


# 3rd International Topical Meeting on Optical Sensing and Artificial Vision OSAV'2012

Saint Petersburg, Russia 14–17 May 2012

Editor

**Igor Gurov** St Petersburg National Research University of Information Technologies, Mechanics and Optics, St Petersburg, Russia



Melville, New York, 2013 AIP Proceedings

Volume 1537

To learn more about AIP Proceedings visit http://proceedings.aip.org

### Editor

#### **Igor Gurov**

St Petersburg National Research University of Information Technologies, Mechanics and Optics Computer Photonics and Videomatics 49 Kronverksky Ave St Petersburg, 197101 Russia E-mail: gurov@mail.ifmo.ru

Authorization to photocopy items for internal or personal use, beyond the free copying permitted under the 1978 U.S. Copyright Law (see statement below), is granted by the AIP Publishing LLC for users registered with the Copyright Clearance Center (CCC) Transactional Reporting Service, provided that the base fee of \$30.00 per copy is paid directly to CCC, 222 Rosewood Drive, Danvers, MA 01923, USA: http://www. copyright.com. For those organizations that have been granted a photocopy license by CCC, a separate system of payment has been arranged. The fee code for users of the Transactional Reporting Services is: 978-0-7354-1161-6/13/\$30.00



© 2013 AIP Publishing LLC

No claim is made to original U.S. Government works.

Permission is granted to quote from the AIP Conference Proceedings with the customary acknowledgment of the source. Republication of an article or portions thereof (e.g., extensive excerpts, figures, tables, etc.) in original form or in translation, as well as other types of reuse (e.g., in course packs) require formal permission from AIP Publishing and may be subject to fees. As a courtesy, the author of the original proceedings article should be informed of any request for republication/reuse. Permission may be obtained online using RightsLink. Locate the article online at http://proceedings.aip.org, then simply click on the RightsLink icon/"Permissions/Reprints" link found in the article abstract. You may also address requests to: AIP Publishing Office of Rights and Permissions, Suite 1NO1, 2 Huntington Quadrangle, Melville, NY 11747-4502, USA; Fax: 516-576-2450; Tel.: 516-576-2468; E-mail: rights@aip.org.

ISBN 978-0-7354-1161-6'<sup>™</sup>Qtki kpcrlRtkpv+ ISSN 0094-243X Printed in the United States of America

## AIP Conference Proceedings, Volume 1537 3rd International Topical Meeting on Optical Sensing and Artificial Vision OSAV'2012

## **Table of Contents**

| Preface: The 3rd International Topical Meeting on Optical Sensing and Artificial Vision                                           |    |  |
|-----------------------------------------------------------------------------------------------------------------------------------|----|--|
| (OSAV'2012)                                                                                                                       |    |  |
| Igor P. Gurov                                                                                                                     | 1  |  |
| Organizer and Cooperation Societies                                                                                               | 23 |  |
| Honorary Chairs and Committee                                                                                                     |    |  |
|                                                                                                                                   |    |  |
| INVITED PLENARY LECTURES                                                                                                          |    |  |
| Speckle: Friend or foe?                                                                                                           |    |  |
| Joseph W. Goodman                                                                                                                 | 5  |  |
| New representations for multidimensional functions based on Kolmogorov superposition theorem.<br>Applications on image processing |    |  |
| F. Truchetet, P. E. Léni, and Y. Fougerolle                                                                                       | 8  |  |
| OPTICAL IMAGE FORMATION AND ANALYSIS                                                                                              |    |  |

| Flying triangulation - A motion-robust optical 3D sensor for the real-time shape acquisition of |    |  |
|-------------------------------------------------------------------------------------------------|----|--|
| complex objects                                                                                 |    |  |
| Florian Willomitzer, Svenja Ettl, Oliver Arold, and Gerd Häusler                                | 19 |  |
| Application of structural methods for stereo depth map improvement                              |    |  |
| Roman Malashin, Maxim Peterson, and Vadim Lutsiv                                                | 27 |  |
| Non-conventional imaging systems for 3D digitization of transparent objects: Shape from         |    |  |
| polarization in the IR and shape from visible fluorescence induced UV                           |    |  |
| F. Meriaudeau, R. Rantoson, K. M. Adal, D. Fofi, and C. Stolz                                   | 34 |  |
| Optical sensors and algorithms for life-sign detection in USaR-operations                       |    |  |
| A. Mäyrä, K. Känsälä, K. Ojala, P. Aitta, T. Hietavalkama, F. Fernandez, L. Hildebrand,         |    |  |
| and J. Bussion                                                                                  | 41 |  |
|                                                                                                 |    |  |

| <b>EM information leakage from display unit and visual inspection for its leakage source</b><br>Takashi Watanabe and Hiroshi Sako                                                                             | 47  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| <b>Cognitive robotic system for learning of complex visual stimuli</b><br>A. S. Potapov and A. S. Rozhkov                                                                                                     | 54  |
| Optimized data processing for an optical 3D sensor based on flying triangulation<br>Svenja Ettl, Oliver Arold, Gerd Häusler, Igor Gurov, and Mikhail Volkov                                                   | 60  |
| Mid-infrared reflectography for the analysis of pictorial surface layers in artworks<br>Claudia Daffara, Dario Ambrosini, Luca Pezzati, and Paola Ilaria Mariotti                                             | 68  |
| Learning representative features for facial images based on a modified principal component analysis                                                                                                           |     |
| Anton Averkin and Alexey Potapov                                                                                                                                                                              | 76  |
| GPU architecture usage for efficient image scaling<br>P. Skakov                                                                                                                                               | 85  |
| <b>OPTICAL SENSING BY COHERENT LIGHT</b>                                                                                                                                                                      |     |
| Fast mapping of surface defects by using dynamic speckles<br>I. S. Sidorov, E. Nippolainen, and A. A. Kamshilin                                                                                               | 88  |
| <b>Optical testing by absolute length measurement with wavelength tuning interferometer</b><br>Kenichi Hibino, Yangjin Kim, and Makoto Ito                                                                    | 95  |
| Digital off-axis holography: Reconstruction from undersampled pattern<br>Konstantin Grebenyuk, Anton Grebenyuk, and Vladimir Ryabukho                                                                         | 102 |
| Novel fiber-optic sensor of high electrical alternating currents<br>Mertsi Haapalainen, Salvatore Di Girolamo, Antonio S. B. Sombra, and Alexei A. Kamshilin                                                  | 107 |
| Analysis of interferometer with adaptive reference wave<br>Jiri Novak, Pavel Novak, and Antonin Miks                                                                                                          | 115 |
| Extended full-field optical coherence microscopy<br>Arnaud Dubois                                                                                                                                             | 123 |
| Longitudinal spatial coherence of the optical field and its effects in the interference microscopy<br>Dmitry Lyakin, Vladislav Lychagov, Ilya Smirnov, Sergey Klykov, Anton Sdobnov,<br>and Vladimir Ryabukho | 133 |

| Numerical reconstruction of volumetric image in swept-source interference microscopy<br>Anton A. Grebenyuk and Vladimir P. Ryabukho                                                     | 147 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| The study of documentary photographs of the early 20 <sup>th</sup> century by the optical coherence microscopy method                                                                   |     |
| Ekaterina Ryseva and Ekaterina Zhukova                                                                                                                                                  | 155 |
| <b>Investigation of Khokholoma painting by the optical coherence tomography method</b><br>Anna Levshina, Ekaterina Zhukova, and Nikita Margaryants                                      | 160 |
| Refractive index sensing in aqueous environment using three different polymeric waveguide interferometers                                                                               |     |
| Meng Wang, Jussi Hiltunen, and Risto Myllylä                                                                                                                                            | 166 |
| Investigation of noise-immunity of the method of extending the unambiguous range in two-wavelength interferometric systems                                                              |     |
| M. Volkov and T. Vorontsova                                                                                                                                                             | 172 |
| OPTICAL SENSING APPLICATIONS                                                                                                                                                            |     |
| <b>Optical anisotropic reflectance from W720 LIPSS surface</b><br>Martti Silvennoinen, Niko Penttinen, Stanislav Hasoň, and Raimo Silvennoinen                                          | 178 |
| <b>Model-based non-destructive investigation methods in semiconductor industry</b><br>B. Bilski, V. Ferreras Paz, K. Frenner, and W. Osten                                              | 185 |
| Adapting optical technologies for low pressure measurements in the marine industry (1-10 bar)<br>D. Rodriguez Sanmartin, A. Lawal, G. Awcock, S. Busbridge, P. Cooper, and J. Spenceley | 192 |
| Analysis of design parameters and imaging properties of membrane fluidic lenses<br>Jiri Novak, Pavel Novak, and Antonin Miks                                                            | 197 |
| <b>Study of ink optical properties by ATR spectroscopy</b><br>D. Fatkhullina and E. Zhukova                                                                                             | 205 |
| Direct, trans-irradiation and multispectral infrared imaging of a Titian canvas<br>Claudia Daffara, Francesca Monti, Raffaella Fontana, Paola Artoni, and Ornella Salvadori             | 212 |
| <b>Optical system for monitoring dynamics of blood perfusion</b><br>Victor Teplov, Ervin Nippolainen, and Alexei A. Kamshilin                                                           | 218 |
| Tumor cell differentiation by label-free microscopy<br>Herbert Schneckenburger, Petra Weber, and Michael Wagner                                                                         | 226 |

| Development of tunable Fabry-Perot spectral camera and light source for medical applications<br>M. Kaarre, S. Kivi, P. E. Panouillot, H. Saari, J. Mäkynen, I. Sorri, and M. Juuti | 231 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| <b>Representation quality analysis on example of compression of 3D biomedical images</b><br>A. Potapov and N. Kapliev                                                              | 238 |
| Author Index                                                                                                                                                                       | 245 |