

Powders and Grains 2013

Proceedings of the 7th International Conference on Micromechanics of Granular Media

Sydney, Australia 8-12 July 2013

Editors

Aibing Yu Kejun Dong Runyu Yang University of New South Wales, Sydney, Australia

Stefan Luding Universiteit Twente, Enschede, Netherlands

All papers have been peer reviewed.

Sponsoring Organizations

Association for the Study of the Micromechanics of Granular Media (AEMMG) University of New South Wales (UNSW) Curtin University (CU) Universiteit Twente (UT) JMBC Research School for Fluid Mechanics, Netherlands Elsevier, publisher of Advanced Powder Technology, Particuology and Powder Technology

Melville, New York, 2013 AIP Proceedings

Volume 1542

Editors

Aibing Yu

Kejun Dong

Runyu Yang

Laboratory for Simulation and Modeling of Particulate Systems School of Materials Science & Engineering University of New South Wales Sydney, NSW 2052 Australia E-mail: a.yu@unsw.edu.au kejun.dong@unsw.edu.au r.yang@unsw.edu.au

Stefan Luding

Multi Scale Mechanics (MSM) Faculty of Engineering Technology and MESA+, Universiteit Twente 7500AE Enschede Netherlands E-mail: s.luding@utwente.nl

Authorization to photocopy items for internal or personal use, beyond the free copying permitted under the 1978 U.S. Copyright Law (see statement below), is granted by the AIP Publishing LLC for users registered with the Copyright Clearance Center (CCC) Transactional Reporting Service, provided that the base fee of \$30.00 per copy is paid directly to CCC, 222 Rosewood Drive, Danvers, MA 01923, USA: http://www. copyright.com. For those organizations that have been granted a photocopy license by CCC, a separate system of payment has been arranged. The fee code for users of the Transactional Reporting Services is: 978-0-7354-1166-1/13/\$30.00

© 2013 AIP Publishing LLC

No claim is made to original U.S. Government works.

Permission is granted to quote from the AIP Conference Proceedings with the customary acknowledgment of the source. Republication of an article or portions thereof (e.g., extensive excerpts, figures, tables, etc.) in original form or in translation, as well as other types of reuse (e.g., in course packs) require formal permission from AIP Publishing and may be subject to fees. As a courtesy, the author of the original proceedings article should be informed of any request for republication/reuse. Permission may be obtained online using RightsLink. Locate the article online at http://proceedings.aip.org, then simply click on the RightsLink icon/"Permissions/Reprints" link found in the article abstract. You may also address requests to: AIP Publishing Office of Rights and Permissions, Suite 1NO1, 2 Huntington Quadrangle, Melville, NY 11747-4502, USA; Fax: 516-576-2450; Tel.: 516-576-2468; E-mail: rights@aip.org.

ISBN 978-0-7354-1166-1'*Qtki kpcrlRtkpv+ ISSN 0094-243X Printed in the United States of America

AIP Conference Proceedings, Volume 1542 Powders and Grains 2013 Proceedings of the 7th International Conference on Micromechanics of Granular Media

Table of Contents

Preface: Powders and Grains 2013 Aibing Yu	1
INVITED PAPERS	
From nanoscale cohesion to macroscale entanglement: Opportunities for designing granular aggregate behavior by tailoring grain shape and interactions Heinrich M. Jaeger, Marc Z. Miskin, and Scott R. Waitukaitis	3
From customized multiscale modeling to general mesoscience – The principle of compromise Jinghai Li	7
Jamming and shear for granular materials R. P. Behringer, Joshua Dijksman, Jie Ren, Jie Zhang, Trushant Majmudar, Bulbul Chakraborty, Daipeng Bi, and Antoinette Tordesillas	12
Establishing predictive capabilities of DEM – Verification and validation for complex granular processes Jin Y. Ooi	20
The glass and jamming transitions in dense granular matter Corentin Coulais, Raphaël Candelier, and Olivier Dauchot	25
Granular friction in a wide range of shear rates Osamu Kuwano, Ryosuke Ando, and Takahiro Hatano	32
10,000 – A reason to study granular heat convection I. Einav, P. Rognon, Y. Gan, T. Miller, and D. Griffani	38
Quasistatic behaviour of granular materials: Some things we learned from DEM studies Jean-Noël Roux	46
Rheometry of dense granular materials: The crucial effects of gravity and confining walls V. Shravan Kumar, Tejas Murthy, and Prabhu R. Nott	49
Stress- and rate-controlled granular rheology Yimin Jiang and Mario Liu	52
Identifying and following particle-to-particle contacts in real granular media: An experimental challenge Gioacchino Viggiani, Edward Andò, Clara Jaquet, and Hugues Talbot	60

A hierarchy of particle-size segregation models: From polydisperse mixtures to depth-averaged theories	
J. M.N.T. Gray	66
1. CONTEMPORARY ISSUES 1.1. Nano, Micro, and Irregular Particles	
Shear alignment and orientational order of macroscopic rodlike grains R. Stannarius, S. Wegner, B. Szabó, and T. Börzsönyi	74
Stability determination of steric-stabilized nanoparticles – Numerical and experimental analysis Olakunle Olatunji and Jürgen Tomas	78
Multidimensionality in fluidized nanopowder agglomerates Lilian de Martín, Wim G. Bouwman, and J. Ruud van Ommen	82
Shear-induced failure in jammed nanoparticle assemblies Ishan Srivastava, Kyle C. Smith, and Timothy S. Fisher	86
Tribo-electric charging particle in a shaker Masayuki Imba, Toshiko Kanazawa, Junichi Ida, Hideo Yamamoto, Mojtaba Ghadiri, and Tatsuhsi Matsuyama	90
Experimental and theoretical study of a micro-fluidized bed V. Zivkovic, M. N. Kashani, and M. J. Biggs	93
Two-phase nc-TiN/a-(C,CN_x) nanocomposite films: A HRTEM and MC simulation study J. Guo, Y. H. Lu, X. J. Hu, and Y. G. Shen	97
A DEM model for contact electrification of irregular shaped particles Chunlei Pei, Chuan-Yu Wu, Michael Adams, David England, Stephen Byard, and Harald Berchtold	101
Axial segregation of horizontally vibrated binary granular mixtures in an offset-Christmas tree channel Ashish Bhateja, Ishan Sharma, and Jayant K. Singh	105
Diffusion of light in two-dimensional granular materials Zeinab Sadjadi and MirFaez Miri	109
Synergistic combination dry powders for inhaled antimicrobial therapy Desmond Heng, Sie Huey Lee, Jeanette Teo, Wai Kiong Ng, Hak-Kim Chan, and Reginald B. H. Tan	113
Electrostatics effects in granular materials Saurabh Sarkar and Bodhisattwa Chaudhuri	117

The characterizations and electrochemical properties of lignosulfonate templates based	
Feng Chen, Hongfei Yao, Ping Fan, Jintao Yang, and Mingqiang Zhong	121
Influence of sintering additives and TiC on properties of TiC/Si ₃ N ₄ ceramics Yong Jiang, Laner Wu, and Wenzhou Sun	125
Fabrication and characterisation of patterned magnetorheological elastomers Weihua Li, Xianzhou Zhang, Tongfei Tian, and Weijia Wen	129
Study of shear-stiffened elastomers Tongfei Tian, Weihua Li, Jie Ding, Gursel Alici, and Haiping Du	133
Preparation of γ -AlON transparent ceramics by one-step method with high-activity Al ₂ O ₃ powders	
Wenzhou Sun, Yuhong Chen, Laner Wu, and Yong Jiang	137
Agglomerating fluidization of nanoparticles in the vibration or magnetic field Tao Zhou, Hao Duan, Hui Wang, Feng Zhang, Hiroyuki Kage, and Yoshihide Mawatari	141
1.2. Modelling and Simulation Techniques	
Understanding multi-scale structural evolution in granular systems through gMEMS David M. Walker and Antoinette Tordesillas	145
Event-driven DEM of soft spheres Thorsten Pöschel and Patric Müller	149
Multi-scale simulation of discrete systems with multi-scale supercomputer Wei Ge and Jinghai Li	153
Scaling laws in granular flow and pedestrian flow Shumiao Chen, Fernando Alonso-Marroquin, Jonathan Busch, Raúl Cruz Hidalgo, Charmila Sathianandan, Álvaro Ramírez-Gómez, and Peter Mora	157
Multiscale modelling of pharmaceutical powders: Macroscopic behaviour prediction Jonathan Loh, William Ketterhagen, and James Elliott	161
A parallel version of the contact dynamics method Z. Shojaaee, M. R. Shaebani, L. Brendel, J. Török, and D. E. Wolf	165
On the use of graphics processing units (GPUs) for molecular dynamics simulation of spherical particles R. C. Hidalgo, T. Kanzaki, F. Alonso-Marroquin, and S. Luding	169
A nonlinear dynamical systems modelling approach unveils chaotic dynamics in simulations of large strain behaviour of a granular material under biaxial compression Michael Small, David Walker, and Antoinette Tordesillas	173

Particle-based simulation of hydraulic fracture and fluid/heat flow in geothermal reservoirs Peter Mora, Yucang Wang, and Fernando Alonso-Marroquin	177
Uncertainty quantification and granular thermodynamics Jeffrey D. Picka	181
DEM simulation of particles of complex shapes using the multisphere method: Application for additive manufacturing Eric J. R. Parteli	185
Numerical simulation of suffusion phenomena through granular media Francesco Federico, Andrea Montanaro, and Mauro Scienza	189
2. GEOMATERIALS AND CONSTRUCTIONS: 2.1. Theoretical	
Directional plastic flow and fabric dependencies in granular materials Barthélémy Harthong and Richard G. Wan	193
Granular mechanics of the critical state of coarse soils Calixtro Yanqui	197
The influence of void ratio on small strain shear modulus of granular materials: A micromechanical perspective Xiaomin Xu, Yipik Cheng, and Dongsheng Ling	201
Mesh size effect in the simulation of powder geo-material L. C Huang, C. Y. Zhou, Y. Cheng, and W. K. Li	205
Simulation on particle crushing of tailings material under high pressure Hai-ming Liu, Yi-ming Liu, Chun-he Yang, and Jing Cao	209
Distinct element analyses of collapsible behaviour of structured loess under one-dimensional compression	
M. J. Jiang, T. Li, and H. J. Hu	213
Numerical simulation of rock failure process using improved rigid body spring method Chi Yao, Qinghui Jiang, Jianfu Shao, and Chuangbing Zhou	217
2.2. Numerical	
Dynamic and impact contact mechanics of geologic materials: Grain-scale experiments and	
David M. Cole, Mark A. Hopkins, and Stephen A. Ketcham	221
DEM modeling of penetration test in static and dynamic conditions Quoc Anh Tran, Bastien Chevalier, and Pierre Breul	225

A new definition on critical state of granular media accounting for fabric anisotropy Jidong Zhao and Ning Guo	229
Wave propagation in assemblies of cemented spheres T. Matthew Evans and Zhangwei Ning	233
Distinct element analyses of inclined cone penetration test in granular ground Mingjing Jiang, Yongsheng Dai, Zhifu Shen, and Ning Zhang	237
Penetration strength of coarse granular materials from DEM simulations Juan Carlos Quezada, Gilles Saussine, Pierre Breul, and Farhang Radjai	241
Modelling desiccation cracking in thin clay layer using three-dimensional discrete element	
Jun Sima, Mingjing Jiang, and Chuangbing Zhou	245
Effects of granular soil micro-mechanics on the pressure-sinkage relationship Liang Cui and Savvas Avramidis	249
Characterizing inclined loading capacity of a pile embedded in methane-hydrate-bearing marine	
Fang Liu, Mingjing Jiang, Fangyuan Zhu, and Yu Xiao	253
On the physical meaning of equivalent skeleton void ratio for granular soil with fines Bei-Bing Dai and Jun Yang	257
PFC2D simulation of thermally induced cracks in concrete specimens Xinghong Liu, Xiaolin Chang, Wei Zhou, and Shuirong Li	261
Micro-characteristics of monodisperse and best-packing mixture samples under one dimensional	
N. H. Minh and Y. P. Cheng	265
Mechanical behavior modeling of sand-rubber chips mixtures using discrete element method	
(DEM) Danial Rezazadeh Eidgahee and Ehsan Seyedi Hosseininia	269
Strength and fabric evolution of unsaturated granular materials by 3D DEM analyses Mingjing Jiang and Zhifu Shen	273
Challenges of simulating undrained tests using the constant volume method in DEM Kevin J. Hanley, Xin Huang, Catherine O'Sullivan, and Fiona Kwok	277
Effect of inter-particle rolling resistance on passive earth pressure against a translating rigid	
Mingjing Jiang, Jie He, Fang Liu, and Huaning Wang	281

Feasible use of particle-flow virtual test for the mechanical properties mixed soil Zhang Jia-ming, Ren Yong-qiang, Shao Xiao-quan, and Wang Gang	285
2.3. Experimental	
Multi-phase mechanics and multi-scale interactions among soil-water-gas in tsunami disaster Tatsuya Imase, Kenichi Maeda, Yoshimi Ito, and Mai Goto	289
Quantification of time-dependent microstructural change of a silty sand under load M. Yusa and E. T. Bowman	293
Postmortem analysis of sand grain crushing from pile interface using X-ray tomography I. Matías Silva, Gaël Combe, Pierre Foray, Frédéric Flin, and Bernard Lesaffre	297
Physical and mechanical properties of cement-treated granular soils with respect to geotechnical	
Kimitoshi Hayano, Phan Huy Dong, and Yoshiyuki Morikawa	301
Optimum mixture design of granular materials reinforced by short fiber Shigeaki Nozoe, Kenji Kaneko, and Yutaka Hashizume	305
CPT-based estimation of bearing and deformation indexes for TJ-1 lunar soil simulant ground Mingjing Jiang, Ning Zhang, Zhifu Shen, and Xiaofeng Wu	309
DEM simulation of footpads quasi-statically penetrating into granular ground Chao Sun, Fang Liu, Mingjing Jiang, and Huaning Wang	313
3. GRANULAR SOLIDS 3.1. Packing, Jamming and Related Properties	
Dynamical systems model and discrete element simulations of a tapped granular column A. D. Rosato, D. Blackmore, X. M. Tricoche, K. Urban, and L. Zuo	317
Confined packings of frictionless spheres and polyhedra Jean-François Camenen, Yannick Descantes, and Patrick Richard	321
Microstructural characteristics of planar granular solids Takashi Matsushima and Raphael Blumenfeld	325
Statistical mechanics of dry granular materials: Between fragile solid (jamming) and dry fluid (rheelow)	
Nicolas Rivier and Jean-Yves Fortin	329
Settlement statistics of a granular layer composed of polyhedral particles Juan Carlos Quezada, Gilles Saussine, Pierre Breul, and Farhang Radjai	333
DEM simulation of experimental dense granular packing Maryam Hanifpour, Nicolas Francois, Mehdi Vaez Allaei, and Mohammad Saadatfar	337

The theory of granular packings for coarse soils Calixtro Yanqui	341
Analysis of the behavior of granular materials at a meso-scale Ngoc-Son Nguyen, Hélène Magoariec, and Bernard Cambou	345
Minkowski tensors and local structure metrics: Amorphous and crystalline sphere packings G. E. Schröder-Turk, R. Schielein, S. C. Kapfer, F. M. Schaller, G. W. Delaney, T. Senden, M. Saadatfar, T. Aste, and K. Mecke	349
Analysis of Voronoi clusters in the packing of uniform spheres C. C. Wang, K. J. Dong, and A. B. Yu	353
Discrete modelling of the packing of ellipsoidal particles Zongyan Zhou, Ruiping Zou, David Pinson, and Aibing Yu	357
The role of inter-grain friction in determining the mechanical and structural properties of superellipsoid packings Gary W. Delaney, James E. Hilton, Paul W. Cleary, and Claire Miller	361
Fast synchrotron X-ray tomography study of the rod packing structures Xiaodan Zhang, Chengjie Xia, Haohua Sun, and Yujie Wang	365
Crystallisation in a granular material N. Francois, M. Saadatfar, M. Hanifpour, R. Cruikshank, and A. Sheppard	369
A method for structural analysis of disordered particle systems Z. A. Tian, K. J. Dong, and A. B. Yu	373
Tomographic analysis of jammed ellipsoid packings Fabian M. Schaller, Max Neudecker, Mohammad Saadatfar, Gary Delaney, Klaus Mecke, Gerd E. Schröder-Turk, and Matthias Schröter	377
Non-Gaussian behavior in jamming / unjamming transition in dense granular materials A. P. F. Atman, E. Kolb, G. Combe, H. A. Paiva, and G. H. B. Martins	381
Granular jamming transitions for a robotic mechanism Allen Jiang, Tomaso Aste, Prokar Dasgupta, Kaspar Althoefer, and Thrishantha Nanayakkara	385
3.2. Forces	
Dynamic cone penetration tests in granular media: Determination of the tip's dynamic load- penetration curve E. Escobar, M. Benz, R. Gourvès, and P. Breul	389
Critical-like features of a granular intruder Benjamin D. Elwood and Leonardo E. Silbert	393

Force-chain identification in quasi-2D granular systems Ling Zhang, Jun-Qi Wu, and Jie Zhang	397
Granular matter: A special buffer for impact load Shunying Ji, Xiaodong Chen, Pengfei Li, and Ying Yan	401
Cushioning effect in highly polydisperse granular media Charles Voivret	405
Experimental evidence and structural mechanics analysis of force chain buckling at the microscale in a 2D polymeric granular layer Andrew B. Croll. Antoinette Tordesillas. David Carev. and Bekele Gurmessa	409
Force distribution/transmission in amorphous and crystalline packings of spheres Xizhong An and Fei Huang	413
A mechanistic analysis of bulk powder caking G. Calvert, N. Curcic, and M. Ghadiri	417
Anisotropy of microstructure and force chains in granular materials Xihua Chu, Lunlun Zhou, and Yuanjie Xu	421
Experimental investigations of micro-structural phenomena inside strain localisation in granular materials Danuta Lesniewska and Magdalena Pietrzak	425
An attempt in assessing contact forces from a kinematic field Vincent Richefeu, Gaël Combe, and Raphaël Maurin	429
Local elastic fields in granular solids J. Boberski, L. Brendel, and D. E. Wolf	433
Cooperative dynamics of a group of intruders subsiding in granular media: A DEM study Cher Hui Goey and Chuan-Yu Wu	437
Non-contact measurement of the stress within granular materials via neutron diffraction C. M. Wensrich, E. H. Kisi, V. Luzin, and O. Kirstein	441
Granular impact dynamics: Fluctuations at short time-scales Abram H. Clark, Lou Kondic, and R. P. Behringer	445
3.3. Shear tests and analysis <i>3.3.1. Experimental</i>	
Dilation, compression, and convection in granular shear experiments Nathan Beasley, Jacob Jantzi, Ryan Kinser, and Jeffrey S. Olafsen	449

Nathan Beasley, Jacob Jantzi, Ryan Kinser, and Jeffrey S. Olafsen

Experimental evidence of "Granulence" G. Combe, V. Richefeu, G. Viggiani, S. A. Hall, A. Tengattini, and A. P. F. Atman	453
Imaging soft sphere packings in a novel triaxial shear setup Joshua A. Dijksman, Hu Zheng, and Robert P. Behringer	457
TRACKER: A particle image tracking (PIT) technique dedicated to nonsmooth motions involved in granular packings Gaël Combe and Vincent Richefeu	461
Novel experimental apparatus for granular experiments on basal friction Hu Zheng, Joshua A. Dijksman, and Robert P. Behringer	465
Measuring creep and stick-slip behavior in 2-dimensional photoelastic granular medium	
N. Sepúlveda and R. P. Behringer	469
Experimental investigation of the Rowe's dilatancy law on an atypical granular medium from a municipal solid waste incineration bottom ash Frédéric Becquart and Nor Edine Abriak	471
Experimental studies of precursors to failure in granular material Antoine Le Bouil, Axelle Amon, and Jérôme Crassous	475
Development of a biaxial compression test apparatus for granular materials Lian-Wei Zhang and Jian-Min Zhang	479
The stadium shear device: A novel apparatus for studying dense granular flows Tom Miller, Pierre Rognon, and Itai Einav	483
3.3.2. Numerical	
Prediction of bulk particle breakage due to naturally formed shear bands Colin Hare and Mojtaba Ghadiri	487
Granular shear flows of flexible rod-like particles Y. Guo, J. Curtis, C. Wassgren, W. Ketterhagen, and B. Hancock	491
Study of some micro-structural phenomena in granular shear zones Jan Kozicki, Jacek Tejchman, and Danuta Leśniewska	495
On liquid migration in sheared granular matter R. Mani, D. Kadau, D. Or, and H. J. Herrmann	499
Constitutive relations of jammed frictionless granular materials under oscillatory shear Michio Otsuki and Hisao Hayakawa	503

Minimum cut and shear bands Antoinette Tordesillas, Andrew Cramer, and David M. Walker	507
Shear strength, force distributions and friction mobilization in sheared packings composed of angular particles Emilien Azéma, Nicolas Estrada, and Farhang Radjai	511
Simulation of sheared, caking powder A. Weuster, L. Brendel, and D. E. Wolf	515
Shear strength and microstructure of 3D assemblies of platy particles Mauricio Boton, Emilien Azéma, Nicolas Estrada, Farhang Radjaï, and Arcesio Lizcano	519
Evolution of the contact distribution in sheared 2D granular packings Jens Boberski, M. Reza Shaebani, and Dietrich E. Wolf	523
Homogeneity and packing structure of a 2D sheared granular system Jie Ren, Joshua Dijksman, and Robert P. Behringer	527
Numerical investigation of granular flow in a shear cell X. Wang, H. P. Zhu, A. B. Yu, and S. Luding	531
3.4. Transportation, Propagation and Conduction	
Mass-disorder effects on the frequency filtering in one-dimensional discrete particle systems Brian P. Lawney and Stefan Luding	535
Thermal conduction in particle packs via finite elements Jeremy B. Lechman, Cole Yarrington, William Erikson, and David R. Noble	539
Forming and breaking of contacts in jammed granular media by nonlinear acoustic waves S. Wildenberg, Y. Yang, M. van Hecke, and X. Jia	543
Constrained optimisation in granular network flows: Games with a loaded dice Qun Lin and Antoinette Tordesillas	547
Transport pathways within percolating pore space networks of granular materials Kevin Vo, David M. Walker, and Antoinette Tordesillas	551
Study on small-strain behaviours of methane hydrate sandy sediments using discrete element method	
Yanxin Yu, Xiaomin Xu, Yi Pik Cheng, and Kenichi Soga	555
Dispersive behavior and acoustic scaling in granular rocks Santos Carlos, Urdaneta Vanessa, Medina Ernesto, and García Xavier	559
Global Markov modelling and analysis of the dynamics of granular deformation and flow Gary Froyland, Antoinette Tordesillas, and David M. Walker	563

Granular acoustics of polyhedral particles Wei Shen Cheng, Jian Chen, and Hans-Georg Matuttis	567
Grain-based characterisation and acoustic wave propagation in a sand packing subject to triaxial	
Mohammad Saadatfar, Nicolas Francois, Alon Arad, Mahyar Madadi, Adrian Sheppard, Tim Senden, and Mark Knackstedt	571
The role of Rayleigh waves in granular solids Alessandro Spadoni and Bart Van Damme	575
Energy transmission through grain-to-grain contacts: The role of bulk and Rayleigh waves Bart Van Damme, Emil Shaykhilislamov, and Alessandro Spadoni	577
Hydraulic and acoustic investigation of sintered glass beads Ibrahim Gueven, Stefan Luding, and Holger Steeb	581
3.5. Compaction	
A multiscale description of failure in granular materials Nejib Hadda, François Nicot, Luc Sibille, Farhang Radjai, Antoinette Tordesillas, and Félix Darve	585
Statistical mechanics description of an isotropic compression and its relationship to micromechanics W. F. Oquendo and J. D. Muñoz	589
Simulation of current-activated pressure-assisted densification Sebastian Angst, Gabi Schierning, and Dietrich E. Wolf	593
Distinguishing and predicting granular failure via multiscale evolution of contact cycle topologies Sebastian Pucilowski, David M. Walker, and Antoinette Tordesillas	597
Force correlations, anisotropy, and friction mobilization in granular assemblies under uniaxial deformation O. I. Imole, M. Wojtkowski, V. Magnanimo, and S. Luding	601
Length scales from elastic buckling of a force chain under confined axial compression Antoinette Tordesillas, David Carey, and Jingyu Shi	605
Modeling of compressible self-organized granular media under static load Mikhail N. Skachkov	609
Effect of fabric on the strength of granular materials in biaxial compression Homayoun Shaverdi, Mohd Raihan Taha, and Farzin Kalantary	613

4. GRANULAR LIQUIDS 4.1. Unconfined and Surface Flows *4.1.1. Theoretical*

Granular force on objects and correlation length: Drag coefficient enhancement in low Froude number flow regimes Thierry Faug	617
Numerical analysis of impact processes of granular jets Tomohiko G. Sano and Hisao Hayakawa	622
Inclined granular flows on collisional shear layers James T. Jenkins and Diego Berzi	626
An energy-based splash function for the impact of particles with granular beds Chuan-Yu Wu	630
Impaction of particle streams on a granular bed Sida Liu, Zongyan Zhou, Kejun Dong, Aibing Yu, John Tsalapatis, and David Pinson	634
Dissipative discrete element model applied to rock avalanches G. Mollon, V. Richefeu, P. Villard, and D. Daudon	638
Jumps and bores in bulky frictional granular flows Thierry Faug	642
Effect of cohesive force on the formation of a sandpile K. J. Dong, R. P. Zou, K. W. Chu, R. Y. Yang, A. B. Yu, and D. S. Hu	646
4.1.2. Experimental	
Identification of avalanche precursors by acoustic probing in the bulk of tilted granular layers M. Duranteau, V. Tournat, V. Zaitsev, R. Delannay, and P. Richard	650
Study of solids contact shearing and collisions in granular debris flows Gordon G. D. Zhou, Q. C. Sun, and M. L. Fei	654
Design of protection structures: The role of the grainsize distribution Benjy Marks, Aurelio Valaulta, Alexander Puzrin, and Itai Einav	658
Tumbling sandpiles in a fluid Farhang Radjai, Vincent Topin, Frédéric Perales, and Yann Monerie	662
Experimental investigation on failure mode of fine-grain rainfall-induced debris flow Zhao Cheng, Zhou Jian, Li Yexun, and Tian Jiashen	666

4.2. Confined flow

Mode-coupling theory for sheared granular liquids Koshiro Suzuki and Hisao Hayakawa	670
Velocity and density scaling at the outlet of a silo and its role in the expression of the mass flow	
D. Maza, A. Janda, S. M. Rubio-Largo, I. Zuriguel, and R. C. Hidalgo	674
Prediction of silo-vibrations using a modified lambdameter Stefan Jäckel, Ralf Schünemann, Thomas Mütze, and Urs A. Peuker	678
Effect of friction and cohesion on anisotropy in quasi-static granular materials under shear A. Singh, V. Magnanimo, and S. Luding	682
Avoiding clogs: The shape of arches and their stability against vibrations Angel Garcimartín, Celia Lozano, Geoffroy Lumay, and Iker Zuriguel	686
The influence of particle shape on granular Hopper flow G. Mollon and J. Zhao	690
Microscopic analysis of Hopper flow with ellipsoidal particles Sida Liu, Zongyan Zhou, Ruiping Zou, David Pinson, and Aibing Yu	694
Silo clogging reduction by placing an obstacle above the outlet C. Lozano, I. Zuriguel, A. Janda, A. Garcimartín, R. Arévalo, and D. Maza	698
Dynamics of rotating spirals in agitated wet granular matter Kai Huang, Lorenz Butzhammer, and Ingo Rehberg	702
Visualising shear stress distribution inside flow geometries containing pharmaceutical powder excipients using photo stress analysis tomography and DEM simulations Saeed Albaraki, S. Joseph, Antony, and C. Babatunde Arowosola	706
Pipe transport in underground mining: An experimental approach	
A. Janda, I. Zuriguel, J. Bienzobas, A. Garcimartín, and D. Maza	710
4.3. Mixing and Segregation 4.3.1. Theoretical and Numerical	
Size separation of binary mixture under vibration Chuanping Liu, Lige Tong, Shaowu Yin, Peikun Zhang, and Li Wang	714
Segregation in dense, dry, inclined flows of binary mixtures of grains Michele Larcher and James T. Jenkins	718

Influence of rotation on BN separation in binary particle system Ping Wu, Shuang Wang, Ziang Xie, Yuming Huang, Lige Tong, Peikun Zhang, Shaowu Yin, Chuanping Liu, and Li Wang	722
DEM simulation of particle mixing for optimizing the overcoating drum in HTR fuel fabrication Malin Liu, Zhenming Lu, Bing Liu, and Youlin Shao	726
Mixing behaviour of cohesive and non-cohesive particle mixtures in a ribbon mixer H. Musha, K. Dong, G. R. Chandratilleke, J. Bridgwater, and A. B. Yu	731
Simulations on the flow segregation problem in bidimensional piles Jesica Benito, Rodolfo Uñac, Ana María Vidales, and Irene Ippolito	735
Effects of size and density differences on mixing of binary mixtures of particles H. Musha, G. R. Chandratilleke, S. L. I. Chan, J. Bridgwater, and A. B. Yu	739
Radial segregation driven by axial migration Xiaoxing Liu, Wei Ge, and Jinghai Li	743
Formation of ordered structure and its effect on particle percolation in a vibrated bed A. H. Esfandiary, K. J. Dong, and A. B. Yu	747
Numerical analysis of separation and mixing dynamics in multiphase granular systems Tracy Rushmer, Antoinette Tordesillas, David M. Walker, and Nick Petford	751
4.3.2. Experimental	
Granular segregation in quasi-2d rectangular bin Sandip H. Gharat and D. V. Khakhar	755
The formation of polygon-shaped patterns in vibrated, cylindrical granular beds G. Lu, J. R. Third, M. H. Köhl, and C. R. Müller	759
Pattern formation in a flat rotating box Frank Rietz and Ralf Stannarius	763
Segregation of binary mixtures of spheres and ellipsoids Changxing Li, Zongyan Zhou, Ruiping Zou, David Pinson, and Aibing Yu	767
Segregation and convection rolls in two-dimensional packings Frank Rietz	771
Patterns and velocity field in vertically vibrated granular materials Istafaul H. Ansari and Meheboob Alam	775
Dry coating in a high shear mixer: Comparison of experimental results with DEM analysis of particle motions E. Serris, A. Sato, A. Chamayou, L. Galet, M. Baron, P. Grosseau, and G. Thomas	779

5. GRANULAR GASES 5.1. Theoretical

Evidence for a new force in dissipative system derived from Boltzmann equation: Consequence for the mechanics of the material point, experimental evidences and possible applications Pierre Evesque	783
Scaling of the normal coefficient of restitution for wet impacts Thomas Müller, Frank Gollwitzer, Christof A. Krülle, Ingo Rehberg, and Kai Huang	787
Asymmetric velocity distribution in boundary-heating granular gas and a hydrodynamic description	791
Shearbanding and inhomogeneous states in granular fluid Meheboob Alam and Privanka Shukla	791
Characteristics of Casimir-like forces in fluidized granular media M Reza Shaebani Jalal Sarabadani and Dietrich F. Wolf	799
5.2. Numerical and Experimental	
Can one "Hear" the aggregation state of a granular system? Christof A. Kruelle and Almudena García Sánchez	803
Microgravity experiments on a granular gas of elongated grains K. Harth, T. Trittel, U. Kornek, S. Höme, K. Will, U. Strachauer, and R. Stannarius	807
Collective granular dynamics in a shaken container at low gravity conditions J. E. Kollmer, A. Sack, M. Heckel, F. Zimber, P. Mueller, M. N. Bannerman, and T. Pöschel	811
Experimental study of a granular gas homogeneously driven by particle rotations E. Falcon, JC. Bacri, and C. Laroche	815
Pattern dynamics of cohesive granular particles under plane shear Satoshi Takada and Hisao Hayakawa	819
Effect of gravity on particle dispersion in a horizontally vibrating bed Kejun Dong, Kunio Shinohara, and Aibing Yu	823
6. PARTICLE PROPERTIES 6.1. Interparticle Interactions	
Rolling resistance effect for sheared granular materials in the inertial regime Hayley H. Shen	827

A new contact model for modelling of elastic-plastic-adhesive spheres in distinct element method Massih Pasha, Selasi Dogbe, Colin Hare, Ali Hassanpour, and Mojtaba Ghadiri	831
Wear particles: Influence on local stress and dynamical instabilities Viet-Hung Nhu, Mathieu Renouf, Francesco Massi, and Aurélien Saulot	835
From particle to powder properties – A mesoscopic approach combining micro-scale experiments and X-ray microtomography S. Strege, H. Zetzener, and A. Kwade	839
Unitary stick-slip motion in granular beds J. E. Hilton, P. W. Cleary, and A. Tordesillas	843
Finite element analysis of the contact forces between viscoelastic particles Q. J. Zheng, H. P. Zhu, and A. B. Yu	847
Calibration and validation of DEM rolling and sliding friction coefficients in angle of repose and shear measurements Piotr Frankowski and Martin Morgeneyer	851
Numerical simulation of interaction between two PM _{2.5} particles under acoustic travelling wave conditions Fengxian Fan, Mingjun Zhang, and Chang Nyung Kim	855
An experiment investigation on electrification by collision between chemically identical glass particles L. Xie, Y. Jiang, N. Bao, K. Han, and J. Zhou	859
Rebound characteristics for ash particles impacting a planar surface Ming Dong, Sufen Li, Jian Han, and Jun Xie	863
Damping of rotating beams with particle dampers: Discrete element method analysis D. N. J. Els	867
Identification of micro parameters for discrete element simulation of agglomerates Stefan Palis, Sergiy Antonyuk, Maksym Dosta, and Stefan Heinrich	871
6.2. Size and Shape Effects	
Effect of size polydispersity on micromechanical properties of static granular materials M. R. Shaebani, M. Madadi, S. Luding, and D. E. Wolf	875
Slow dynamics for elliptical particles under continuous shear and cyclic compression Somayeh Farhadi, Robert P. Behringer, and Alex Zihao Zhu	879

A benchmark for particle shape dependence Gaël Combe, Cécile Nouguier-Lehon, Émilien Azéma, Krzysztof Szarf, Baptiste Saint-Cyr, Marie Chaze, Farhang Radjaï, Pascal Villard, Jean-Yves Delenne, Vincent Richefeu, Philippe Sornay, Charles Voivret, and CEGEO Group	883
The influence of aspect ratio and roughness on flowability Colin Hare and Mojtaba Ghadiri	887
Comparison of the effects of rolling resistance and angularity in sheared granular media Nicolas Estrada, Emilien Azéma, Farhang Radjai, and Alfredo Taboada	891
Influence of the feeding rate on the packing properties of faceted particles R. C. Hidalgo, M. Acevedo, I. Zuriguel, I. Pagonabarra, and D. Maza	895
6.3. Size Reduction	
Estimation of new surface generation and energy analysis during particle fracture Manoj Khanal and Jürgen Tomas	899
A probabilistic approach of confined comminution in polydisperse granular materials Carlos Ovalle, Charles Voivret, Christophe Dano, and Pierre-Yves Hicher	903
Impact of numerical models on fragmentation processes Mathieu Renouf, Belien Gezahengn, Micheline Abbas, and Florent Bourgeois	907
Radical edge crack problem of a circular disk under circumference load W. S. Xiao and H. P. Zhu	911
A study on the effect of particle shape and fragmentation on the mechanical behavior of granular materials using discrete element method Ali Aminzadeh and Ehsan Seyedi Hosseininia	915
Experimental studies on the kinematics of cutting in granular materials T. G. Murthy, C. Saldana, S. Yadav, and F. Du	919
Evolution of sand crushability and its effect on particle-scale energy allocation Bo Zhou, Runqiu Huang, and Jianfeng Wang	923
Numerical simulation study of quasistatic grinding process on a model granular material V. P. B. Esnault and JN. Roux	927
Analysis of seed processing by the distinct element method Mehrdad Pasha, Colin Hare, Mojtaba Ghadiri, Patrick M. Piccione, and Scott Taylor	931
Numerical analysis of impact events in a centrifugal impact pin mill C. Labra, J. Y. Ooi, J. F. Chen, and J. Sun	935

7. COHESION 7.1. Theoretical and Numerical

Micromechanical properties of colloidal structures A. Kwade, C. Schilde, C. Burmeister, M. Roth, P. Lellig, and G. Auernhammer	939
Electrically-enhanced deposition of fine particles on a fiber: A numerical study using DEM Mengmeng Yang, Shuiqing Li, Guanqing Liu, and Qiang Yao	943
DEM study on the interaction between wet cohesive granular materials and tools Takuya Tsuji, Yu Matsui, Yuta Nakagawa, Yuuichi Kadono, and Toshitsugu Tanaka	947
Numerical estimation of the restitution coefficient for dry and wet agglomerates Sergiy Antonyuk, Maksym Dosta, and Stefan Heinrich	951
Granular cohesion and fast rotators in the NEA population Paul Sánchez and Daniel J. Scheeres	955
Assessing flowability of small quantities of cohesive powder using distinct element modelling Massih Pasha, Colin Hare, Ali Hassanpour, and Mojtaba Ghadiri	959
Particle scale investigation of flow and mixing of wet particles in rotating drums P. Y. Liu, R. Y. Yang, and A. B. Yu	963
DEM analysis of effects of particle properties and mixing conditions on particle attachment	
processes Jiecheng Yang, Chuan-Yu Wu, and Michael Adams	967
Flow of dry and wet granular materials: Numerical simulation results Saeed Khamseh, Jean-Noël Roux, and François Chevoir	971
7.2. Experimental	
Erosion rate and instability of a wet/dry granular interface Gautier Lefebvre and Pierre Jop	975
Effect of cohesion on granular-fluid flows in spouted beds: PIV measurement and DEM	
simulations Runru Zhu, Shuiqing LI, and Qiang Yao	979
Behavior of cohesive powder in rotating drums M. Wojtkowski, O. I. Imole, M. Ramaioli, E. Chávez Montes, and S. Luding	983
Experimental studies on the mechanics of cohesive frictional granular media R. K. Kandasami and T. G. Murthy	987
Analysis of behavior of small agglomerated particles on two-dimensional vibrating plate Murino Kobayakawa, Shuji Matsusaka, and Shuji Matsusaka	991

Influence of cohesive forces on the macroscopic properties of granular assemblies Geoffroy Lumay, Jorge Fiscina, Francois Ludewig, and Nicolas Vandewalle	995
Incipient flow properties of two-component fine powder mixtures: Changing the flowability of	
smaller particles Takehiro Kojima and James A. Elliott	999
Visualizing powder de-agglomeration upon impact with simultaneous flowing charge behaviour Jin Wang Kwek, Desmond Heng, Sie Huey Lee, Wai Kiong Ng, Hak-Kim Chan, Jerry Heng, and Reginald Tan	1003
Internal structure and fragmentation kinetics of silica granules P. Grosseau, T. Dumas, O. Bonnefoy, L. Barriquand, L. Guy, and G. Thomas	1007
Influence of the pan pelletizer rotational velocity and the particles size on the agglomeration of	
Zheni Radeva, Peter Müller, and Juergen Tomas	1011
8. FLUID AND PARTICLES 8.1. Particle-fluid Interactions	
FEM-DEM simulation of two-way fluid-solid interaction in fibrous porous media K. Yazdchi, S. Srivastava, and S. Luding	1015
Characterization of fluid-particle interactions in poly-disperse systems Francesco P. Di Maio and Alberto Di Renzo	1019
Capillary states of granular materials in the funicular state Jean-Yves Delenne, Vincent Richefeu, and Farhang Radjai	1023
Preparation and characterisation of user-friendly PMMA microcapsules for consumer care Xuemiao Pan, Ruben Mercade-prieto, David York, Jon A. Preece, and Zhibing Zhang	1027
Squeeze flow of a bi-viscosity fluid between two rigid spheres Xu Chun-Hui, Zhang Mi, and Xu Yong	1031
A parametric study on the leakage-soil interaction due to a leaking pipe using the coupled DEM- LBM technique	
X. Cui, J. Li, A. H. C. Chan, and D. N. Chapman	1035
Water retention in discrete element method Yixiang Gan, Federico Maggi, and Itai Einav	1039
Free running droplets on packed powder beds Catherine P. Whitby, Xun Bian, and Rossen Sedev	1043

8.2. Suspension, Sedimentation, Saltation, and Dust Emission	
Where to dig for gold? – Density segregation inside migrating dunes Christopher Groh, Ingo Rehberg, and Christof A. Kruelle	1047
Simulation of aeolian saltation M. V. Carneiro and H. J. Herrmann	1051
Dust emission modelling around a stockpile by using computational fluid dynamics and discrete element method S. M. Derakhshani, D. L. Schott, and G. Lodewijks	1055
Scaling laws in aeolian sand transport: Erodible versus non-erodible bed A. Valance, T. D. Ho, A. Ould El Moctar, and P. Dupont	1059
DEM-PFV analysis of solid-fluid transition in granular sediments under the action of waves E. Catalano, B. Chareyre, and E. Barthélémy	1063
Coulombic wall slip of concentrated soft-particle suspensions Michael Adams, Wei Liu, Zhibing Zhang, and Peter Fryer	1067
Effect of shear-induced diffusion on the transfer of heat across a sheared suspension Ouamar Rahli, Xiaolong Yin, and Bloen Metzger	1071
Pattern formation during capillary rising of a fluid front into a granular media A. P. F. Atman, G. Combe, Thaysa R. M. Ferreira, and Jéssica A. A. Barros	1075
Grain sedimentation with SPH-DEM and its validation Martin Robinson, Stefan Luding, and Marco Marco Ramaioli	1079
2D DEM model of sand transport with wind interaction L. Oger and A. Valance	1083
Wind tunnel studies on the vertical emission of sand grains from surface L. Guo and N. Huang	1087
Rheology of dense suspensions: Insights from soft dynamics simulations P. Rognon, C. Gay, and I. Einav	1090
Effect of ground granulated blast furnace slag particle size distribution on paste rheology: A preliminary model Alireza Kashani, John L. Provis, and Jannie S. J. van Deventer	1094
8.3. Gas Fluidisation	
Deutisle demonstor in the fluiding d had. Magnetic neutisle tracking and discusts a set of such as	

Particle dynamics in the fluidized bed: Magnetic particle tracking and discrete particle modelling	
Johannes Neuwirth, Sergiy Antonyuk, and Stefan Heinrich	1098

Transitional behavior in gas-fluidized beds Colin Thornton, Fang Yang, and Jonathan Seville	1102
Contact analysis of different flow regimes in gas fluidization Q. F. Hou, Z. Y. Zhou, and A. B. Yu	1106
Identification of flow regime in a slurry bubble column by Hilbert-Huang transform analysis Weiling Li, Wenqi Zhong, Baosheng Jin, and Rui Xiao	1110
Computational study of heat transfer in gas fluidization Q. F. Hou, Z. Y. Zhou, and A. B. Yu	1114
Discrete particle simulation of heat transfer in pressurized fluidized bed with immersed cylinders Hadi Wahyudi, Kaiwei Chu, and Aibing Yu	1118
SPH-DEM simulations of grain dispersion by liquid injection Martin Robinson, Stefan Luding, and Marco Ramaioli	1122
Novel multiscale simulation environment for modeling of fluidized bed granulation Maksym Dosta and Stefan Heinrich	1126
Discrete element modeling of gas fluidization of fine ellipsoidal particles Jieqing Gan, Zongyan Zhou, Ruiping Zou, and Aibing Yu	1130
8.4. Other Particle-fluid Flows	
Fluid coupling in DEM simulation using Darcy's law: Formulation, and verification M. Goodarzi, C. Y. Kwok, L. G. Tham, and F. Chen	1134
Polygonal particles in fluids Shi Han Ng and Hans-Georg Matuttis	1138
Fibrous random materials: From microstructure to macroscopic properties K. Yazdchi and S. Luding	1142
CFD analysis of the aerosolization of carrier-based dry powder inhaler formulations Qi (Tony) Zhou, Zhenbo Tong, Patricia Tang, Runyu Yang, and Hak-Kim Chan	1146
Continuous particle manipulation and separation in a hurdle-combined curved microchannel using DC dielectrophoresis Ming Li, Shunbo Li, Weihua Li, Weijia Wen, and Gursel Alici	1150
Numerical study of vertical pneumatic conveying: Effect of friction coefficient K. Li, S. B. Kuang, R. P. Zou, R. H. Pan, and A. B. Yu	1154
Study of raceway in COREX melter gasifier by using three progressive methods Jun-jie Sun, Zhi-guo Luo, Zhan-xia Di, Chong-lin Liu, Zong-shu Zou, and Yan-Song Shen	1158

Numerical study of jet-induced cratering of a granular bed: Effect of gravity S. B. Kuang, C. Q. LaMarche, J. S. Curtis, and A. B. Yu	1162
Magnetic resonance imaging (MRI) study of jet height hysteresis in packed beds Maximilian H. Köhl, Guang Lu, James R. Third, Klaas P. Prüssmann, and Christoph R. Müller	1166
Sensitivity to damping in sand production DEM-CFD coupled simulations Natalia Climent, Marcos Arroyo, Catherine O'Sullivan, and Antonio Gens	1170
Air effects on subharmonic bifurcations of impact in vertically vibrated granular beds Z. H. Jiang, H. Han, R. Zhang, and X. R. Li	1174
Numerical simulation of rip-raps with the distinct element method Livia Mittelbach	1178
Particle scale modelling of the multiphase flow in a dense medium cyclone: Effect of medium-to-	
coal ratio Kaiwei Chu, Jiang Chen, Aibing Yu, and Andrew Vince	1182
9. CONTINUUM MODELLING AND SIMULATION 9.1. Granular Rheology	
Granular statistical mechanics: Volume-stress phase space, equipartition and equations of state Raphael Blumenfeld, Joe F. Jordan, and Sam F. Edwards	1186
Non-linear deformation behavior of granular media by elliptic microstructure based model Kenichi Maeda and Kinya Miura	1190
Modeling of a cohesive granular materials by a multi-scale approach T. K. Nguyen, G. Combe, D. Caillerie, and J. Desrues	1194
Dense annular flows of granular media Alain de Ryck and Olivier Louisnard	1198
From discrete particles to continuum fields in mixtures T. Weinhart, S. Luding, and A. R. Thornton	1202
Mechanisms of energy dissipation in saturated granular mass flows Francesco Federico	1206
Subdiffusive behavior in a two-dimensional granular assembly under shear J. M. Salazar	1210
Micromechanics of deformation non-coaxiality in granular materials Xia Li and Hai-Sui Yu	1214

Continuum stress characteristics inside shear bands Antoinette Tordesillas, John F. Peters, and Jingyu Shi	1218
A hierarchical model for cross-scale simulation of granular media Ning Guo and Jidong Zhao	1222
2D cyclic pure shear of granular materials, simulations and model D. Krijgsman and S. Luding	1226
Eddies, mixing and heat transfer in dense granular flows P. Rognon, T. Miller, and I. Einav	1230
A micromechanical numerical analysis for a triaxial compression of granular materials V. Magnanimo and L. La Ragione	1234
Evolution of the effective moduli for anisotropic granular materials during pure shear N. Kumar, O. I. Imole, V. Magnanimo, and S. Luding	1238
Modeling of time-dependent distributions of impact and kinetic energies of particulate systems Javan D. Tjakra, Nicolas Hudon, Jie Bao, and Runyu Yang	1242
9.2. Process Modelling and Analysis	
Modelling of the mechanical behaviour of two pure PTFE powders during their compaction at	
Carole Frédy, Rodrigo B. Canto, Nicolas Schmitt, Stéphane Roux, and René Billardon	1246
Multi-scale modelling of granular avalanches Krishna Kumar, Kenichi Soga, and Jean-Yves Delenne	1250
A brief investigation into ejection times from a conical mass flow Hopper - Coulomb and conical	
L. A. Fullard and C. E. Davies	1254
Spatial and temporal coarse-graining for DEM analysis C. Labra, J. Y. Ooi, and J. Sun	1258
Energy dissipation of debris flow through pile group obstructions Minglong Fei, Qicheng Sun, Deyu Zhong, and Gordon G. D. Zhou	1262
Determining key variables of the kinetic theory of granular flow using DWS V. Zivkovic, K. Berry, D. H. Glass, and M. J. Biggs	1266
Numerical investigation of solid mixing in a fluidized bed coating process Venkatakrishna Kenche, Yuqing Feng, Danyang Ying, Chris Solnordal, Seng Lim, and Peter J. Witt	1270

Modelling ironmaking blast furnace: Solid flow and thermochemical behaviours Yansong Shen, Baoyu Guo, Aibing Yu, Sheng Chew, and Peter Austin	1274
Technological pretreatment of the synchysite non-oxidized ore B. Munkhtsetseg and G. Burmaa	1278
Dusting control of magnesium slag produced by Pidgeon process Laner Wu, Qixing Yang, Fenglan Han, and Chun Du	1282
Numerical simulations of solid-liquid stirred tank with an improved Intermig impeller Hongliang Zhao, Ting'an Zhang, Yan Liu, Zimu Zhang, and Chao Zhang	1286
Discharge of a granular silo as a visco-plastic flow L. Staron, PY. Lagrée, and S. Popinet	1290
Effect of particle fineness on the finely disseminated iron ore for beneficiation T. S. Qiu, W. X. Zhang, X. H. Fang, and G. K. Gao	1294
Comparison of two methods to study the gas-liquid flows in a continuous slab casting mold Zhiguo Luo, Chonglin Liu, Tao Zhang, Junjie Sun, Zongshu Zou, and Yansong Shen	1296
Numerical simulations of gas-liquid flow in the gas injection process with mechanical stirring Pin Shao, Ting'an Zhang, Yan Liu, Zimu Zhang, and Dongxing Wang	1300
Experimental study of bottom blown oxygen copper smelting process for water model Dongxing Wang, Yan Liu, Zimu Zhang, Pin Shao, and Ting'an Zhang	1304
Particle scale modelling of the multiphase flow in a dense medium cyclone: Effect of near gravity	
J. Chen, K. W. Chu, A. B. Yu, A. Vince, G. D. Barnett, and P. J. Barnett	1308
Author Index	1313