

NUMISHEET 2014: The 9th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes:

Part A Benchmark Problems and Results and Part B General Papers

Melbourne, Australia

6-10 January 2014

Editors

Part A: Jeong Whan Yoon and Thomas B. Stoughton Part B: Jeong Whan Yoon, Bernard Rolfe, John H. Beynon, and Peter Hodgson

All papers have been peer reviewed.

Sponsoring Organizations

AutoForm ESI WISCO KIMS (Korea Institute of Materials Science) Ford JSTAMP Space Solution LG Electronics

Conference Organizers

Deakin University University of Adelaide Swinburne University of Technology

Melville, New York, 2013 AIP Proceedings

Volume 1567

Editors

Jeong Whan Yoon

Deakin University School of Engineering & Institute for Frontier Materials Geelong Waurn Ponds, VIC 3220 Australia E-mail: j.yoon@deakin.edu.au

Swinburne University of Technology Faculty of Engineering & Industrial Sciences Hawthorn, VIC 3122 Australia E-mail: jyoon@swin.edu.au

Thomas B. Stoughton

General Motors R&D Center Warren, MI 48090-9055 USA E-mail: thomas.b.stoughton@gm.com

Bernard Rolfe

Deakin University School of Engineering & Institute for Frontier Materials, Geelong Waurn Ponds, VIC 3220 Australia E-mail: bernard.rolfe@deakin.edu.au

John H. Beynon

University of Adelaide Faculty of Engineering, Computer and Mathematical Sciences Ingkarni Wardli The University of Adelaide, SA 5005 Australia E-mail: john.beynon@adelaide.edu.au

Peter Hodgson

Deakin University Institute for Frontier Materials Geelong Waurn Ponds, VIC 3220 Australia E-mail: peter.hodgson@deakin.edu.au

Authorization to photocopy items for internal or personal use, beyond the free copying permitted under the 1978 U.S. Copyright Law (see statement below), is granted by the AIP Publishing LLC for users registered with the Copyright Clearance Center (CCC) Transactional Reporting Service, provided that the base fee of \$30.00 per copy is paid directly to CCC, 222 Rosewood Drive, Danvers, MA 01923, USA: http://www. copyright.com. For those organizations that have been granted a photocopy license by CCC, a separate system of payment has been arranged. The fee code for users of the Transactional Reporting Services is: 978-0-7354-1195-1/13/\$30.00

No claim is made to original U.S. Government works.

Permission is granted to quote from the AIP Conference Proceedings with the customary acknowledgment of the source. Republication of an article or portions thereof (e.g., extensive excerpts, figures, tables, etc.) in original form or in translation, as well as other types of reuse (e.g., in course packs) require formal permission from AIP Publishing and may be subject to fees. As a courtesy, the author of the original proceedings article should be informed of any request for republication/reuse. Permission may be obtained online using RightsLink. Locate the article online at http://proceedings.aip.org, then simply click on the RightsLink icon/"Permissions/Reprints" link found in the article abstract. You may also address requests to: AIP Publishing Office of Rights and Permissions, Suite 1NO1, 2 Huntington Quadrangle, Melville, NY 11747-4502, USA; Fax: 516-576-2450; Tel.: 516-576-2268; E-mail: rights@aip.org.

ISBN 978-0-7354-1195-1'*Qtki kpcrlRtkpv+ ISSN 0094-243X Printed in the United States of America

AIP Conference Proceedings, Volume 1567 NUMISHEET 2014 Proceedings of the 9th International Conference and Workshop

Table of Contents

Preface	
Jeong Whan Yoon, John H. Beynon, and Peter Hodgson	1
Acknowledgement	2
Organization NUMISHEET2014	4
Sponsors Numisheet2014	7

PART A

MATERIAL CHARACTERIZATIONS FOR BENCHMARK 1 AND BENCHMARK 2	
Material characterizations for Benchmark 1 and Benchmark 2	
Thomas B. Stoughton, Ming F. Shi, Gang Huang, and Jeong Whan Yoon	9
BENCHMARK 1 - NONLINEAR STRAIN PATH FORMING LIMIT OF A REVERSE DRAW	
Benchmark 1 - Nonlinear strain path forming limit of a reverse draw: Part A: Benchmark	
description	
Benchmark-1 Committee	15
Benchmark 1 - Nonlinear strain path forming limit of a reverse draw: Part B: Physical tryout report	
Hongzhou Li, Jorge S. Cisneros, Xin Wu, Xu Chen, Xin Xie, Nan Xu, and Lianxiang Yang	27
Benchmark 1 - Nonlinear strain path forming limit of a reverse draw: Part C: Benchmark analysis	
Xin Wu	39
BENCHMARK 2 - SPRINGBACK OF A DRAW / RE-DRAW PANEL	
Benchmark 2 - Springback of a draw / re-draw panel: Part A: Benchmark description	

springback of a draw / re draw panel. Fart A. Denemiark description	
John E. Carsley, Cedric Xia, Lianxiang Yang, Thomas B. Stoughton, Siguang Xu,	
Susan E. Hartfield-Wünsch, Jingjing Li, and Zhong Chen	177

Benchmark 2 - Springback of a draw / re-draw panel: Part B: Physical tryout report John E. Carsley, Xu Chen, Zheng Pang, and Yuyang Liu	183
Benchmark 2 - Springback of a draw / re-draw panel: Part C: Benchmark analysis John E. Carsley, Cedric Xia, Lianxiang Yang, Thomas B. Stoughton, Siguang Xu, Susan E. Hartfield-Wünsch, and Jingjing Li	189
BENCHMARK 3 - INCREMENTAL SHEET FORMING Benchmark 3 - Incremental sheet forming Michael Elford, Pradip Saha, Daeyong Seong, MD Ziaul Haque, and Jeong Whan Yoon	227
BENCHMARK WRINKLING DURING CUP DRAWING Benchmark 4 - Wrinkling during cup drawing Robert Dick, Rui Cardoso, Mariana Paulino, and Jeong Whan Yoon	262
PART B	
PLENARY PAPERS	
Plasticity-damage couplings in titanium Oana Cazacu and Benoit Revil Baudard	328
Path-independent formability formulation for ductile anisotropic sheets Kwansoo Chung	336
Ductile damage at large plastic strains: Models, numerical issues and transition to fracture J. M. A. Cesar de Sa	344
FORMABILITY	
Evolving texture-informed anisotropic yield criterion for sheet forming J. Gawad, D. Banabic, D. S. Comsa, M. Gologanu, A. Van Bael, P. Eyckens, P. Van Houtte, and D. Roose	350
Forming limits for three-dimensional stress states and nonlinear loading paths Morteza Nurcheshmeh and Daniel E. Green	356
Analysis of strain paths of sheared edges during hole expansion tests Philipp Koebel, Chester J. Van Tyne, Pavel Hora, and Niko Manopulo	362
Determination of warm forming limit diagram for ZEK100 Nima Panahi, Michael Worswick, and Tim Skszek	366

Anisotropy effect on the stress-based fracture forming limit diagram using a modified Lou-Huh ductile fracture criterion	
Namsu Park and Hoon Huh	370
Prediction of FLD of sheet metals based on crystal plasticity model	
Jong-Bong Kim, Seung-Hyun Hong, and Jeong-Whan Yoon	374
Formability analysis of austenitic stainless steel-304 under warm conditions	
Jayahari Lade, Swadesh Kumar Singh, Balu Naik Banoth, and Amit Kumar Gupta	378
Hydroformability of 980MPa and 1180MPa ultra-high strength FRW steel tubes	
Yuji Hashimoto, Tatsuro Katsumura, Masatoshi Aratani, Osamu Sonobe, and Yasushi Kato	382
criterion (MMFC) and the homogeneous anisotropic hardening model (HAH)	
Niko Manopulo, Philip Peters, Maysam Gorji, and Pavel Hora	386
Determination of forming limit diagram for tube hydroforming based on the strain rate change	
criterion	
Guolin Hu, Lianfa Yang, and Jianwei Liu	390
Forming limits of anisotropic sheets with non-power-law hardening	
Jieshi Chen, Jun Chen, and Cedric Xia	394
Determining a probabilistic forming limit curve	
N. Small, S. Hazra, D. Williams, R. Roy, T. Nichols, R. Aylmore, and D. Hollingdale	398
Finite element modeling and prediction of thickness strains of deep drawing using ANN	
and LS-Dyna for ASS304	
K. Sajun Prasad, Raghuram Karthik Desu, Jayahari Lade, Swadesh Kumar Singh, and Amit Kumar Gupta	402
Experimental and numerical investigation of hole expansion on CPW800 steel M L Gipiela C Nikhare and P V P Marcondes	406
	100
Development of an interfacial model for forming of a metal-composite material system	410
Shankar Kaiyanasundaram, Paul Compsion, and Luke Mosse	410
Experimental and numerical simulation analytical studies for forming limit of 2024 aluminum	
alloy on synchronous cooling hot sheet metal forming M. H. Chen, N. Wang, and G. L. Chen	414
Prediction of forming limit strains of thin foils using shim	410
Sanket vivek Josni, Konit A. Bade, and K. Narasimnan	418

INSTABILITIES & SURFACE DEFECTS	
Twisting of sheet metals	
C. H. Pham, S. Thuillier, and P. Y. Manach	422
Influence of prestrain on the occurrence of PLC effect in an Al-Mg alloy	
P. Y. Manach, J. Coër, H. Laurent, C. Bernard, and S. Thuillier	428
An integrated approach for prediction of surface deflection by using stoning simulation	
and curvature analysis	
Wan-Jin Chung, Jin-Hak Kim, and Yun-Chan Chung	433
Surface evaluation method and stamping simulation for surface deflection of automotive outer	
nanels	
Naoki Ichijo, Noritoshi Iwata, Takamichi Iwata, Taichi Mita, Masatomo Nijhara,	
and Hideo Tsutamori	439
	,
Effect of shear outting induced strain on adge great sensitivity of worknices	
Mathias Liewald and Marcel Gall	113
Maunas Eleward and Marcel Gan	445
Mechanical stability analysis on spherical sandwich sheet at low temperature loading conditions	4.4.0
Shanshuai Wang, Shuhui Li, and Zhimin Li	448
Numerical investigation on the effect of skin passing and roller leveling on the bending behaviour	
of mild steel	150
Jascha Marnette, Bernard Rolfe, Peter Hodgson, and Matthias Weiss	452
A novel inspection system for cosmetic defects	
S. Hazra, R. Roy, D. Williams, R. Aylmore, and D. Hollingdale	456
Size effects on free surface roughening and necking behavior of metal thin sheets using	
inhomogeneous finite element material model	
Tsuyoshi Furushima, Ken-ichi Manabe, and Sergei Alexandrov	460
CONSTITUTIVE MODELLING	
Gurson-type elastic-plastic damage model based on strain-rate plastic potential	,
Tudor Balan and Oana Cazacu	464
Effect of pre-straining on the evolution of material anisotropy in rolled magnesium alloy AZ31	
sheet	
H. Qiao, X. Q. Guo, and P. D. Wu	468

vi

Tailored work hardening descriptions in simulation of sheet metal forming Henk Vegter, Hans. Mulder, Peter van Liempt, and Jan Heijne	474
Modeling of anisotropic hardening of sheet metals Fusahito Yoshida, Hiroshi Hamasaki, and Takeshi Uemori	482
Rapid implementation of advanced constitutive models Bojan Starman, Miroslav Halilovič, Marko Vrh, and Boris Štok	488
Study on stress-strain response of multi-phase TRIP steel under cyclic loading W. J. Dan, Z. G. Hu, W. G. Zhang, S. H. Li, and Z. Q. Lin	492
Anisotropic hardening model based on non-associated flow rule and combined nonlinear kinematic hardening for sheet materials	
Aboozar Taherizadeh, Daniel E. Green, and Jeong W. Yoon	496
The strain path dependence of plastic deformation response of AA5754: Experiment and modeling	
Minh-Son Pham, Lin Hu, Mark Iadicola, Adam Creuziger, and Anthony D. Rollett	500
Strain rate-dependent flow stress curves in the large deformation range Gihyun Bae	504
A new representation of linear transformation tensor for the description of plastic subsequent anisotropy	
Shun-lai Zang, Myoung-gyu Lee, Ji Hoon Kim, and Mohsen Safaei	508
On the influence of the yield parameters identification procedure in cylindrical cups earing prediction	
Pedro D. Barros, Vasco M. Simões, Diogo M. Neto, Marta C. Oliveira, José L. Alves, and Luís F. Menezes	512
Measurement and material modeling of biaxial work-hardening behavior for pure titanium sheet Takeshi Sumita and Toshihiko Kuwabara	516
A study of 6th-order polynomial type 3D yield function and its application Toshirou Amaishi and Hiroshi Fukiharu	520
Variation of yield loci in finite element analysis by considering texture evolution for AA5042	
Jonghun Yoon, Kyungjin Kim, and Jeong Whan Yoon	524

Planar anisotropy evaluation of new CaO-added Al5052 alloy sheet with plane stress yield functions	
J. Lee, J. H. Song, S. Lee, E. Z. Kim, Y. B. Kim, C. H. Cheon, and G. A. Lee	528
Effect of tensile twins on the subsequent plastic deformation in rolled Mg-3Al-1Zn alloy Jonghun Yoon, Se-Jong Kim, and Youngseon Lee	532
Combination of the strain dependent Yld2000 model with an extended HAH model Philip Peters, Niko Manopulo, and Pavel Hora	536
Constitutive model of AZ31B sheet at various pre-strains and temperatures Heon Young Kim, Oh Suk Seo, Chung An Lee, Ji Hoon Kim, Ngoc-Trung Nguyen, and Myoung-Gyu Lee	540
An alternative approach for modeling strength differential effect in sheet metals with symmetric	
Srihari Kurukuri and Michael J. Worswick	544
Experiment and numerical simulation on cross-die forming of SUS304 metastable austenitic stainless using a modified Johnson-Cook model Xifeng Li, Wei Ding, Liyan Ye, and Jun Chen	548
The coupled thermo-mechanical-microstructural finite element modeling of hot stamping process	
Xiangjun Chen, Namin Xiao, Dianzhong Li, Guangyao Li, and Guangyong Sun	552
FRACTURE AND DAMAGE	
Prediction of formability for non-linear deformation history using generalized forming limit concept (GFLC)	
Wolfram Volk and Joungsik Suh	556
Modified Mohr-Coulomb fracture model for anisotropic sheet materials under limited triaxial	
Thomas B. Stoughton and Jeong Whan Yoon	562
Modeling of shear ductile fracture considering a changeable cut-off value for stress triaxiality Yanshan Lou, Jeong Whan Yoon, and Hoon Huh	567
Hardness-based plasticity and fracture model for quench-hardenable boron steel (22MnB5) L. Greve, T. K. Eller, M. Medricky, and M. Andres	571
Forming limits in the hole-flanging process by coupled and uncoupled damage models A. Kacem, A. Jégat, A. Krichen, and P. Y. Manach	575

Application of MMC model on simulation of shearing process of thick hot-rolled high strength	
Liang Dong, Shuhui Li, Bing Yang, and Yongsheng Gao	579
Stamping failure analysis of advanced high strength steel sheet based on non-uniform local deformation through thickness Sheng Huang, Yixi Zhao, and Chunfeng He	583
Modeling failure for nonlinear strain paths with CrachFEM A. Heath, H. Gese, G. Oberhofer, and H. Dell	587
Prediction of edge failure of dual phase 780 steel subjected to hole expansion David Anderson, Clifford Butcher, and Michael Worswick	591
Analysis of failure of resistance spot welding for advanced high strength steel Wooram Noh, Youngwoo Koh, Kwansoo Chung, and Xin Yang	595
Numerical models for the prediction of failure for multilayer fusion Al-alloy sheets Maysam Gorji, Bekim Berisha, Pavel Hora, and Jürgen Timm	599
Characterizing the stretch-flangeability of hot rolled multiphase steels N. Pathak, C. Butcher, M. Worswick, and J. Gao	603
Validation of formability of laminated sheet metal for deep drawing process using GTN damage model Yongbin Lim, Wan-gi Cha, Sangjin Ko, and Naksoo Kim	607
MATERIALS CHARACTERIZATION AND EXPERIMENTAL TESTING METHODS Augmented use of standard mechanical testing measurements for sheet metal forming: Digital image correlation for localized necking Mark A. Iadicola	614
Cruciform specimen design and validation for constitutive identification of sheet metal Nengxiu Deng and Yannis P. Korkolis	620
Development of a benchmark factor to detect wrinkles in bending parts Bernd Engel, Bernd-Uwe Zehner, Christian Mathes, and Christopher Kuhnhen	624
On stress measurement errors in biaxial tensile testing and the impact on yield surface identification Sam Coppieters, Tomoyuki Hakoyama, Daisaku Yanaga, Pascal Lava, and Toshihiko Kuwabara	628

Advances in post-necking flow curve identification of sheet metal through standard tensile testing Sam Coppieters, Steven Cooreman, Dimitri Debruyne, and Toshihiko Kuwabara	632
Measurement of the forming limit stress curve using a multi-axial tube expansion test with a digital image correlation system Tomoyuki Hakoyama and Toshihiko Kuwabara	636
The plane strain shear fracture of the advanced high strength steels Li Sun	642
Experimental and numerical study of restraining force development in inclined draw beads K. S. Raghavan, R. Narainen, and L. M. Smith	646
Comparison of determination of biaxial true stress – true strain curves by the use of plane strain compression test and bulge test BA. Behrens, S. Hübner, A. Bouguecha, N. Grbic, and M. Vucetic	650
Cyclic tension compression testing of AHSS flat specimens with digital image correlation system Lay Knoerr, Nimet Sever, Paul McKune, and Timo Faath	654
Characterization of a dual phase steel using tensile and free bending tests Joseba Mendiguren, Stijn Hanselman, Eisso Atzema, Peter Hodgson, Bernard Rolfe, and Matthias Weiss	659
In-situ stress analysis with X-Ray diffraction for yield locus characterization of sheet metals A. Güner, B. Zillmann, T. Lampke, and A. E. Tekkaya	663
Characteristics of the aluminum alloy sheets for forming and application examples Naoyuki Uema and Mineo Asano	667
Acquisition of material properties in production for sheet metal forming processes Jörg Heingärtner, Anja Neumann, Dirk Hortig, Yasar Rencki, and Pavel Hora	671
Investigation on the tensile behavior of fiber metal laminates based on self-reinforced polypropylene Byoung-Eon Lee, Tom Park, Jeong Kim, Beom-Soo Kang, and Woo-Jin Song	675
An evaluation technique for forming limit strains of zircaloy-4 and zirlo sheets based on FEA solutions Minsoo Kim, Sungsik Bang, Felix Rickhey, Hyungyil Lee, and Naksoo Kim	679

Mechanical weld zone characterization for the numerical simulation of forming friction stir welded aluminum blanks	
Tobias Gnibl, Sebastian Suttner, and Marion Merklein	684
Enhancing deep drawability through strain dispersion using stress relaxation Hiroyuki Yamashita and Hiroaki Ueno	688
Accurate parameter identification for crystal plasticity finite-element analysis in a magnesium alloy sheet	(02
Takayuki Hama, Naohiro Hosokawa, and Hironiko Takuda	692
SPRINGBACK	
Robust springback compensation Bart Carleer and Peter Grimm	696
Biaxial unloading and springback behavior of dual-phase DP590 steel using cruciform specimens Yannis P. Korkolis, Nengxiu Deng, and Toshihiko Kuwabara	700
An experimental device for cyclic tension and compression tests Fuh-Kuo Chen, Heng-Kuang Tsai, and Shi-Wei Wang	705
Incremental analysis of springback and kinematic hardening by the variation of tension during	
deep drawing H. ul Hassan, A. Güner, N. Ben Khalifa, and A. E. Tekkaya	709
Simulation of springback and microstructural analysis of dual phase steels T. Sri. Kalyan, Xing Wei, Joseba Mendiguren, and Bernard Rolfe	713
Robust process design and springback compensation of a decklid inner Xiaojing Zhang, Peter Grimm, Bart Carleer, Weimin Jin, Gang Liu, and Yingchao Cheng	717
Springback simulation and springback compensation of an aluminum outer panel Xiaojing Zhang, Peter Grimm, Renping Luo, Zengqiang Wang, Shenghua Zhang, and Yuqiang Li	722
Computational stoning method for surface defect detection Ninshu Ma and Xinhai Zhu	728
Springback compensation algorithm for tool design in creep age forming of large aluminum alloy	
Xiaolong Xu, Lihua Zhan, and Minghui Huang	732

The effectiveness of FE model for increasing accuracy in stretch forming simulation of aircraft	
skin panels	50.0
A. Kono, T. Yamada, and S. Takahashi	736
Analysis of hardening behavior of sheet metals by a new simple shear test method taking into account the Bauschinger effect	
Sungsik Bang, Felix Rickhey, Minsoo Kim, Hyungyil Lee, and Naksoo Kim	740
Investigation into springback characteristics of two HSS sheets during cold v-bending	744
Gang Fang and Wei-Kan Gao	/44
Springback assessment based on level set interpolation and shape manifolds in deep drawing	
Guenhael Le Quilliec, Balaji Raghavan, Piotr Breitkopf, Alain Rassineux, Pierre Villon,	
and Jean-Marc Roelandt	748
Springback analysis of ultra high strength steel	
Kenji Tenma, Futoshi Kina, and Wataru Suzuki	752
An efficient numerical method for predicting the evolution of internal variables and springback	
in bending under tension at large strains	750
Serger Alexandrov and Feau-Ken Jeng	/38
NUMERICAL METHODS & MULTISCALE MODELLING	
Arbitrary Lagrangian Eulerian simulations of stationary and non-stationary metal forming	
processes	
R. Boman and JP. Ponthot	762
Locking and its treatment for nonlinear isogeometric analysis	
Rui P. R. Cardoso and Jose M. A. Cesar de Sa	768
Numerical and experimental analysis on the formability of tailor welded blanks based on digital	
Image correlation Vanhua Li Jianning Lin and Ruiguan Guo	772
	112
FE simulation of magnesium alloy microstructure evolution in tension	
Michal Gzyl and Andrzej Rosochowski	776
Evolutionary optimization for conditions of variable BHF for springback reduction in	
AHSS-mild steel TWB	
NT. Nguyen, N. Chakraborti, F. Barlat, and MG. Lee	780

A study on blank optimization for blow forming of Inconel 718 to secure formability at high	
temperature	
Joon-Tae Yoo, Jong-Hoon Yoon, Ho-Sung Lee, and Sung-Kie Youn	784
Multi criteria anisotropic adaptive remeshing for sheet metal forming in FORGE®	
Etienne Perchat, Guillaume François, and Thierry Coupez	788
Simulation of cylindrical cup drawing of AZ31 sheet metal with crystal plasticity finite element method	
Weiqin Tang, Dayong Li, Shaorui Zhang, and Yinghong Peng	792
Systematic study of polycrystalline flow during tension test of sheet 304 austenitic stainless steel	
at room temperature Juan D. Muñoz-Andrade	796
Numerical simulation for the magnetic force distribution in electromagnetic forming of small size	
flat sheet	
Xiaowei Chen, Wenping Wang, and Min Wan	800
Development of measurement method of draw bead parameters for CAE analysis	
Satoshi Shirakami, Takayuki Hama, Tohru Yoshida, Hirohiko Takuda, Masaaki Mizumura, and Masayoshi Suehiro	804
A sheet metal forming simulation of automotive outer panels considering the behavior of air in die cavity	
Kwang Yong Choi, Yun Chang Kim, Hee Kwan Choi, Chul Ho Kang, and Heon Young Kim	808
Numerical analysis of spiral roller of chain-die former	
Shenglan Zhu, Yong Sun, and Shichao Ding	812
INCREMENTAL SHEET FORMING	
Stress-based predictions of formability and failure in incremental sheet forming	
MD Ziaul Haque and Jeong Whan Yoon	816
Numerical simulation of high speed incremental forming of aluminum alloy	
Ambrogio Giuseppina, Citrea Teresa, Filice Luigino, and Gagliardi Francesco	820
Application of a shear-modified GTN model to incremental sheet forming	
Jacob Smith, Rajiv Malhotra, W. K. Liu, and Jian Cao	824
Effect of relative tool position on the geometric accuracy of accumulative DSIF	
Ebot E. Ndip-Agbor, Jacob Smith, Rui Xu, Rajiv Malhotra, and Jian Cao	828

Evaluation of the dimensional accuracy in single point incremental forming R. Araújo, M. B. Silva, L. Montanari, P. Teixeira, A. Reis, and P. A. F. Martins	832
Benefits of a new Bi-Mesh technique applied to incremental forming simulation with FORGE Etienne Perchat, Pascal De Micheli, Richard Ducloux, and Lionel Fourment	836
Tool path influence on electric pulse aided deformation during incremental sheet metal forming J. Asgar, R. Lingam, and V. N. Reddy	840
Fast simulation of asymmetric incremental sheet metal forming Markus Bambach	844
Single-point incremental forming of 2024-T3 aluminum alloy sheets Xiaoqiang Li, Honghan Yu, Guiqiang Guo, and Dongsheng Li	848
Numerical simulation of a conical shape made by single point incremental J. I. V. de Sena, C. F. Guzman, L. Duchene, A. M. Habraken, R. A. F. Valente, and R. J. Alves de Sousa	852
Formability of extra deep drawn steel in single point incremental forming Suresh Kurra and Srinivasa Prakash Regalla	856
Geometrical and FEA study on Millipede Forming Lingran Kong, Di Tang, Shichao Ding, and Yuankun Zhang	860
Influence of laser assisted single point incremental forming on the accuracy of shallow sloped parts	
Amirahmad Mohammadi, Hans Vanhove, Albert Van Bael, and Joost R. Duflou	864
An analytical approach for investigation of the incremental sheet forming process Bin Lu, Yang Fang, Dongkai Xu, and Jun Chen	868
ROLL FORMING Numerical investigation about the effect of increasing the number of forming passes on the quality of AHSS roll formed products	
Ossama Mamdouh Badr, Bernard Rolfe, Peter Hodgson, and Matthias Weiss	872
The effect of forming strategy on the longitudinal bow in roll forming of advanced high strength steel	
Ossama Mamdouh Badr, Bernard Rolfe, Peter Hodgson, and Matthias Weiss	876
Roll forming of eco-friendly stud Y. T. Keum, S. Y. Lee, T. H. Lee, and J. K. Sim	880

The study on deformation characterization in micro rolling for ultra-thin strip H. B. Xie, K. Manabe, T. Furushima, and Z. Y. Jiang	888
The effect of tooling design parameters on web-warping in the flexible roll forming of UHSS Jingsi Jiao, Bernard Rolfe, Joseba Mendiguren, Lander Galdos, and Matthias Weiss	892
Effect of temper rolling on final shape defects in a V-section roll forming process Akbar Abvabi, Bernard Rolfe, Peter D. Hodgson, and Matthias Weiss	896
Sensitivity analysis of roll load, torque and material properties in the roll forming process Buddhika Abeyrathna, Bernard Rolfe, Peter Hodgson, and Matthias Weiss	900
Numerical simulation of X90 UOE pipe forming process Tianxia Zou, Qiang Ren, Yinghong Peng, Dayong Li, Ding Tang, Jianzeng Han, Xinwen Li, and Xiaoxiu Wang	904
Mechanism of cut end deformation of hat shape channel steel by roll forming Siti Nadiah binti Mohd Saffe, Takuo Nagamchi, and Hiroshi Ona	908
FRICTION AND CONTACT Boundary and mixed lubrication friction modeling under forming process conditions V. T. Meinders, J. Hol, and A. H. van den Boogaard	912
Nonlinear friction model for servo press simulation Ninshu Ma, Nobuhiko Sugitomo, Takunori Kyuno, Shintaro Tamura, and Tetsuo Naka	918
Investigation on frictional characteristics and drawbead restraining force of steel with/without	
Lianfeng Chen, Tianran Zheng, Qing Chen, and Jun Zhang	922
Numerical modeling of size effect in micro hydromechanical deep drawing Hideki Sato, Ken-ichi Manabe, Dongbin Wei, and Zhengyi Jiang	926
INNOVATIVE FORMING METHODS	
functional components Thomas Schneider, Ulrich Vierzigmann, and Marion Merklein	930
Analysis of local warm forming of high strength steel using near infrared ray energy W. H. Yang, K. Lee, E. H. Lee, and D. Y. Yang	934

The tensile electroplasticity of magnesium AZ31 alloy with a single pulse of electric current Nguyen Thai Vinh, Min-Sung Kim, Hyeong-Ho Yu, Sung-Tae Hong, Moon-Jo Kim, Heung-Nam Han, and Kyung-Sik Han	938
Formability improvement in multi-stage deep drawing of AA5182 with the aid of high frequency induction beating	
Keun Park and Jong-Han Park	942
Numerical analysis of temperature distribution and material deformation of thin foils in micro metal forming assisted by resistance heating Q. Zheng, T. Shimizu, and M. Yang	946
An investigation of electroplastic effect on formability of AZ31B sheet metal Huanyang Xie, Jianfeng Wang, Fang Peng, Kai Liu, and Xianghuai Dong	950
Numerical and experimental evaluation of laser forming process for the shape correction in ultra high strength steels J. H. Song, J. Lee, S. Lee, E. Z. Kim, N. K. Lee, S. J. Park, A. Chu, and G. A. Lee	954
Theoretical and experimental study of the rule for heat transfer coefficient in hot stamping of high strength steels Xianhong Han, Xin Hao, Kun Yang, and Yaoyao Zhong	958
Numerical simulation of temperature field, microstructure evolution and mechanical properties of HSS during hot stamping Dongyong Shi, Liang Ying, Ping Hu, Wenquan Liu, and Guozhe Shen	962
Efficient simulation of press hardening process through integrated structural and CFD analyses Hariharasudhan Palaniswamy, Pamela Mondalek, Maciek Wronski, and Subir Roy	966
Stamping automotive parts with clinch nut process Paweł Bałon and Andrzej Świątoniowski	971
Study on stretching effect of multiple die forming technology Ji-woo Park, Jeong Kim, and Beom-soo Kang	975
Experimental and numerical investigations on tailored tempering process of a U-channel component with tailored mechanical properties B. T. Tang, S. Bruschi, A. Ghiotti, and P. F. Bariani	979
High temperature deformation behaviour of Haynes 188 alloy subjected to high strain rate loading Woei-Shyan Lee and Hao-Chien Kao	983

Forming an age hardenable aluminum alloy with intermediate annealing Kaifeng Wang, John E. Carsley, Thomas B. Stoughton, Jingjing Li, Lianhong Zhang, and Baiyan He	987
Friction stir welding of stainless steel thin sheets in lap configuration Gianluca Buffa, Livan Fratini, Luigi Filice, and Fabrizio Micari	990
Strength analysis of laser welded lap joint for ultra high strength steel Young Cheol Jeong, Cheol Hee Kim, Young Tae Cho, and Yoon Gyo Jung	994
PRODUCT & PROCESS DESIGN AND OPTIMIZATION New software and hardware concents for an integral in-line quality control in sheet metal	
forming Pavel Hora, Jörg Heingärtner, Philip Peters, and Niko Manopulo	998
Computer aided process planning and die design in simulation environment in sheet metal forming	
Miklós Tisza and Zsolt Lukács	1002
Optimal design at inner core of the shaped pyramidal truss structure Sung-Uk Lee and Dong-Yol Yang	1008
Progress in press forming computer aided analysis for high strength steel sheet applications Jiro Hiramoto, Masaki Urabe, Akinobu Ishiwatari, and Toshiaki Urabe	1012
Direct drive digital servo press with high parallel control Chikara Murata, Jun Yabe, Junichi Endou, and Kiyoshi Hasegawa	1016
Application technologies for effective utilization of advanced high strength steel sheets Masayoshi Suehiro	1020
Blank outline estimation approach of aircraft part for rubber bladder forming Dan Hu, Yidong Bao, and Lei Liu	1024
An approach to predict blank shape for auto-position in multistage sheet metal forming Jiang Chen, Wenliang Chen, and Guokang Du	1028
Statistical investigation of a blank holder force distribution system for a multi-step deep drawing	
process Søren Tommerup, Benny Endelt, and Karl Brian Nielsen	1032

Forming simulation of woven composite fibers and its influence on structural performance Vincent Divine, Erwan Beauchesne, Subir Roy, and Hariharasudhan Palaniswamy	1036
Cooling system optimization analysis for hot forming processes Bonyoung Ghoo, Yasuyoshi Umezu, and Yuko Watanabe	1040
Geometric parameter inverse model for drawbeads based on grey relational analysis and GA-BP Yanmin Xie	1044
The inverse problems of wing panel manufacture processes A. I. Oleinikov and K. S. Bormotin	1048
A modified PMA method to generate sliding constraint surface in multi-step inverse approach Weijie Liu, Ping Hu, Xiangkui Zhang, and Ping Zhou	1052
Design optimization of the tool structure for stamping an automotive part with the high strength	
S. H. Kim, H. J. Choi, J. D. Rho, K. P. Kim, K. D. Park, B. K. Kwon, C. H. Cho, M. J. Kang, and S. M. Bae	1057
Stretching the limits of forming processes by robust optimization: A demonstrator J. H. Wiebenga, E. H. Atzema, and A. H. van den Boogaard	1061
Effect of process parameters on deep drawing of Ti-6Al-4V alloy using finite element analysis Nitin Kotkunde, Aditya D. Deole, A. K. Gupta, and S. K. Singh	1065
Parametric analysis of plastic strain and force distribution in single pass metal spinning Shashank Choudhary, Chiruvolu Mohan Tejesh, Srinivasa Prakash Regalla, and Kurra Suresh	1069
Design study of the geometry of the blanking tool to predict the burr formation of Zircaloy-4	
Jisun Ha, Hyungyil Lee, Dongchul Kim, and Naksoo Kim	1073
Advancements in tailored hot stamping simulations: Cooling channel and distortion analyses Eren Billur, Chao Wang, Colin Bloor, Martin Holecek, Harald Porzner, and Taylan Altan	1079
MODELLING, SIMULATION, AND PROCESSING TECHNOLOGY ON PRODUCT MANUFA	CTURE
FEM simulation on rotating piercing process of double-layer clad sheet with Coulomb friction Gow-Yi Tzou, Yeong-Maw Hwang, and Hsiang-Yu Teng	1085
Manufacture of gradient micro-structures of magnesium alloys using two stage extrusion dies	
and Yeau-Ren Jeng	1089