2012 PHYSICS EDUCATION RESEARCH CONFERENCE

Philadelphia, PA, USA 1-2 August 2012

EDITORS

Paula V. Engelhardt Tennessee Technological University, Tennessee, USA

Alice D. Churukian University of North Carolina-Chapel Hill, North Carolina, USA

> N. Sanjay Rebello Kansas State University, Kansas, USA

All papers have been peer reviewed.

SPONSORING ORGANIZATION American Association of Physics Teachers

Melville, New York, 2013 AIP | CONFERENCE PROCEEDINGS ■ 1513

Editors

Paula V. Engelhardt Tennessee Technological University Department of Physics P.O. Box 5051 Cookeville, TN 38505 USA

E-mail: engelhar@tntech.edu

Alice D. Churukian University of North Carolina Department of Physics & Astronomy Phillips Hall, CB #3255 Chapel Hill, NC 27599 USA

E-mail: adchurukian@unc.edu

N. Sanjay Rebello Kansas State University Department of Physics 116 Cardwell Hall Manhattan, KS 66506 USA

E-mail: srebello@phys.ksu.edu

Authorization to photocopy items for internal or personal use, beyond the free copying permitted under the 1978 U.S. Copyright Law (see statement below), is granted by the American Institute of Physics for users registered with the Copyright Clearance Center (CCC) Transactional Reporting Service, provided that the base fee of \$30.00 per copy is paid directly to CCC, 222 Rosewood Drive, Danvers, MA 01923, USA: http://www.copyright.com. For those organizations that have been granted a photocopy license by CCC, a separate system of payment has been arranged. The fee code for users of the Transactional Reporting Services is: 978-0-7354-1134-0/13/\$30.00

© 2013 American Institute of Physics

No claim is made to original U.S. Government works.

Permission is granted to quote from the AIP Conference Proceedings with the customary acknowledgment of the source. Republication of an article or portions thereof (e.g., extensive excerpts, figures, tables, etc.) in original form or in translation, as well as other types of reuse (e.g., in course packs) require formal permission from AIP and may be subject to fees. As a courtesy, the author of the original proceedings article should be informed of any request for republication/reuse. Permission may be obtained online using RightsLink. Locate the article online at http://proceedings.aip.org, then simply click on the RightsLink icon/"Permissions/Reprints" link found in the article abstract. You may also address requests to: AIP Office of Rights and Permissions, Suite 1NO1, 2 Huntington Quadrangle, Melville, NY 11747-4502, USA; Fax: 516-576-2450; Tel.: 516-576-2268; E-mail: rights@aip.org.

ISBN 978-0-7354-1134-0 (Original Print) ISSN 0094-243X Printed in the United States of America

AIP Conference Proceedings, Volume 1513 2012 Physics Education Research Conference

Table of Contents

Preface: 2012 Physics Education Research Conference N. Sanjay Rebello	1
Conference Overview	3
INVITED PAPERS (NOT PEER REVIEWED)	

Building classroom and organizational structure around positive cultural values Badr F. Albanna, Joel C. Corbo, Dimitri R. Dounas-Frazer, Angela Little, and Anna M. Zaniewski	7
Critical classroom structures for empowering students to participate in science discourse Shelly N. Belleau and Valerie K. Otero	11
A framework for assessing learning assistants' reflective writing assignments Geraldine L. Cochran, David T. Brookes, and Laird H. Kramer	15
Supporting and sustaining the holistic development of students into practicing physicists Elizabeth Gire, Mary Bridget Kustusch, and Corinne Manogue	19
Design guidelines for adapting scientific research articles: An example from an introductory level, interdisciplinary program on soft matter Elon Langbeheim, Samuel A. Safran, and Edit Yerushalmi	23
Establishing reliability and validity: An ongoing process Rebecca Lindell and Lin Ding	27
Initial replication results of learning assistants in university physics Paul M. Miller, Jeffrey S. Carver, Aniketa Shinde, Betsy Ratcliff, and Ashley N. Murphy	30
Cultural toolkits in the urban physics learning community Mel S. Sabella and Andrea Gay Van Duzor	34
Instructional changes based on cogenerative physics reform Natan Samuels, Eric Brewe, and Laird Kramer	38
Student predictions of functional but incomplete example programs in introductory calculus- based physics Shawn Weatherford and Ruth Chabay	42

PEER REVIEWED PAPERS

Understanding student computational thinking with computational modeling John M. Aiken, Marcos D. Caballero, Scott S. Douglas, John B. Burk, Erin M. Scanlon, Brian D. Thoms, and Michael F. Schatz	46
Using scientists' notebooks to foster authentic scientific practices Leslie J. Atkins and Irene Y. Salter	50
Research-based course materials and assessments for upper-division electrodynamics (E&M II) Charles Baily, Michael Dubson, and Steven J. Pollock	54
Students' difficulties in interpreting the torque vector in a physical situation Pablo Barniol, Genaro Zavala, and Carlos Hinojosa	58
Introduction of studio physics teaching in Panama Azael Barrera-Garrido	62
The graduate research field choice of women in academic physics and astronomy: A pilot study Ramón S. Barthelemy, Megan L. Grunert, and Charles R. Henderson	66
Improving physics instruction by analyzing video games Ian D. Beatty	70
Multidimensional student skills with collaborative filtering Yoav Bergner, Saif Rayyan, Daniel Seaton, and David E. Pritchard	74
Self-efficacy in introductory physics in students at single-sex and coeducational colleges Jennifer Blue, Mary Elizabeth Mills, and Ellen Yezierski	78
Evaluation of a multiple goal revision of a physics laboratory Scott W. Bonham, Doug L. Harper, and Lance Pauley	82
Student interactions leading to learning and transfer: A participationist perspective David T. Brookes, Alexander Moncion, and Yuhfen Lin	86
ACER: A framework on the use of mathematics in upper-division physics Marcos D. Caballero, Bethany R. Wilcox, Rachel E. Pepper, and Steven J. Pollock	90
Evidence of embodied cognition via speech and gesture complementarity Evan A. Chase and Michael C. Wittmann	94
Alignment of TAs' beliefs with practice and student perception Jacquelyn J. Chini and Ahlam Al-Rawi	98
Comparing student conceptual understanding of thermodynamics in physics and engineering Jessica W. Clark, John R. Thompson, and Donald B. Mountcastle	102

Understanding the learning assistant experience with physics identity Eleanor W. Close, Hunter G. Close, and David Donnelly	106
Nesting in graphical representations in physics Hunter G. Close, Eleanor W. Close, and David Donnelly	110
Conserving energy in physics and society: Creating an integrated model of energy and the second law of thermodynamics Abigail R. Daane, Stamatis Vokos, and Rachel E. Scherr	114
A comparative study of middle school and high school students' views about physics and learning physics Lin Ding	118
Students' interdisciplinary reasoning about "high-energy bonds" and ATP Benjamin W. Dreyfus, Benjamin D. Geller, Vashti Sawtelle, Julia Svoboda, Chandra Turpen, and Edward F. Redish	122
Building knowledge for teaching: Three cases of physics graduate students Brian W. Frank and Natasha Speer	126
Diversity of faculty practice in workshop classrooms Scott V. Franklin and Tricia Chapman	130
How an active-learning class influences physics self-efficacy in pre-service teachers Jon D. H. Gaffney, Amy L. Housley Gaffney, Ellen L. Usher, and Natasha A. Mamaril	134
The effect of research-based instruction in introductory physics on a common cognitive bias Ross K. Galloway, Simon P. Bates, Jonathan Parker, and Evguenia Usoskina	138
Contrasting students' understanding of electric field and electric force Alejandro Garza and Genaro Zavala	142
Students' reasoning about interdisciplinarity Benjamin D. Geller, Benjamin W. Dreyfus, Vashti Sawtelle, Julia Svoboda, Chandra Turpen, and Edward F. Redish	146
Arrows as anchors: Conceptual blending and student use of electric field vector arrows Elizabeth Gire and Edward Price	150
Exploring student difficulties with pressure in a fluid Matthew Goszewski, Adam Moyer, Zachary Bazan, and D. J. Wagner	154
Applying cognitive developmental psychology to middle school physics learning: The rule assessment method Nicole R. Hallinen, Min Chi, Doris B. Chin, Joe Prempeh, Kristen P. Blair, and Daniel L. Schwartz	158
Students talk about energy in project-based inquiry science Benedikt W. Harrer, Virginia J. Flood, and Michael C. Wittmann	162

Investigating student ability to apply basic electrostatics concepts to conductors Ryan L. C. Hazelton, MacKenzie R. Stetzer, Paula R. L. Heron, and Peter S. Shaffer	166
Department-level change: Using social network analysis to map the hidden structure of academic departments Charles Henderson and Kathleen Quardokus	170
Student performance on conceptual questions: Does instruction matter? Paula R. L. Heron	174
Impacting university physics students through participation in informal science Kathleen Hinko and Noah D. Finkelstein	178
Pedagogy and/or technology: Making difference in improving students' problem solving skills Zdeslav Hrepic, Katherine Lodder, and Kimberly A. Shaw	182
Characterizing student use of differential resources in physics integration problems Dehui Hu and N. Sanjay Rebello	186
A conceptual physics class where students found meaning in calculations Michael M. Hull and Andrew Elby	190
Evidence of epistemological framing in survey question misinterpretation Paul Hutchison and Andrew Elby	194
Upper-level physics students' conceptions of understanding Paul W. Irving and Eleanor C. Sayre	198
DC circuits: Context dependence of student responses Ignatius John and Saalih Allie	202
Comparing physics and math problems Dyan L. Jones and Reni B. Roseman	206
Student expectations in a group learning activity on harmonic motion Adam Kaczynski and Michael C. Wittmann	210
Comparing the use of multimedia animations and written solutions in facilitating problem solving Neelam Khan, Dong-Hai Nguyen, Zhongzhou Chen, and N. Sanjay Rebello	214
Successful propagation of educational innovations: Viewpoints from principal investigators and program Raina Khatri, Charles Henderson, Renee Cole, and Jeff Froyd	218
Narratives of the double bind: Intersectionality in life stories of women of color in physics, astrophysics and astronomy	210
Lily T. Ko, Rachel R. Kachchaf, Maria Ong, and Apriel K. Hodari	222
Examining inconsistencies in student reasoning approaches Mila Kryjevskaia and MacKenzie R. Stetzer	226

Considering factors beyond transfer of conceptual knowledge Eric Kuo, Danielle Champney, and Angela Little	230
An expert path through a thermo maze Mary Bridget Kustusch, David Roundy, Tevian Dray, and Corinne Manogue	234
Changing classroom designs: Easy; Changing instructors' pedagogies: Not so easy Nathaniel Lasry, Elizabeth Charles, Chris Whittaker, Helena Dedic, and Steven Rosenfield	238
Physics learning identity of a successful student: A plot twist Sissi L. Li and Dedra Demaree	242
Identity and belonging: Are you a physicist (chemist)? Sissi L. Li and Michael E. Loverude	246
Student difficulties in translating between mathematical and graphical representations in introductory physics	
Shih-Yin Lin, Alexandru Maries, and Chandralekha Singh	250
Using collaborative group exams to investigate students' ability to learn Yuhfen Lin and David T. Brookes	254
Assessing students' metacognitive calibration with knowledge surveys Beth A. Lindsey and Megan Nagel	258
Physics career intentions: The effect of physics identity, math identity, and gender Robynne M. Lock, Zahra Hazari, and Geoff Potvin	262
They still remember what I never taught them: Student understanding of entropy Michael E. Loverude	266
Welcome to America, welcome to college: Comparing the effects of immigrant generation and college generation on physical science and engineering career Florin Lung, Geoff Potvin, Gerhard Sonnert, and Philip M. Sadler	270
From Eurg, Geon Fotvin, Genard Somert, and Finip M. Sadier	270
Do perceptually salient elements in physics problems influence students' eye movements and answer choices?	
Adrian Madsen, Amy Rouinfar, Adam Larson, Lester Loschky, and N. Sanjay Rebello	274
Regression analysis exploring teacher impact on student FCI post scores Jonathan V. Mahadeo, Seth R. Manthey, and Eric Brewe	278
To use or not to use diagrams: The effect of drawing a diagram in solving introductory physics	
problems Alexandru Maries and Chandralekha Singh	282
Assessing students' epistemic logic using clause topics during problem comparison Fran Mateycik and Kendra Sheaffer	286

Using student notecards as an epistemological lens Timothy L. McCaskey	290
The experience sampling method: Investigating students' affective experience Jayson M. Nissen, MacKenzie R. Stetzer, and Jonathan T. Shemwell	294
A study of graduate students in an astrophysics bridging year: Identifying contradictions in a complex system Victoria Nwosu, Saalih Allie, Dedra Demaree, and Andrew Deacon	298
Guiding without feeling guided: Implicit scaffolding through interactive simulation design Ariel Paul, Noah Podolefsky, and Katherine Perkins	302
Affordances of play for student agency and student-centered pedagogy Noah S. Podolefsky, Danny Rehn, and Katherine K. Perkins	306
Impacts of curricular change: Implications from 8 years of data in introductory physics Steven J. Pollock and Noah Finkelstein	310
Additional evidence of far transfer of scientific reasoning skills acquired in a CLASP reformed physics course Wendell H. Potter and Robert B. Lynch	314
Supporting scientific writing and evaluation in a conceptual physics course with calibrated peer review Edward Price, Fred Goldberg, Scott Patterson, and Paul Heft	318
Transfer of argumentation skills in conceptual physics problem solving Carina M. Rebello and N. Sanjay Rebello	322
Students' conceptions about rolling in multiple contexts N. Sanjay Rebello and Carina M. Rebello	326
Students' use of resources in understanding solar cells A. J. Richards and Eugenia Etkina	330
Coupling epistemology and identity in explaining student interest in science Jennifer Richards, Luke Conlin, Ayush Gupta, and Andrew Elby	334
Is conceptual understanding compromised by a problem-solving emphasis in an introductory physics course? J. Ridenour, G. Feldman, R. Teodorescu, L. Medsker, and N. Benmouna	338
Cookies as agents for community membership Idaykis Rodriguez, Renee Michelle Goertzen, Eric Brewe, and Laird Kramer	342
Utilization of hands-on and simulation activities for teaching middle school lunar concepts Reni B. Roseman and Dyan L. Jones	346

Challenging traditional assumptions of secondary science through the PET curriculum Mike Ross and Valerie Otero	350
Scaffolding students' understanding of force in pulley systems Amy Rouinfar, Adrian M. Madsen, Tram Do Ngoc Hoang, Sadhana Puntambekar, and N. Sanjay Rebello	354
Mathematical vs. conceptual understanding: Where do we draw the line? Homeyra Sadaghiani and Nicholas Aguilera	358
Surveys fail to measure grasp of scientific practice Irene Y. Salter and Leslie J. Atkins	362
Examining the positioning of ideas in the disciplines Vashti Sawtelle, Tiffany-Rose Sikorski, Chandra Turpen, and E. F. Redish	366
The dependence of instructional outcomes on individual differences: An example from DC circuits Thomas M. Scaife and Andrew F. Heckler	370
Effect of paper color on students' physics exam performances David R. Schmidt, Todd G. Ruskell, and Patrick B. Kohl	374
Predicting FCI gain with a nonverbal intelligence test M. R. Semak, R. D. Dietz, R. H. Pearson, and C. W. Willis	378
Core graduate courses: A missed learning opportunity? Chandralekha Singh and Alexandru Maries	382
Identifying student difficulties with conflicting ideas in statistical mechanics Trevor I. Smith, Donald B. Mountcastle, and John R. Thompson	386
Students' understanding of density: A cognitive linguistics perspective Philip Southey, Saalih Allie, and Dedra Demaree	390
Applying a framework for characterizing physics teaching assistants' beliefs and practices Benjamin T. Spike and Noah D. Finkelstein	394
"Learning Arc": The process of resolving concerns through student-student discourse Sean Stewart, Maria Paula Angarita, Jared Durden, and Vashti Sawtelle	398
How a gender gap in belonging contributes to the gender gap in physics participation Jane G. Stout, Tiffany A. Ito, Noah D. Finkelstein, and Steven J. Pollock	402
3rd grade English language learners making sense of sound Enrique Suarez and Valerie Otero	406
Influencing students' relationships with physics through culturally relevant tools Ben Van Dusen and Valerie Otero	410

Reflective discourse techniques: From in-class discussions to out-of-classroom problem solving Wendi Wampler, Dedra Demaree, and Dennis Gilbert	414
Upper-division student understanding of Coulomb's law: Difficulties with continuous charge distributions	
Bethany R. Wilcox, Marcos D. Caballero, Rachel E. Pepper, and Steven J. Pollock	418
New ways of investigating the canonical coin toss acceleration problem Michael C. Wittmann and Jeffrey M. Hawkins	422
Differentiating expert and novice cognitive structures Steven F. Wolf, Daniel P. Dougherty, and Gerd Kortemeyer	426
Promoting children's agency and communication skills in an informal science program Rosemary Wulf, Kathleen Hinko, and Noah Finkelstein	430
Authentic assessment of students' problem solving Qing Xu, Kenneth Heller, Leonardo Hsu, and Bijaya Aryal	434
Students' understanding of dot product as a projection in no-context, work and electric flux problems	
Genaro Zavala and Pablo Barniol	438
Development and validation of the Colorado learning attitudes about science survey for experimental physics	
Benjamin M. Zwickl, Noah Finkelstein, and H. J. Lewandowski	442
List of Participants and E-mail Addresses	446
Author Index	449