FOUNDATIONS OF PROBABILITY AND PHYSICS - 6

Växjö, Sweden 14–16 June 2011

EDITORS

Mauro D'Ariano University of Pavia, Italy

Shao-Ming Fei Capital Normal University, Bejing, China

> Emmanuel Haven University of Leicester, UK

Beatrix Hiesmayr University of Vienna, Austria

Gregg Jaeger Boston University, MA, USA

Andrei Khrennikov Linnaeus University, Växjö-Kalmar, Sweden

> Jan-Åke Larsson Linköping University, Sweden

SPONSORING ORGANIZATIONS

International Center for Mathematical Modeling in Physics, Engineering, Economics, and Cognitive Science Linnaeus University, Växjö-Kalmar, Sweden

Melville, New York, 2012 AIP | CONFERENCE PROCEEDINGS 1424

Editors

Mauro D'Ariano Dipartimento di Fisica A. Volta, QUIT Group University of Pavia Via Bassi 6 Pavia 27100 Italy

E-mail: dariano@unipv.it Shao-Ming Fei

School of Mathematical Sciences Capital Normal University Beijing 100048 China

E-mail: feishm@mail.cnu.edu.cn

Emmanuel Haven School of Management University of Leicester University Road Leicester, LE1 7RH UK

E-mail: eh76@leicester.ac.uk

Beatrix Hiesmayr Faculty of Physics University of Vienna Boltzmanngasse 5 Vienna 1090 Austria

E-mail: Beatrix.Hiesmayr@univie.ac.at

Gregg Jaeger Natural Sciences and Mathematics Boston University 871 Commonwealth Ave. Boston, MA 02215 USA Andrei Khrennikov International Center for Mathematical Modeling in Physics and Cognitive Science Linnaeus University Växjö-Kalmar 35195 Sweden

E-mail: Andrei.Khrennikov@lnu.se

Jan-Åke Larsson Institutionen för Systemteknik Linköpings Universitet Linköping, 581 83 Sweden

E-mail: jan-ake.larsson@liu.se

Authorization to photocopy items for internal or personal use, beyond the free copying permitted under the 1978 U.S. Copyright Law (see statement below), is granted by the American Institute of Physics for users registered with the Copyright Clearance Center (CCC) Transactional Reporting Service, provided that the base fee of \$30.00 per copy is paid directly to CCC, 222 Rosewood Drive, Danvers, MA 01923, USA: http://www.copyright.com. For those organizations that have been granted a

photocopy license by CCC, a separate system of payment has been arranged. The fee code for users of the

© 2012 American Institute of Physics

No claim is made to original U.S. Government works.

Transactional Reporting Services is: 978-0-7354-1004-6/12/\$30.00

Permission is granted to quote from the AIP Conference Proceedings with the customary acknowledgment of the source. Republication of an article or portions thereof (e.g., extensive excerpts, figures, tables, etc.) in original form or in translation, as well as other types of reuse (e.g., in course packs) require formal permission from AIP and may be subject to fees. As a courtesy, the author of the original proceedings article should be informed of any request for republication/reuse. Permission may be obtained online using RightsLink. Locate the article online at http://proceedings.aip.org, then simply click on the RightsLink icon/"Permissions/Reprints" link found in the article abstract. You may also address requests to: AIP Office of Rights and Permissions, Suite 1NO1, 2 Huntington Quadrangle, Melville, NY 11747-4502, USA; Fax: 516-576-2450; Tel.: 516-576-2268; E-mail: rights@aip.org.

L.C. Catalog Card No. 2011944236 ISBN 978-0-7354-1004-6¹%Qtki kpcriRtkpv+ ISSN 0094-243X Printed in the United States of America

AIP Conference Proceedings, Volume 1424 Foundations of Probability and Physics - 6

Table of Contents

Preface: Foundations of Probability and Physics - 6 Mauro D'Ariano, Shao-Ming Fei, Emmanuel Haven, Beatrix Hiesmayr, Gregg Jaeger, Andrei Khrennikov, and Jan-Åke Larsson	1
GENERAL PROBLEMS OF QUANTUM MECHANICS	
Double blinding-attack on entanglement-based quantum key distribution	
Guillaume Adenier, Masanori Ohya, Noboru Watanabe, Irina Basieva, and Andrei Yu. Khrennikov	9
How much complementarity? Ingemar Bengtsson	17
Gravity versus quantum theory: Is electron really pointlike? Alexander Burinskii	26
System with classical and quantum subsystems in tomographic	
probability representation V. N. Chernega and V. I. Man'ko	33
Two-slit experiment and wave-particle duality N. L. Chuprikov	40
Derivation of Dirac's equation from conformal differential geometry Francesco De Martini and Enrico Santamato	45
Einstein-Podolsky-Rosen-Bohm laboratory experiments: Data analysis	
and simulation H. De Raedt, K. Michielsen, and F. Jin	55
The necessity of entanglement and the equivalency of Bell's theorem with the second law of thermodynamics	
Ian T. Durham	67

Reduction of the wave-packet can be understood within quantum	
mechanics	70
Karl-Erik Eriksson	12
Lower bounds of concurrence for multipartite states	
Xue-Na Zhu, Ming Li, and Shao-Ming Fei	77
On determinism, realism, non-locality and free will	
M. Genovese and F. Piacentini	87
On the description of a frustrated classical system within the conception	
of probability foundations	
A. S. Gevorkyan and H. G. Abajyan	95
Harry de classical and sugartum machabilities differ 9	
now uo classical and quantum probabilities unier:	105
Kavi V. Gomatam	105
The two limits of the Schrödinger equation in the semi-classical	
approximation: Discerned and non-discerned particles in classical	
mechanics	
Michel Gondran and Alexandre Gondran	111
Decoherence time and spin measurement in the Stern-Gerlach	
experiment	
Michel Gondran, Alexandre Gondran, and Abdel Kenoufi	116
Detailed balance	
Karl Gustafson	121
The employed and function of sucretum much chilities. Fundamentian mithaut	
representation	
Richard Healey	134
Tuesda Tientey	101
Combinatorial structure of a holonomic controlled phase gate	
Hoshang Heydari	139
Mean field description of the Dicke model	
Jorge G. Hirsch, Octavio Castaños, Ramón López-Peña, and	
Eduardo Nahmad-Achar	144
Quantum manifolds	
Manuel Hohmann	149
	/

Probability in quantum theory from observer's mathematics point of	
Boris Khots and Dmitriy Khots	154
Bell argument: Locality or realism? Time to make the choice Andrei Khrennikov	160
Extended tensor products and generalization of the notion of entanglement	
Andrei Khrennikov and Elemer E. Rosinger	176
Graded tensor products and entanglement Andrei Khrennikov, Elemer E. Rosinger, and Augustin van Zyl	189
"Spacetime" with the quantum ħ Otto C. W. Kong	195
Information dynamics and new geometric foundations of quantum theory	
Ryszard Paweł Kostecki	200
An example of the stochastic dynamics of a causal set Alexey L. Krugly and Ivan V. Stepanian	206
A contextual extension of Spekkens' toy model Jan-Åke Larsson	211
Quantum tomography of current and voltage states in nanoelectric circuits	
O. V. Man'ko	221
Statistics of observables in the probability representation of quantum and classical system states	
Margarita A. Man'ko and Vladimir I. Man'ko	234
Event-based simulation of interference with alternatingly blocked particle sources K. Michielsen, S. Mohanty, L. Arnold, and H. De Raedt	246
Quantum behaviour mirrored by semi-classical states E. Nahmad-Achar, O. Castaños, R. López-Peña, and J. G. Hirsch	251
Analytic description of the super-radiant regime in the Dicke model E. Nahmad-Achar, O. Castaños, R. López-Peña, and J. G. Hirsch	257

Distance dependence of entangled photons in waveguides A. Khrennikov, B. Nilsson, S. Nordebo, and I. V. Volovich	262
Informational axioms for quantum theory G. Chiribella, G. M. D'Ariano, and Paolo Perinotti	270
On foundational thinking in fundamental physics, from Riemann to Einstein to Heisenberg Arkady Plotnitsky	282
Indistinguishability of single photons from dissimilar single-photon	
Sources Sergey V. Polyakov, Edward B. Flagg, Andreas Muller, Alan Migdall, and Glenn S. Solomon	304
A few remarks on microscopes and telescopes for theoretical physics: How rich locally and large globally is the geometric straight line? Elemér E Rosinger	317
Fundamental tests on higher quantum dimensionality by exploiting the	
photonic orbital angular momentum Eleonora Nagali, Vincenzo D'Ambrosio, Lorenzo Marrucci, and Fabio Sciarrino	324
The multifarious role of entropy Stig Stenholm	335
Quantum field theory without Fock space Roman Sverdlov	343
The instrumentalist aspects of quantum mechanics stem from	
probability theory Louis Vervoort	348
On treatment of communication processes by quantum entropies Noboru Watanabe	354
Possibility, probability and entanglement: Non-contextuality in modal	
quantum mechanics Michael D. Westmoreland and Benjamin Schumacher	364

NOVEL APPROACHES TO QUANTUM THEORY

Physics as quantum information processing: Quantum fields as quantum automata	
Giacomo Mauro D'Ariano	371
Potentiality and causation	
Gregg Jaeger	387
FUNDAMENTALS OF QM TESTED IN HIGH ENERGY PHYSICS	
Experimental tests of quantum mechanics: Pauli exclusion principle	
violation and spontaneous collapse models Catalina Curceanu, S. Bartalucci, A. Bassi, S. Bertolucci,	
M. Bragadireanu, M. Cargnelli, A. Clozza, S. Di Matteo, S. Donadi,	
JP. Egger, C. Guaraldo, M. Illescu, T. Ishiwatari, M. Laubenstein, J. Marton, E. Milotti, D. Pietreanu, T. Ponta, A. Rizzo, A. Romero Vidal.	
A. Scordo, D. L. Sirghi, F. Sirghi, L. Sperandio, O. Vazquez Doce,	
E. Widmann, and J. Zmeskal	397
Status and prospects for Lorentz invariance and CPT violation tests at KLOE and KLOE 2	
Antonio De Santis and KLOE/KLOE-2 Collaborations	407
Quantum mechanics, CPT violation, and neutral kaons	
Antonio Di Domenico	414
A quantum information view on observables in the neutral kaon system	
Beatrix Hiesmayr	424
Quantum gravity, CPT symmetry and entangled states	
Nick E. Mavromatos	433
"WEAK MEASUREMENTS"	

Weak values as context dependent values of observables and Born's rule	
Akio Hosoya	445

QUANTUM-LIKE MODELS OUTSIDE PHYSICS

Quantum-like dynamics of decision-making in prisoner's dilemma game Masanari Asano, Irina Basieva, Andrei Khrennikov, Masanori Ohya, and Yoshiharu Tanaka	453
Non-compositional concepts and quantum tests Kirsty Kitto and Peter Bruza	458
"To be. To be. What does it mean to be?": On quantum-like literary	
models Arkady Plotnitsky	463
Quantum structure in economics: The Ellsberg paradox Diederik Aerts and Sandro Sozzo	487
A quantum-like approach to the stock market Diederik Aerts, Bart D'Hooghe, and Sandro Sozzo	495
Quantum-like model of glucose effect on Escherichia coli growth Masanari Asano, Irina Basieva, Andrei Khrennikov, Masanori Ohya, Yoshiharu Tanaka, and Ichiro Yamato	507
Author Index	513