POROUS MEDIA AND ITS APPLICATIONS IN SCIENCE, ENGINEERING, AND INDUSTRY

Fourth International Conference

Potsdam, Germany June 17 – 22, 2012

EDITOR

Kambiz Vafai University of California, Riverside, CA, USA

SPONSORING ORGANIZATION National Science Foundation, ECI

Melville, New York, 2012 AIP | CONFERENCE PROCEEDINGS 1453 Editor

Kambiz Vafai Department of Mechanical Engineering University of California, Riverside A363 Bourns Hall Riverside, CA 92521-0425, USA

E-mail: Vafai@engr.ucr.edu

Authorization to photocopy items for internal or personal use, beyond the free copying permitted under the 1978 U.S. Copyright Law (see statement below), is granted by the American Institute of Physics for users registered with the Copyright Clearance Center (CCC) Transactional Reporting Service, provided that the base fee of \$30.00 per copy is paid directly to CCC, 222 Rosewood Drive, Danvers, MA 01923, USA: http://www.copyright.com. For those organizations that have been granted a photocopy license by CCC, a separate system of payment has been arranged. The fee code for users of the Transactional Reporting Services is: 978-0-7354-1053-4/12/\$30.00

© 2012 American Institute of Physics

No claim is made to original U.S. Government works.

Permission is granted to quote from the AIP Conference Proceedings with the customary acknowledgment of the source. Republication of an article or portions thereof (e.g., extensive excerpts, figures, tables, etc.) in original form or in translation, as well as other types of reuse (e.g., in course packs) require formal permission from AIP and may be subject to fees. As a courtesy, the author of the original proceedings article should be informed of any request for republication/reuse. Permission may be obtained online using RightsLink. Locate the article online at http://proceedings.aip.org, then simply click on the RightsLink icon/"Permissions/Reprints" link found in the article abstract. You may also address requests to: AIP Office of Rights and Permissions, Suite 1NO1, 2 Huntington Quadrangle, Melville, NY 11747-4502, USA; Fax: 516-576-2450; Tel.: 516-576-2268; E-mail: rights@aip.org.

L.C. Catalog Card No. 2012937146 ISBN 978-0-7354-1053-4"%Qtki kpcriRtkpv+ ISSN 0094-243X Printed in the United States of America

AIP Conference Proceedings, Volume 1453 Porous Media and Its Applications in Science, Engineering, and Industry Fourth International Conference

Table of Contents

Preface: Porous Media and Its Applications in Science, Engineering, and Industry Kambiz Vafai	1
ORAL SESSION 1 TRANSPORT THROUGH POROUS MEDIA (I)	
Fluid flow and solute transport in unevenly-stratified groundwater aquifers Amjad Ali, Robert McKibbin, and Winston L. Sweatman	11
How to calculate tortuosity easily? Maciej Matyka and Zbigniew Koza	17
Fluid flow and aerosol transport in T-shaped 3D structures Ana Serrenho and Antonio F. Miguel	23
A new experimental technique to study the flow in a porous layer via rheological tests Claudia Carotenuto, Francesco Marinello, and Mario Minale	29
ORAL SESSION 2	
POROUS MEDIA CHARACTERISTICS (I) Pore-scale modeling of the impacts of geochemical transformations on flow Sumit Mukhopadhyay	37

Channel segregation during columnar solidification influence of inertia Arvin Kumar, Miha Založnik, Hervé Combeau, B. Goyeau, and D. Gobin	43
The flow around circular cylinders partially coated with porous media Bodo Ruck, Katharina Klausmann, and Tobias Wacker	49

POROUS MEDIA IN BIOLOGICAL AND ENVIRONMENTAL APPLICATIONS

Porous media for catalytic renewable energy conversion Nico Hotz	57
Interaction of gusts with forest edges Bodo Ruck and Michael Tischmacher	63
Towards a porous media model of the human lung Christopher T. DeGroot and Anthony G. Straatman	69

ORAL SESSION 4

NANO AND MICRO SCALE PHENOMENA

Unsteady magnetohydrodynamic flow of a micropolar fluid due to constant accelerated disk with		
no slip conditions in a porous medium F. Shahzad and T. Hayat	77	
Moderate Reynolds number flow through microchannels filled with arrays of micro-cylinders A. Tamayol, J. Yeom, K. Hooman, and M. Akbari	83	
Laws of non-symmetric optimal flow structures, from the macro to the micro scale A. Heitor Reis	89	

ORAL SESSION 5

EXPERIMENTAL AND MEASUREMENT TECHNIQUES

Measurements on the flow of vapors near saturation through porous Vycor glass membranes				
Thomas Loimer, Jirina Reznickova, Petr Uchytil, and Katerina Setnickova				
Experimental investigations of heterogeneous effect on supercritical pressure CO ₂ and water flow				
in sintered porous media				
Peixue Jiang, Shu Luo, and Ruina Xu	103			

ORAL SESSION 6

INDUSTRIAL AND ENVIRONMENTAL FLOW AND HEAT TRANSFER IN POROUS MEDIA (I)

Numerical modeling of ground water flow and contaminant transport in a saturated porous	
medium	
Mahammad S. Valinava Masaamah Sadaahi, Amin II. Mahmavdi, Mina Shahi, and Hadi Candaahi	111

Mohammad S. Valipour, Masoomeh Sadeghi, Amir H. Mahmoudi, Mina Shahi, and Hadi Gandaghi 111

Turbulent heat transfer analysis of silicon carbide ceramic foam as a solar volumetric receiver C. Yang, Y. Sano, S. Iwase, and A. Nakayama	115
Macroscopic turbulent models for heat and mass transfer in catalyst reactors Fabrice Mathey	121
Local heat transfer coefficients and superficial bed porosity of a horizontal cylinder in bubbling fluidized beds of geldart B particles	
Francesco Di Natale and Roberto Nigro	127

MULTIPHASE TRANSPORT IN POROUS MEDIA

A novel numerical approach for the solution of the problem of two-phase, immiscible flow in porous media: Application to LNAPL and DNAPL	
Amgad Salama, Shuyu Sun, and Mohamed F. El Amin	135
Computational modeling technique for numerical simulation of immiscible two-phase flow problems involving flow and transport phenomena in porous media with hysteresis Eduardo Abreu and Wanderson Lambert	141
Non-local equilibrium two-phase flow model with phase change in porous media and its application to reflooding of a severely damaged reactor core A. Bachrata, F. Fichot, M. Quintard, G. Repetto, and J. Fleurot	147

ORAL SESSION 8

OIL RESERVOIRS AND GEOPHYSICS

Theoretical fundamentals, critical issues, and adequate formulation of effective shale gas and condensate reservoir simulation	
Faruk Civan, Deepak Devegowda, and Richard Sigal	155
Modern hardware architectures accelerate porous media flow computations Michal Kulczewski, Krzysztof Kurowski, Michal Kierzynka, Marek Dohnalik, Jan Kaczmarczyk, and Ali Takhini Borujani	161
and An Takom Borujem	101
Modeling of dissolution patterns for carbonate acidizing in the porous media	
Fereshteh Samadi, Feridun Esmaeilzadeh, and Dariush Mowla	167

ORAL SESSION 9

CONVECTION IN POROUS MEDIA

Natural convection	of miscible tw	o phases due to	density	difference in	saturated p	orous media
Tetsuya Suekane	e, Taiyo Kitani,	Koji Kusano, ar	nd Yoshih	iro Deguchi		

173

Natural convection from inclined wall plumes in porous media Jian-Jun Shu	179
Double diffusive convection due to a horizontal wavy surface in a porous medium Mahesha Narayana and Precious Sibanda	185
Analysis and experiment for Darcy flow convection in cylindrical metal foam Nihad Dukhan and Muntadher A. Al-Rammahi	191
On thermosolutal convection in micropolar fluid in porous medium: Soret-Dufour phenomenon Nidhi Goyal and Jaimala	197

ADVANCES IN NUMERICAL TECHNIQUES

A finite volume method for the solution of fluid flows coupled with the mechanical behavior of compacting porous media	
Alessandro Dal Pizzol and Clovis R. Maliska	205
Lattice Boltzmann method for modeling heat and mass transfers during drying of deformable porous medium	
Hussein El Abrach, Hacen Dhahri, and Abdallah Mhimid	211
A finite difference, multipoint flux numerical approach to flow in porous media: Numerical	
examples	
Hossam Osman, Amgad Salama, Shuyu Sun, and Kai Bao	217

ORAL SESSION 11

METAL FOAM HEAT EXCHANGERS

Wet foams hydrophobized by amphiphiles to give Al ₂ O ₃ porous ceramics Ashish Pokhrel, Jung Gyu Park, and Ik Jin Kim	225
Material and height effects on the heat transfer performance of metal foams cooled by air in forced convection	
Simone Mancin, Claudio Zilio, Andrea Diani, and Luisa Rossetto	231
Metal foam heat exchangers for thermal management of fuel cell systems M. Odabaee and K. Hooman	237
Influence of pore and strut shape on open cell metal foam bulk properties Prashant Kumar, Jean-Michel Hugo, Frederic Topin, and Jerome Vicente	243

TRANSPORT THROUGH POROUS MEDIA (II)

Gas flow behavior in extremely low permeability rock	
Yu-Shu Wu and Cong Wang	251
Instability in sloping layered warm-water aquifers	
Robert McKibbin	257
ORAL SESSION 13	
BIO TRANSPORT IN POROUS MEDIUM (I)	
Development of active porous medium filters based on plasma textiles	
Ivan A. Kuznetsov, Alexei V. Saveliev, Srinivasan Rasipuram, Andrey V. Kuznetsov, Alan Brown, and Warren Jasper	265
Adsorption of laminaribiose in an in-situ product recovery process	
Thomas Waluga and Stephan Scholl	271
Influence of microbial biofilms on reactive transport in porous media	
Robin Gerlach and Al. Cunningham	276
Effect of steady streaming on the flow of micropolar fluid through a contricted annulus	
D. Srikanth and D. Srinivasacharya	284

ORAL SESSION 14

BIOTRANSPORT IN POROUS MEDIUM (II)

Chemical ac	ctivation of	gasification	carbon	residue f	for pl	hosp	hate	remova
-------------	--------------	--------------	--------	-----------	--------	------	------	--------

Sari Kilpimaa, Hanna Runtti, Ulla Lassi, and Toivo Kuokkanen

293

ORAL SESSION 15

INDUSTRIAL APPLICATIONS OF POROUS MEDIA

Unconventional gas resources in the U.S.A.	
Jon Schumann and Shapour Vossoughi	301
Air cooling using a matrix of ceramic tubes	
M. Ali, O. Zeitoun, H. Al-Ansary, and A. Nuhait	307

POROUS MEDIA CHARACTERISTICS (II)

Experimental and numerical investigation of the velocity profiles through a porous medium	
downstream of a sharp bend	
Emma Kelly and Ronan Grimes	315
Tomographic immersed boundary method for permeability prediction of realistic porous media:	
Simulation and experimental validation	
D.J. Lopez Penha, B. J. Geurts, M. Nordlund, A. K. Kuczaj, I. Zinovik, C. Winkelmann, and J.	
Mikhal	321
A geometric pore-scale model for predicting the permeability of 3D flow through fibrous porous media	
Sonia Woudberg	327
Analysis of vortex flow through porous media	
Fatemeh Hassanipour	333
ORAL SESSION 17	
INDUSTRIAL APPLICATIONS OF POROUS MEDIA	
Application of macro-cellular SiC reactor to diesel engine-like injection and combustion conditions	
J. Cypris, M. Weclas, P. Greil, L. M. Schlier, N. Travitzky, and W. Zhang	341
Shale caprock integrity under carbon sequestration conditions	
Abiola Olabode, Lauren Bentley, and Mileva Radonjic	347
Analysis and treatment of industrial wastewater through chemical coagulation-adsorption	
process—A case study of Clariant Pakistan limited	
Syed Farman Ali Shah, Abdul Karim Shah, Ahmad Mehdi, Aziza Aftab Memon, Khanji Harijan,	252
and Zeenat M. All	333
Diesel spray interaction with highly porous structures for supporting of liquid distribution in	
space and its vaporization	250
M. wecias, J. Cypris, and I. M. A. Maksoud	359
Transport modeling of skin electroporation and the thermal behavior of the <i>stratum corneum</i>	2.55
Sid Becker	365
Author Index	371