinghouse Electric Corporation.	2-108	Space Administration. EXPERIMENTAL PERFORMANCE CHARACTERISTICS OF THREE IDENTICAL BRAYTON ROTATING UNITS/	4-18
HIGH VOLTAGE GENERATION WITH A BETA/ ELECTROGENERATOR CELL/C.A. Low/Lewis Research Center/National Aeronautics and Space Administration.	2-113	D.G. Beremand/D. Namkoong/R.Y. Wong/Lewis Research Center/National Aeronautics and Space Administration.	
SECTION 3-BIO-MEDICAL		DESIGN DESCRIPTION AND PERFORMANCE TEST RESULTS FROM TWO IDENTICAL BRAYTON HEAT EXCHANCER UNITS/G.N. Kaykaty/Lewis Research	4–27
IMPLANTABLE SYSTEMS USING METALLIC THERMOELECTRICS/T.F. Hursen/Nuclear Materials Equipment Corporation.	3-1	Center/National Aeronautics and Space Administration.	
DEVELOPMENT SUMMARY OF AN IMPLANTABLE VAPOR CYCLE CIRCULATORY ASSIST SYSTEM/ F.N. Huffman/W.J. Bornhorst/Thermo Electron Corporation/L.T. Harmison/ National Heart and Lung Institute	3-6	DESCRIPTION AND PERFORMANCE OF THE ELECT- RICAL SUBSYSTEM FOR A 2 TO 15 kWe BRAYTON POWER SYSTEM/P.A. Thollot/R.C. Bainbridge/ James Nestor/Lewis Research Center/National Aeronautics and Space Administration.	4-34
STUDIES ON THE EFFECTS OF ADDED ENDOG- ENOUS HEAT AND ON HEAT EXCHANGER DESIGNS FOR ARTIFICIAL HEART APPLICATION/P.C.	3–15	SPIN-OFF FROM SPACE TO TERRESTRIAL AND DEEP- SEA APPLICATIONS FOR BRAYTON CYCLES/B. Sternlicht/Mechanical Technology Incorporated.	4-43
Walkup/B.D. Bingham/M.F. Gillis/Battelle Memorial Institute.		EVALUATION TESTING OF A CLOSED BRAYTON- CYCLE ELECTRICAL-POWER-CONVERSION SYSTEM/ T.E. Redding/J.M. McGee/N.C. Luksa/Manned	4-53
DEVELOPMENT OF A ROTARY ELECTRO-HYDRAULIC ENERGY CONVERTER FOR ARTIFICIAL HEART APPLICATIONS/S.H. Johnson/P.M. Newgard/ Stanford Research Institute.	3–20	Spacecraft Center/National Aeronautics and Space Administration. A POWER AND LOAD PRIORITY CONTROL CONCEPT	4-58
Stanford Research Institute. DEVELOPMENT OF A NON-RESONANT PIEZOE- LECTRIC ENERGY-CONVERSION SYSTEM FOR AN ARTIFICIAL HEART/P.C. Smiley/L.D. Walter/ Physics International Company.	3–27	AS APPLIED TO A BRAYTON CYCLE TURBO-ELECTRIC GENERATOR/E.L. Kelsey/R.N. Young/Langley Research Center/National Aeronautics and Space Administration.	

INTEGRATION OF AN ISOTOPE BRAYTON POWER SYSTEM WITH A LIFE SUPPORT SYSTEM/J.N. Deyo/ J.L. Klann/R.S. Bilski/Lewis Research Center/ National Aeronautics and Space Administration.	4-62	ENGINEERING ASPECTS OF HYDRAZINE-AIR FUEL- CELL POWER SYSTEMS/M.R. Andrew/W.J. Gress- ler/J.K. Johnson/R.T. Short/K.R. Williams/ Shell Research Ltd/England.	5-80
EXPERIMENTAL PERFORMANCE OF A 10 KW,1200 HZ BRAYTON CYCLE ALTERNATOR AND CONTROLS FOR SPACE POWER/B.D. Ingle/H.L. Wimmer/Lewis Research Center/National Aeronautics and	4–69	TRANSPORT PHENOMENA IN FUEL CELL CAVITIES/ D. Gidaspow/S.S. Sareen/A.W. Lyczkowski/ B.S. Baker/Institute of Gas Technology.	5-87
Space Administration. PERFORMANCE OF A GAS TURBINE POWER PLANT WITH WATER INJECTION FROM A WASTE-HEAT POLLEP (C. Meeles (where Understate (M. Lesson (4-76	EXPERIMENTAL EVALUATION OF THE SINGLE-CELL CONCEPT FOR A LIGHTWEIGHT RECHARGEABLE HYDROGEN-OXYGEN FUEL CELL/J.F. Stockel/ Comsat Laboratories.	5 ~95
BOILER/G. Maples/Auburn University/M.Jasper/ Mississippi State Univ./D.Maples/Louisiana State REDUCTION OF ALTERNATOR APPARENT-POWER	4-82	THE DEPENDENCE OF HYDRAZINE FUEL CELL STACK EFFICIENCY ON HYDRAZINE CONCENTRATION/ H.B. Urbach/D.E. Icenhower/R.J. Bowen/	5-101
REQUIREMENTS AND HARMONIC DISTORTION CAUSED BY PHASE-CONTROLLED PARASITIC LOADS/L.J. Gilbert /D.A.Perz/ Lewis Research Center/National Aeronautics		U.S. Naval Ship Research and Development Laboratory. PERFORMANCE STUDIES ON A RECHARGEABLE	5-105
and Space Administration. SECTION 5-ELECTROCHEMICAL		HYDROGEN - OXYGEN FUEL CELL/W.L. Hughes/ R. Ramakumar/H.J. Allison/Oklahoma State University.	
HIGH ENERGY DENSITY NICKEL-CADMIUM CELLS/ A. Charkey/M. Klein/Energy Research Corporation.	5-1	TECHNOLOGY OF PURE HYDROGEN GENERATORS USING METHANOL AND THE NEW APPLICATION PROSPECT THEY CREATE FOR HYDROGEN-AIR CELLS/M. Prigent/C. Dezael/Y. Breelle/	5-111
ELECTRICAL CHARACTERISTICS OF NICKEL-ZINC SECONDARY CELLS/S. Charlip/S. Lerner/	5-6	Institute Francais du Petrole/ France	
Gulton Industries, Incorporated		SECTION 6-ENERGY AND ENVIRONMENT	
HIGH ENERGY DENSITY LONG LIFE SECONDARY SILVER-ZINC BATTERIES/J.K. Wilson/D. Standlee/ Eagle-Picher Industries, Inc./R.H. Kinsey/ S.R. Self/Lockheed Missiles and Space Company.	5–9	ENGINEERING OF ENERGY EFFECTS WITH AN EXPANDING WORLD POPULATION/J.W. Bjerklie/ Mechanical Technology Incorporated	6-1
PERFORMANCE CAPABILITIES AND APPLICATIONS OF THE L1/N13S2 BATTERY SYSTEM/L.H. Gaines/ R. Jasinski/Tyco Laboratories.	5-15	UTILIZATION OF THERMAL EFFLUENT TO LENGTHEN THE ST. LAWRENCE SEAWAY SHIPPING SEASON/R.A. Kenyon/Rochester Institute of Technology.	6-9
NICKEL-CADMIUM BATTERY EVALUATION FOR APOLLO TELESCOPE MOUNT APPLICATION/W.W. Kirsch/ A. Shikoh /Sperry Rand Corporation	5-21	THERMOELECTRIC GENERATORS POWERED BY THERMAL WASTE FROM ELECTRIC POWER PLANTS/ M.A. Shirazi/U.S. Department of the Interior.	6-17
MERCURY ELECTROCHEMICAL COULOMETER AS A AATTERY STATE-OF-CHARGE INDICATOR/ R.R. Secunde/ A. G. Birchenough/ Lewis Research Center/National Aeronautics and Space Administration.	5-28	A MEANS OF REDUCTION OF EARTH THERMAL POLLUTION/C.A. Tsongas/E.W. Johnston/ C.A. Depew/R. Decher/A. Hertzberg/ University of Washington.	6-25
AN ELECTROCHEMICAL CELL EQUIVALENT CIRCUIT	5-33	SECTION 7-HEAT TRANSFER	
FOR STORAGE BATTERY/POWER SYSTEM CALCULAT- IONS BY DIGITAL COMPUTER/H.G. Zimmerman/ Lockheed Missiles & Space Company/R.G. Peterson/Lockheed Aircraft Corporation.		EXPERIMENTAL OPERATION OF CONSTANT TEMPERATURE HEAT PIPES/W.E. Harbaugh/ G.Y. Eastman/Radio Corporation of America	7-1
POWER SYSTEM EVALUATOR OPERATIONAL CHARAC- TERISTICS/S.D. Breeskin/McDonnell Douglas Astronautics Company.	5-40	HEAT PIPES MEET UNIQUE REQUIREMENTS IN ELECTRONIC COMPONENT COOLING/A. Basiulis/ M. Filler/Hughes Aircraft Company.	7-8
AN ENGINEERING STUDY OF FUEL CELL POWER SUPPLY FOR ELECTROTHERMAL STAGE OF THE HYGAS PROCESS/D.Y.C. Ng, H.C. Maru/H. Feld- kirchner/B.S. Baker/Institute of Gas Technology/N.P. Cochran/U. S. Department of the Interior.	5-46	VAPOR CHAMBER FIN RADIATOR STUDY FOR THE POTASSIUM RANKINE CYCLE/E.E. Gerrels/ R.E. Killen/General Electric Company/ J.P. Couch/Lewis Research Center/ National Aeronautics and Space Administration.	7-13
HIGH TEMPERATURE FUEL CELLS: COMPONENT DEVELOPMENT/SYSTEM ANALYSIS AND APPLICATION/	5-59	HEAT PIPE THERMAL CONTROL OF SPACECRAFT BATTERIES/J.V. Coggi/McDonnell Douglas Astronautics Company.	7-20
H.J. Bohme /H. Eysel/W. Fischer/H. Kleinsch- mager/F.J. Rohr/R. Steiner/Brown, Boveri & Cie.	E (E	STUDY OF FUEL CELL TERMAL CONTROL SYSTEMS FOR ADVANCED MISSIONS/R.S. Caputo/General Electric Company.	7-27
MULTIPLE RESERVE ELECTROCHEMICAL POWER SOURCE/ G. Ciprios/Esso Research and Engineering Company.	5-65	APPLICATION OF HEAT PIPES TO UNMANNED	
EFFECTS OF CARBON DIOXIDE ON TRAPPED ELECTROLYTE HYDROGEN-OXYGEN, ALKALINE FUEL CELLS/L.H. Thaller/R.E. Post/R.W. Easter/	5-72	SPACE POWER SYSTEMS/J.A. Quadrini/R.L. Bocc- hicchio/Grumman Aerospace Corporation.	7-34
Lewis Research Center/National Aeronautics and Space Administration.		A COAL COMBUSTION SYSTEM FOR MHD GENERATORS/ J.J. Zelinski/J. Teno/L.F. Westra/Avco Everett Research Laboratory.	7-41

/

AIR-COOLED CONDENSER DESIGN RELATIONS/ F.E. Romie/TRW Systems Group.	7-49	FABRICATION AND SAFETY TESTING OF SPHERICAL SUPERALLOY NUCLEAR HEAT SOURCES/A.J. Parker/ Hittman Associates Incorporated/Cdr. J.R.	
AN EXPERINMENTAL STUDY OF PRESSURE LOSS AND PHASE DISTRIBUTION FOR AIR-WATER FLOW IN A TUBE CONTAINING SWIRL GENERATORS/J.R.	7-53	Tuttle/U.S. Atomic Energy Commission. SECTION 9-MARINE	
Peterson/G.L. Converse/General Electric Company/M.U. Gutstein/Lewis Research Center/National Aeronautics and Space Administration.			
		A DIESEL ELECTRIC POWER GENERATION SYSTEM FOR LARGE SEA BUOYS/F.G. Brickson/Convair Division/General Dynamics/Cdr. K.D. Urfer/ U.S. Coast Guard.	
LOCAL FORCED CONVECTION BOILING HEAT TRANSFER OF WETTING MERCURY IN A SINGLE TUBE WITH VORTEX INSERT/E.S. Hsia/General Electric Company.	7-61	HYDRAULIC POWER IN THE OCEAN/E.J. Beck/ Naval Civil Engineering Laboratory.	
THE DESIGN OF COMPONENTS FOR AN ADVACED RANKINE CYCLE TEST FACILITY/J.A. Bond/ General Electric Company	7-66	POWER CONVERSION OF THE WESTINGHOUSE DEEP- STAR SUBMERSIBLES/L.E. Lesster/Westinghouse Electric Corporation.	
INTERNAL MEASUREMENTS OF A WATER HEAT PIPE/R.D. Fox/Atlantic Richfield Corporation/W.J. Thomson/University of		STEP III THERMOELECTRIC POWER SYSTEM/N.H. DesChamps/Sanders Nuclear Corporation/R.E. Berlin/Radio Corporation of America.	
Idaho.		SECTION 10-PHOTOVOLTAIC	
AXIAL DEPLETION OF WORKING FLUID IN A HEAT FIPE EVAPORATOR SECTION WITH INTERNAL HEAT SOURCES/W.Y. Chon/R.H. Jarvis/H.W. Stulting/ Cornell Aeronautical Laboratory.	7-77	STRUCTURAL FAILURES IN LIGHT WEIGHT SOLAR CELL ARRAYS UNDER THERMAL CYCLING/A.G. Stanley/Massachusetts Institute of Technology.	
DEVELOPMENT OF HIGH PERFORMANCE SODIUM/ NICKEL HEAT PIPES/R.A. Freggens/R.W. Longsderff/Radio Corporation of America.	7-83	SUMMARY OF EUROPEAN SOLAR CELL ACTIVITIES D.J. Curtin/Communications Satellite Corporation/T.C. Eakins/Hughes Aircraft Corporation.	
SECTION 8-ISOTOPE HEAT SOURCES		AC IMPEDANCE OF SILICON SOLAR CELLS/D.W. Zerbel/D.K. Decker/TRW Systems Group.	
AEROTHERMAL DESIGN CONSIDERATION OF A HIGH TEMPERATURE RADIOISOTOPE FUELED HEAT SOURCE/ J.E. Quinn/D.D. Knight/General Electric Company.	8-1	CONCEPT OF A HIGH VOLTAGE SOLAR ARRAY WITH INTEGRAL POWER CONDITIONING/P. Wiener/Jet Propulsion Laboratory/R. Rasmussen/General Electric Company.	
LIGHTWEIGHT, LOW BALLISTIC COEFFICIENT RADIOISOTOPE FUELED CAPSULE PROTOTYPE DEVELOPMENT PROGRAM/F.D. Postula/N.B. Elsner/M.R. Emken/Gulf General Atomic Incorporated.	8-7	DEVELOPMENT OF A DEPLOYABLE AND SELFRIGID- IZING SOLAR CELL ARRAY FOR THE MULTIKILOWATT RANCE/C. Barthel/C. La Roche/Messerschmih Bolkow-Blohm GMBH/Germany.	
OPTIMIZED ALPHA-EMITTING ISOTOPE HEATERS/ A.W. Barsell/T.H. Smith/Donald W. Douglas Laboratories.	8-12	SOLAR CELL DARK I-V CHARACTERISTICS AND THEIR APPLICATIONS/M.S. Imamura/P. Brandtzaeg/ Martin Marietta Corporation/J.L. Miller/ Marshall Space Flight Center/National Aero-	
DEVELOPMENT OF SMALL RADIOISOTOPE HEATERS/ I.H. Smith/M.W. Hulin/A.W. Barsell/Donald	8-19	nautics and Space Administration.	
W. Douglas Laboratories. AN INTEGRATED RADIATION PHYSICS COMPUTER	8-26	FACTORS AFFECTING SOLAR ARRAY DESIGN/D.C. Briggs/R.J. Grant/Philco-Ford Corporation.	
CODE SYSTEM/J.J. Steyn/NUS Corporation/D.W. Harris/Goddard Space Flight Center/National	0~20	SECTION 11-RANKINE CYCLE	
Aeronautics and Space Administration		ALKALI METAL PURIFICATION AND HANDLING FOR ADVANCED SPACE POWER SYSTEMS/R.B. Hand/	
KERNEL MODULAR POWER FOR SPACE STATION AND BASE/W.G. Ruehle/Aerojet Nuclear Systems Company.	8-30	General Electric Company. FABRICATION OF REFRACTORY ALLOY COMPONENTS	
PERFORMANCE OF COBALT-60 CAPSULES AT HEAT	8-35	FOR ADVANCED SPACE POWER SYSTEMS STUDIES/ W.R. Young/General Electric Company.	
SOURCE CONDITIONS/C.L. Angerman/C.P. Ross/ E.I. du Pont de Nemours and Company		RECENT MATERIALS COMPATIBILITY STUDIES IN REFRACTORY METAL SYSTEMS FOR SPACE	
A LARGE COBALT-60 HEAT SOURCE FOR TERR- ESTRIAL POWER CONVERSION SYSTEMS/C.K. Kim/J.W.H. Chi/Westinghouse Electric Corporation.	8-40	POWER APPLICATIONS/R.W. Harrison/E.E. Hoffman/General Electric Company/R.L. Davis/Lewis Research Center/National Aeronautics and Space Administration.	
DESIGN AND DEVELOPMENT OF THE SNAP-23A ISOTOPE POWERED TERRESTRIAL POWER GENERATION SYSTEM/A.M. Bernard/L.E. Van Bibber/Westing- house Electrical Corporation/J.L. Wharam/Minnesota Mining and Manufacturing Company.	8-46 a	TANTALUM AS A MERCURY CONTAINMENT MATERIAL IN MERCURY RANKINE-CYCLE SYSTEM ROLLERS/ H. Derow/Aeroject Nuclear Systems Company/ P.L. Stone/Lewis Research Center/National Aeronautics and Space Administration.	
RESULTS AND EVALUATIONS OF THREE YEARS OF DEVELOPMENT ON A HIGH TEMPERATURE REFRACTORY ALLOY RADIOISOTOPE FUEL CAPSULE/W.V. Botts/ P.E. McCourt/Atomics International Division/ North American Rockwell Corporation.	8-51	SNAP-8 POWER CONVERSION SYSTEM BREAD- BOARD ASSEMBLY-MATERIALS EVALUATION AFTER 8700 HOURS OPERATION/H. Derow/ Aeroject Nuclear Systems Company.	

8-54

9-1

9~5

9-10

9-19

10-1

10-7

10-15

10-19

10-31

10-38

10-46

11-1

11-7

11 - 12

11-18

11-24

STARTUP TESTING OF THE SNAP-8 POWER CONVERSION SYSTEM/H.G. Hurrell/F. Boecker/K.S. Jefferies/ Lewis Research Center/National Aeronautics and Space Administration.	11-28
DESIGN CHANGES IN SNAP-8 FOR REDUCED REACTOR OPERATING TEMPERATURES/G.M. Thur/Lewis Research Center/National Aeronautics and Space Administration.	11-35
USE OF A CAVITATING PUMP FOR CONTROL OF A POTASSIUM RANKING CYCLE SYSTEM/R.A. Gnadt/ M.M. Yarosh/Oak Ridge National Laboratory.	11-39
RANKINE-CYCLE POWER SYSTEM WITH ORGANIC FLUID AND RECIPROCATING ENGINE FOR LOW-EMISSION AUTOMOTIVE PROPULSION/D. Morgan/R. Raymond/ Thermo Electron Corporation/R. Machacek/D. Dawson/National Air Pollution Control Administration/U.S. Public Health Service.	11-45
A 6 kWe ORGANIC RANKINE POWER CONVERSION SYSTEM FOR SPACE APPLICATIONS/R.E. Niggemann/T.J. Bland/D.B. Wigmore/ Sundstrand Corporation.	11-56
ORGANIC RANKINE POWER UNIT TESTING/R.W. Barret/R. Garcia/W.M. Waters/Aerojet Nuclear Systems Company.	11-62
SNAP-8 ROTATING MACHINERY COMPONENTS - 10,000 HOUR ENDURANCE ACHIEVEMENT/J.R. Pope/Aerojet Nuclear Systems Company/ A. Stromquist/Lewis Research Center/ National Aeronautics and Space Administration.	11-67
OPERATION EXPERIMENTS WITH NAK-LUBRICATED JOURNAL AND THRUST BEARINGS FOR A NaK PUMP- MOTOR ASSEMBLY/C.S. Mah/J.R. Pope/Aerojet Nuclear Systems Company.	11-71
EXPERIMENTAL EVALUATION OF TANTALUM/ STAINLESS STEEL MERCURY BOILERS FOR THE SNAP-8 SYSTEM/E.R. Furman/Lewis Research Center/National Aeronautics and Space Administration/R.D. Brooks/ R.W. Harrison/General Electric Company.	11-74
EROSION OF A THREE-STACE POTASSIUM TURBINE/G.M. Kaplan/Lewis Research Center/National Aeronautics and Space Administration/E. Schnetzer/ General Electric Company.	11-80
BOILER FEED EM PUMP FOR A RANKINE CYCLE SPACE POWER SYSTEM/A.H. Powell/General Electric Company/J.P. Couch/Lewis Research Center/National Aeronautics and Space Administration.	11-88

Conference on Intersociety Energy Conversion Engineering 1970

(ENERGY 70)

Las Vegas, Nevada, USA 21 – 25 September 1970

Volume 2 of 2

ISBN: 978-1-62993-372-6

SECTION 12-SPACE (NANNED)

SECTION 12-SPACE (NANNELD)			
SOLAR ARRAY CONCEPT FOR A PORTABLE RETRACTABLE ORIENTED POWER SYSTEM/ J. E. Boretz/R. A. Boring/TRW Systems Group	12-1	AN ISOTOPE HEAT SOURCE INTEGRATED WITH A 7 KW g TO 25 KWg BRAYTON CYCLE SPACE POWER SUPPLY/L. Ryan/W. Graham/Avco Systems Division/G. Coombs/Garrett AiResearch/S. Bloomfield/NASA Levis Research Center	12-80
INTEGRATION OF LARGE ELECTRICAL SPACE POWER SYSTEMS/J. H. Hayden/A. Kirpich/ General Electric Company	12-10	SECTION 13-SPACE (UNMANNED)	
AN INTEGRATED SYSTEM FOR SPACE STATION POWER, LIFE SUPPORT AND PROPULSION/Deam M. Ruwe/E. F. Picciott1/Allis-Chalmers Manufacturing Company	12-15	DESIGN AND PERFORMANCE OF THE TACSAT POWER SUBSYSTEM/E. Levy, Jr./Hughes Aircraft Company SNAP-27*/ALSEP POWER SUBSYSTEM USED IN THE	13-1
A 25 KW SOLAR ARRAY/BATTERY DESIGN FOR AN EARTH ORBITING SPACE STATION/ R. D. Stevenson/McDonnell Douglas	12-18	ANDE-2/~/ALSEF FOWER SUBSISIEN USED IN THE APOLLO PROCRAM/C. Remini/Atomic Energy Commission/H. Grayson/NASA Manned Spacecraft Center	13-10
Astronautics Company West		THE EVOLUTION OF POWER SYSTEMS FOR UNMANNED INTERPLANETARY SPACECRAFT IN THE 70'8/	
TECHNOLOGY STATUS - ZrH SPACE POWER REACTOR/R. L. Detterman/	12-26	M. Swerdling/Jet Propulsion Laboratory	
L. M. Maki/R. F. Wilson/Atomics Internation/North American Rockwell Corporation/D. E. Reardon/U.S. Atomic Energy Commission		THE GERMAN SPACE POWER TECHNOLOGY PROGRAM/ H. R. Losch/Gesellschaft fur Weltraumforschung mbH Bonn/Bad Godesberg, West Germany	13-32
REACTOR-THERMOELECTRIC POWER SYSTEMS FOR NASA SPACE STATION/SPACE BASE/J. Gylfe/ R. A. Johnson/Atomics International/North American Rockwell Corporation/L. Kitterman/	12-33	POWER SYSTEM FOR A 4.1 KILOWATT SYNCHRONOUS SATELLITE/E. R. Hnatek/National Semiconductor Corporation/R. Byxbee/E. Corbett/Lockheed Missiles & Space Company	13-35
U.S. Atomic Energy Commission LOW TEMPERATURE - REACTOR BRAYTON CYCLE FOR SPACE STATION/BASE APPLICATION/J. E. McCormick/T. L. Ashe/AiResearch Garrett Corporation	12-41	UNMANNED REACTOR-THERMOELECTRIC SYSTEMS FOR APPLICATIONS IN THE 1970's/J. H. Van Osdol/ J. M. Howard/Atomics International/North American Rockwell Corporation SECTION 14-THERMIONIC	13-44
66 Kwe ZrH REACTOR-ORGANIC RANKINE POWER	12-49		
SYSTEMS FOR LARGE MANNED ORBITING SPACE SYSTEMS/T. A. Moss/R. F. Wilson/Atomics International/North American Rockwell		STATUS REPORT ON THE U.S. THERMIONIC REACTOR PROGRAM/D. S. Beard/U.S. Atomic Energy Commission	14-1
Corporation/R. E. Niggemann/Sundstrand Corporation		THE NAVY THERMIONIC PROGRAM/J. Satkowski/ R. Roberts/U.S. Navy	14-5
* A MODULAR SPACE STATION/BASE ELECTRICAL POWER SYSTEM REQUIREMENTS AND DESIGN STUDY/J. T. Eliason/W. B. Adkisson/Sperry Rand Space	12-58	THERMIONIC REACTOR SYSTEMS FOR ELECTRIC PROPULSION/J. Mondt/Jet Propulsion Laboratory	14-11
Support Division	10.60	100 kWe THERMIONIC POWER SYSTEM DESIGN/A. J. Geitzen/W.G. Homeyer/Gulf General Atomic	14-19
ESIGN CRITERIA AND CANDIDATE ELECTRICAL DWER SYSTEMS FOR A REUSABLE SPACE SHUTTLE DOSTER/D. V. Merrifield/Sperry Rand Space upport Division	12-63	NUCLEAR THERMIONIC POWER PLANTS IN THE 50-300 kWe RANGE/J.E.VanHoomissen/C.D.Sawyer/W.Z.Prickett, General Electric Company	14-27 /
SPACE SHUTTLE ORBITER POWER SYSTEM REQUIREMENTS AND DESIGN/W. Lombard/Sperry Rand Space Support Division		A DESIGN STUDY OF A 350 kWe OUT-OF-CORE NUCLEAR THERMIONIC CONVERTER SYSTEM/R.Breitwieser/ E. Lantz/NASA Lewis Research Center	14-32
PRELIMINARY DESIGN OF REACTOR POWER SYSTEMS FOR THE MANNED SPACE BASE/G. G. McKhann/J. V. Coggi/S. D. Diamond/McDonnell Douglas Company	12-71	DEVELOPMENT OF A PLUTONIUM-FUELED MINIATURE POWER SUPPLY BASED ON THERMIONIC CONVERSION/ K.A.Gasper/McDonnell Douglas Corporation	14-40

A	HE INCORE THERMIONIC REACTOR ITR: PROGRAM ND PRESENT DEVELOPMENT STATUS/F.Gross/ .Pruschek/Brown, Boveri & Cie/INTERATOM	14-45
S	ECTION 15-THERMOELECTRIC	
I	ULTI-HUNDRED WATT CONVERTER DESIGN CONSIDERA- IONS/R.J.Hemler/C.E.Kelly/V.F.Haley/ eneral Electric Company	15-1
1	HE CALCULATED LONG-TERM PERFORMANCE CHARAC- ERISTICS OF A TYPICAL SILICON-GERMANIUM RTG/ .Raag/Resalab Scientific	15-8
	HARACTERIZATION OF RTG PERFORMANCE IN BOTH IR AND VACUUM/S.S.Luebbers/Resalab Scientific	15-11
ī	TATUS OF SILICON GERMANIUM AIR-VAC CONVERTER EVELOPMENT/R.E.Berlin/R.S.Nelson/RCA lectronic Components	15-18
T F	ETAILED MATHEMATICAL MODELS OF A RADIOISOTOPE HERMOELECTRIC GENERATOR/F.deWinter/Jet 'ropulsion Laboratory/V.Raag/Resalab cientific	15-21
1	PPLICATION OF ISOTEC THERMOELECTRIC TECHNOLOGY G.B.Bradshaw/E.J.Steeger/Gulf General Atomic ncorporated	15-26
	REPORT ON THE PROPERTIES AND PERFORMANCE F TAGS/J.W.McGrew/Teledyne Isotopes	15-31
(E	APORIZATION CHARACTERISTICS OF (GeTe) AgSbTe ₂) ₁₅ (TAGS) ALLOYS/N.B.Elemer/.85 C.G.Elsmer/E.G.Selleck/H.G.Staley/Gulf emeral Atomic Incorporated	15-34
N E I	ROCEDURE FOR THE PERFORMANCE OF ACCURATE LEASUREMENTS OF THE SEEBECK COEFFICIENT AND LECTRICAL RESISTIVITY OF SEMICONDUCTORS/ .E.Eggers/Battelle Memorial Institute/ I.F.Fry/NASA Goddard Space Flight Center	15-41
1	PPLICATION OF MULTI-LAYER VACUUM INSULATIONS N HIGH TEMPERATURE SYSTEMS/F.Notaro/ .E.Grumert/Union Carbide Corporation	15-51
T (THE DEVELOPMENT OF SIGE-PbTe SEGMENTED THERMORLECTRIC COUPLES INVOLVING PRESSURE DONTACTED JUNCTIONS/P.E.Eggers/J.J.Mueller/ attelle Memorial Institute/J.F.Fry/ ASA-Goddard Space Flight Center	15-57
-	NYBRID THERMOCOUPLE DEVELOPMENT PROGRAM A STATUS REPORT/W.J.Bifano/NASA-Lewis Research Center/L.P.Garvey/R.A.Straight/Radio Corporation of America	15-63
	ESIGN OF SEGMENTED COUPLE TESTING MODULES/ S.Mermelstein/Tyco Laboratories, Inc.	15-71
	ERFORMANCE OF THE THERMOELECTRIC CONVERTER OR THE ZIRCONIUM HYDRIDE REACTOR THERMO- LECTRIC SPACE POWER SUPPLY/J.G.Asquith/ atomics International/North American Rockwell/ i.Kenney/C.M.Rose/Westinghouse Electric Corporation/R.A.DuVal/U.S.Atomic Energy Commission	15-76
	THE SNAP-19 RADIOISOTOPE THERMOELECTRIC ENERATOR EXPERIMENT - FLIGHT PERFORMANCE OF THE NIMBUS III OBSERVATORY/A.W.Fihelly/NASA- Coddard Space Flight Center/C.F.Baxter/U.S. tomic Energy Commission/W.C.Lyon/Hittman ssociated, Inc.	15-84
	HE LONG TERM PERFORMANCE CHARACTERISTICS OF \ SNAP-19 CENERATOR OPERATING UNDER VACUUM DNDITIONS/P.Rouklove/V.Truscello/Jet Propulsion .aboratory	15-91 1
5	RELIMINARY TESTING OF A SNAP-19 TAGS RTG IN UUPPORT OF THE PIONEER F AND G MISSIONS/ .Stapfer/Jet Propulsion Laboratory	15-98

SNAP-29 POWER SYSTEM/AGENA INTEGRATION STUDY/R.V.Elms/Lockheed Missiles & Space Company	15-103
TRANSIT RTG - A STATUS REPORT/H.Lurie/ S.Rocklin/TRW Systems Group	15-111
POWER SOURCE CONSIDERATIONS FOR GRAND TOUR MISSIONS/O.S.Merrill/W.B.Weber/Jet Propulsion Laboratory/W.D.Leonard/Resalab Scientific	15-117
MID-TEMPERATURE MODULES FOR THERMOGENERATORS/ V.Dmitrenko/N.V.Kolomoetz/N.S.Lidorenko/State Committee of Science and Technique/U.S.S.R.	15-126
SECTION 16-TRANSPORTATION	
DUAL FUEL PROJECT/E.T.Driver/National Highway Safety Bureau	16-1
THE PHILIPS STIRLING ENGINE AS A PROPULSION ENGINE/R.J.Meijer/Philips Research Laborato- ries/Netherlands	16-8
STEAM POWER PLANT FOR THE CALIFORNIA STEAM BUS DEMONSTRATION PROGRAM/W.M.Brobeck/ W.M.Brobeck & Associates	16-18
LEAD ACID BATTERIES FOR HYBRID FOWER PLANTS/ R.D.Thornton/W.W.Carson/Massachusetts Institute of Technology	16-27
CLEAN AIR CAR RACE: AN ASSESSMENT OF ACHIEVEMENTS	16-30
SECTION 17-UTILITY (COMPACT)	
DESIGN AND DEVELOPMENT OF AN ADVANCED DEVELOP- MENT MODEL 10 KW TURBO-ALTERNATOR/G.E.Burchette/ U.S.Army Mobility Equipment R & D Center/ M.Bull/International Harvester Company	17-1
A CONCEPTUAL DESIGN OF A NUCLEAR POWER PLANT FOR UNDERGROUND APPLICATION/C.D.Smith/U.S.Army/ Chief of Engineers/M.M.Greenberg/U.S.Army Engineer Reactors Group	17-5
THERMIONIC POWER SYSTEMS FOR MILITARY FIELD USE/R.E.Engdahl/A.J.Cassano/J.R.Bedell/Energy Research Corporation	17-11
OPEN CYCLE HYDROCARBON-AIR FUEL CELL POWER PLANT/E.A.Gillis/U.S.Army Mobility Equipment R&D Center	17-16
THE SMOG FREE ENGINE OF TOMORROW-TODAY/E.B. Zwick/Paxve, Incorporated	17-19
SECTION 18-UTILITY (CENTRAL)	
ENERGY AND THE ENVIRONMENT IN ELECTRIC POWER GENERATION/A.Gerber/National Economic Research Associates, Incorporated	18-1
NUCLEAR ENERGY'S TOMORROW/M.Shaw/U.S.Atomic Energy Commission	18-5
MHD FOWER GENERATION FOR CENTRAL STATION APPLICATION/A.R.Kantrowitz/R.J.Rosa/Avco Corporation	18-8
COMBINATION USES OF COAL/N.P.Cochran/U.S. Department of Interior	18-16
HIGH TEMPERATURE POWER GENERATION/J.F.Louis/ Massachusetts Institute of Technology	18-18
COAL AND TOMORROW'S STEAM PLANTS/J.E.Watson	18-24
CENTRAL STATION RELIABILITY NOW AND IN THE FUTURE/J.Tillinghast/American Electric Power Service Corporation	18-27
OPTIMIZATION MATHEMATICAL QUESTIONS OF A COM- BINED POWER PLANT/V.Dmitrenko/I.Rubashov/ State Committee of Science and Technique/U.S.S.R.	18-34

SECTION 19-CRITIQUES AND SUMMARIES

REQUIREMENTS FOR THE 70'S/H.Hagler/Hittman Associates	19-1
BIOMEDICAL SYSTEMS/L.T.Harmison/National Institutes of Health	19-1
DIRECT ENERGY CONVERSION EDUCATION/ C.E.Backus/Arizona State University	19-3
TRANSPORTATION SYSTEMS/R.L.Strombotne/_ U.S.Department of Transportation	19-3
MANNED SPACE POWER SYSTEMS/F.Scholman/ NASA/H.Dieckamp/Atomics International/ North American Rockwell	19-4
UNMANNED SPACE POWER SYSTEMS/R.H.Briceland Institute for Defense Analyses	19-5
MARINE SYSTEMS/M.D.Starr/U.S.Naval Facilities Engineering Command/E.C.Krueger/Sundstrand Aviation Corporation	19-6
CENTRAL STATION APPLICATIONS/P.Dragoumis/ Allis Chalmers	19-7
ENGINEERING PROBLEMS OF EXPANDING SOCIETY/G.C.Szego/InterTechnology Corporation	19-8
FUSION/R.Werner/Lawrence Radiation Laboratory/University of California	19-9
ISOTOPE HEAT SOURCES/D.G.Harvey/ Sanders Nuclear Corporation	19-9
THERMOELECTRICS/S.V.Manson/NASA/L.Topper/ U.S.Atomic Energy Commission	19-10
THERMIONIC POWER CONVERSION/R.Mather/NASA	19-11
ADVANCED CONCEPTS/J.Caraceni/Grumman Aerospace/L.Hayes/Jet Propulsion Laboratory/ R.Spies/North American Rockwell	19-12
RANKINE CYCLE/W.F.Banks/Aerojet General Corporation	19-13
BRAYTON CYCLE/A.Pietsch/AiResearch	19-13
HEAT TRANSFER/R.E.Niggemann/Sundstrand Aviation/W.E.Harbaugh/Radio Corporation of America	19-14
ELECTROCHEMICAL POWER/B.Baker/Energy Research Corporation	19-15
PHOTOVOLTAIC TECHNOLOGY/D.L.Reynard/ Philco-Ford Corporation	19-15