NOBEL SYMPOSIUM 153: NANOSCALE ENERGY CONVERTERS

Örenäs Castle, Sweden 12 – 16 August 2012

EDITORS

Heiner Linke Magnus Borgström Tönu Pullerits Lars Samuelson Villy Sundström Lund University, Lund, Sweden

Olle Inganäs Linköping University, Linköping, Sweden

SPONSORING ORGANIZATIONS

This Nobel Symposium was sponsored by the Nobel Foundation through its Nobel Symposia Fund. The Nobel Symposia logo is a registered trademark of the Nobel Foundation.

Melville, New York, 2013 AIP I CONFERENCE PROCEEDINGS ■ 1519

Editors

Lund University Heiner Linke **Chemical Physics** Solid State Physics P.O. Box 124 Lund University SE-22100 Lund P.O. Box 118 Sweden SE-221 00 Lund E-mail: Tonu.Pullerits@chemphys.lu.se Sweden E-mail: Heiner.Linke@ftf.lth.se Lars Samuelson Lund University Magnus Borgström Solid State Physics Solid State Physics P.O. Box 118 Lund University SE-22100 Lund P.O. Box 118 SE-221 00 Lund Sweden Sweden E-mail: Lars.Samuelson@ftf.lth.se E-mail: Magnus.Borgström@ftf.lth.se Villy Sundström Olle Inganäs Lund University Department of Physics and **Chemical Physics** Measurement Technology P.O. Box 124 Linköping Universitet SE-22100 Lund SE-581 83 Linköping Sweden Sweden

Tönu Pullerits

E-mail: ois@ifm.liu.se

E-mail: Villy.Sundstrom@chemphys.lu.se

Authorization to photocopy items for internal or personal use, beyond the free copying permitted under the 1978 U.S. Copyright Law (see statement below), is granted by the American Institute of Physics for users registered with the Copyright Clearance Center (CCC) Transactional Reporting Service, provided that the base fee of \$30.00 per copy is paid directly to CCC, 222 Rosewood Drive, Danvers, MA 01923, USA: http://www.copyright.com. For those organizations that have been granted a photocopy license by CCC, a separate system of payment has been arranged. The fee code for users of the Transactional Reporting Services is: 978-0-7354-1142-5/13/\$30.00

© 2013 American Institute of Physics

No claim is made to original U.S. Government works.

Permission is granted to quote from the AIP Conference Proceedings with the customary acknowledgment of the source. Republication of an article or portions thereof (e.g., extensive excerpts, figures, tables, etc.) in original form or in translation, as well as other types of reuse (e.g., in course packs) require formal permission from AIP and may be subject to fees. As a courtesy, the author of the original proceedings article should be informed of any request for republication/reuse. Permission may be obtained online using RightsLink. Locate the article online at http://proceedings.aip.org, then simply click on the RightsLink icon/"Permissions/Reprints" link found in the article abstract. You may also address requests to: AIP Office of Rights and Permissions, Suite 1NO1, 2 Huntington Quadrangle, Melville, NY 11747-4502, USA; Fax: 516-576-2450; Tel.: 516-576-2268; E-mail: rights@aip.org.

ISBN 978-0-7354-1142-5"%Qtki kpcrlRtkpv+ ISSN 0094-243X Printed in the United States of America

AIP Conference Proceedings, Volume 1519 Nobel Symposium 153: Nanoscale Energy Converters

Table of Contents

Preface: Nobel Symposium 153: Nanoscale Energy Converters Heiner Linke, Magnus Borgström, Olle Inganäs, Tönu Pullerits, Lars Samuelson, and Villy Sundström	1
	1
Conference Photo	3
OVERVIEW	
Nanoscale energy converters Heiner Linke	5
INORGANIC PHOTOVOLTAICS AND LIGHT-EMITTING DIODES	
A great solar cell also needs to be a great LED: External fluorescence leads to new efficiency record Eli Yablonovitch, Owen D. Miller, and Sarah R. Kurtz	9
Inorganic nanophotovoltaics Martin A. Green	12
Nanophotonic design principles for ultrahigh efficiency photovoltaics Harry Atwater, Albert Polman, Emily Kosten, Dennis Callahan, Pierpaolo Spinelli, Carissa Eisler, Matthew Escarra, Emily Warmann, and Cristofer Flowers	17
Multijunction solar cells for concentrator applications J. M. Olson	22
LEDs for lighting - The physical and materials basis Claude Weisbuch	26
Ultra-efficient solid-state lighting: Likely characteristics, economic benefits, technological	
approaches J. Y. Tsao	32
NANOTHERMOELECTRICS	
Overview of thermoelectrics for thermal to electrical energy conversion Mildred Dresselhaus	36
Diffusive and ballistic thermo-electric transport Ali Shakouri	40
Semiconductors for thermoelectric and spin-thermal solid-state energy conversion Joseph P. Heremans	43

ORGANIC PHOTOVOLTAICS AND LIGHT-EMITTING DIODES

Plastic solar cells: Self-assembly of bulk heterojunction nano-materials by spontaneous phase	
separation Alan J. Heeger	47
Organic semiconductor LEDs and photovoltaic diodes Richard Friend	51
Molecular understanding of organic solar cells: The challenges Jean-Luc Bredas	55
Nanostructured photosystems for the generation of electricity and fuels from sunlight Michael Grätzel	59
SOLAR FUELS	
Solar fuels Smaranda C. Marinescu, Paul J. Bracher, Jay R. Winkler, and Harry B. Gray	64
Artificial photosynthesis combines biology with technology for sustainable energy transformation Thomas A. Moore, Ana L. Moore, and Devens Gust	68
SYNTHETIC MOLECULAR MOTORS	
Molecular switches and motors Ben L. Feringa	73
Tailoring assembled systems for light harvesting and energy conversion Takuzo Aida	76
Molecular machinery built from DNA Jonathan Bath and Andrew J. Turberfield	81
NANOTHERMODYNAMICS	
Stochastic thermodynamics and the efficiency of molecular machines Udo Seifert	83
The second law of thermodynamics at the nanoscale Christopher Jarzynski	87
Author Index	91