28TH INTERNATIONAL SYMPOSIUM ON RAREFIED GAS DYNAMICS 2012

Zaragoza, Spain 9 – 13 July 2012

Volume 1

EDITORS

Michel Mareschal ZCAM (Zaragoza Center for Advanced Modeling), Zaragoza, Spain

> Andrés Santos Universidad de Extremadura, Badajoz, Spain

All papers have been peer reviewed.

SPONSORING ORGANIZATIONS

Ministry of Economy and Competitivity, Spain Government of Aragon, Department of Industry and Innovation ARAID (Aragoneese Agency for Research and Development) The University of Zaragoza ZCAM (Zaragoza Scientific Center for Advanced Modeling) BiFi, Institute for Biocomputation and Study of Complex Systems PIDSMC (Parallel Interface Direct Simulation Monte Carlo) Software Inc.

Melville, New York, 2012 AIP | CONFERENCE PROCEEDINGS 1501

Editors

Michel Mareschal University of Zaragoza Campus Actur, Edificio I+D C/ Mariano Esquillor s/n 50018 Zaragoza Spain

E-mail: mmaresch@ulb.ac.be

Andrés Santos Universidad de Extremadura Departamento de Física Avda. Elvas s/n 06071 Badajoz Spain

E-mail: andres@unex.es

Authorization to photocopy items for internal or personal use, beyond the free copying permitted under the 1978 U.S. Copyright Law (see statement below), is granted by the American Institute of Physics for users registered with the Copyright Clearance Center (CCC) Transactional Reporting Service, provided that the base fee of \$30.00 per copy is paid directly to CCC, 222 Rosewood Drive, Danvers, MA 01923, USA: http://www.copyright.com. For those organizations that have been granted a photocopy license by CCC, a separate system of payment has been arranged. The fee code for users of the Transactional Reporting Services is: 978-0-7354-1115-9/12/\$30.00

© 2012 American Institute of Physics

No claim is made to original U.S. Government works.

Permission is granted to quote from the AIP Conference Proceedings with the customary acknowledgment of the source. Republication of an article or portions thereof (e.g., extensive excerpts, figures, tables, etc.) in original form or in translation, as well as other types of reuse (e.g., in course packs) require formal permission from AIP and may be subject to fees. As a courtesy, the author of the original proceedings article should be informed of any request for republication/reuse. Permission may be obtained online using RightsLink. Locate the article online at http://proceedings.aip.org, then simply click on the RightsLink icon/"Permissions/Reprints" link found in the article abstract. You may also address requests to: AIP Office of Rights and Permissions, Suite 1NO1, 2 Huntington Quadrangle, Melville, NY 11747-4502, USA; Fax: 516-576-2450; Tel.: 516-576-2268; E-mail: rights@aip.org.

ISBN 978-0-7354-1116-6 (Vol. 1) (Original Print) ISBN 978-0-7354-1117-3 (Vol. 2) (Original Print) ISBN 978-0-7354-1115-9 (Set) (Original Print) ISBN 978-0-7354-1118-0 (CD) ISSN 0094-243X Printed in the United States of America

AIP Conference Proceedings, Volume 1501 28th International Symposium on Rarefied Gas Dynamics 2012

Table of Contents

VOLUME 1

Preface: 28th International Symposium on Rarefied Gas Dynamics Michel Mareschal, Andrés Santos, and Alfonso Tarancón Lafita	1
PLENARY – HAROLD GRAD LECTURE	
Kinetic theory for active and granular particles James W. Dufty and Aparna Baskaran	11
PLENARY – LLOYD THOMAS LECTURE	
Experiments with size-selected clusters: From condensation in molecular beams to dust particles in the Enceladus plume U. Buck	21
PLENARY – GRAEME A. BIRD LECTURE	
Computer experiments on the onset of turbulence Todd H. Weisgraber and Berni J. Alder	30
KINETIC AND TRANSPORT THEORY, BOLTZMANN AND RELATED EQUATIONS	
Analytical and numerical computations for high frequency MEMS Laurent Desvillettes and Silvia Lorenzani	34

Moment method and non-equilibrium thermodynamics of rarefied gas mixture Vladimir M. Zhdanov and Vjacheslav I. Roldughin	43
Nonlinear resonant gas oscillation accompanied with evaporation and condensation Masashi Inaba, Takeru Yano, Kazumichi Kobayashi, and Masao Watanabe	53
On the second-order slip and jump coefficients for the general theory of slip flow Shigeru Takata and Masanari Hattori	59
Automated Boltzmann collision integrals for moment equations Vinay Kumar Gupta and Manuel Torrilhon	67
Model kinetic description for mixtures V. V. Belyi	75
On the non-equilibrium thermodynamics of rarefied gases: Relationships between the Chapman- Enskog and moment methods Vjacheslav I. Roldughin and Vladimir M. Zhdanov	83
Hot atom populations in the terrestrial atmosphere. A comparison of the nonlinear and linearized Boltzmann equations Reinel Sospedra-Alfonso and Bernie D. Shizgal	91
Transport processes and new types of boundary Knudsen layers in a gas flows through thin permeable membranes A. I. Erofeev and O. G. Friedlander	99
Reaction rates and reaction rate constant conception. One-temperature case Evgeniy G. Kolesnichenko and Yuriy E. Gorbachev	107
Numerical analysis of nonlinear acoustic wave propagation in a rarefied gas Tetsuro Tsuji and Kazuo Aoki	115
The sign change effect of the energy flux and other effects in the transitional regime for the Couette problem Alexander A. Abramov and Alexander V. Butkovsky	123
Generating a wave from a wall with changing temperature A. Sakurai, M. Tsukamoto, and S. Takahashi	131
Influence of reaction heat on time dependent processes in a chemically reacting binary mixture Wilson Marques Jr., Gilberto M. Kremer, and Ana Jacinta Soares	137
An ES-BGK model for a gas mixture with bimolecular chemical reaction M. Groppi and G. Spiga	145
A BGK model for gas mixtures S. Brull, V. Pavan, and J. Schneider	153

The Boltzmann equation in special and general relativity Gilberto M. Kremer	160
Transport properties of five-component nitrogen and oxygen ionized mixtures with electronic excitation	1.60
V. A. Istomin and E. V. Kustova	168
New forms of two-particle and one-particle kinetic equations V. L. Saveliev and S. Yonemura	175
New possibilities of kinetic description of nonequilibrium structures Vladimir Aristov, Anna Frolova, and Sergei Zabelok	183
Robust hyperbolic moment closures for CFD James McDonald and Manuel Torrilhon	191
Regularized 13 moment equations for hard spheres Henning Struchtrup and Manuel Torrilhon	199
Slow rarefied gas flow past a cylinder: Analytical solution in comparison to the sphere Armin Westerkamp and Manuel Torrilhon	207
Study of the shock wave structure by regularized Grad's set of equations I. E. Ivanov, I. A. Kryukov, M. Yu. Timokhin, Ye. A. Bondar, A. A. Kokhanchik, and M. S. Ivanov	215
Boundary layers for the nonlinear discrete Boltzmann equation: Condensing vapor flow in the presence of a non-condensable gas	
N. Bernhoff	223
Hydrodynamic model for molecular gases in thermal nonequilibrium Thierry E. Magin, Benjamin Graille, and Marc Massot	231
Lattice group models: GPU acceleration and numerics Stefan Brechtken	239
Heat and mass transfer in gases due to pressure and temperature gradients in a laser radiation field	
I. V. Chermyaninov and V. G. Chernyak	247
Symmetric extensions of normal discrete velocity models A. V. Bobylev and M. C. Vinerean	254

NUMERICAL SOLUTIONS OF KINETIC EQUATIONS AND HYBRID METHODS

Direct numerical solution of model kinetic equations for flows in arbitrary three-dimensional geometries V. A. Titarev 262

"Small" kinetic models for transitional flow simulations Hans Babovsky	272
Deterministic solution of the Boltzmann equation using a discontinuous Galerkin velocity discretization A. Alekseenko and E. Josyula	279
Numerical solution of the moment equations using kinetic flux-splitting schemes Anirudh S. Rana, Manuel Torrilhon, and Henning Struchtrup	287
Kinetic solvers with adaptive mesh in phase space Robert R. Arslanbekov, Vladimir I. Kolobov, and Anna A. Frolova	294
Multipoint conservative projection method for computing the Boltzmann collision integral for gas mixtures O. I. Dodulad and F. G. Tcheremissine	302
Gas-kinetic unified algorithm for aerodynamics covering various flow regimes by solving a Boltzmann model equation Zhihui Li, Aoping Peng, Junlin Wu, and Lin Li	310
Discrete velocity scheme for solving the Boltzmann equation with the GPGPU E. A. Malkov, S. O. Poleshkin, and M. S. Ivanov	318
Conservative deterministic spectral Boltzmann solver near the grazing collisions limit Jeffrey R. Haack and Irene M. Gamba	326
High performance computing with a conservative spectral Boltzmann solver Jeffrey R. Haack and Irene M. Gamba	334
Extension of a hybrid particle-continuum method for a mixture of chemical species Ashley M. Verhoff and Iain D. Boyd	342
Comparison of discrete BGK-Shakhov system with DSMC D. M. Bond, M. N. Macrossan, and V. Wheatley	350
Immersed boundary method for Boltzmann model kinetic equations Cem Pekardan, Sruti Chigullapalli, Lin Sun, and Alina Alexeenko	358
A moving mesh approach for the numerical simulation of gas micro flows G. Dechristé and L. Mieussens	366
A novel discrete velocity method for solving the Boltzmann equation including internal energy and non-uniform grids in velocity space P. Clarke, P. Varghese, D. Goldstein, A. Morris, P. Bauman, and D. Hegermiller	373
A Runge-Kutta discontinuous Galerkin solver for 2D Boltzmann model equations: Verification and analysis of computational performance Wei Su, Alina A. Alexeenko, and Guobiao Cai	381

Locally refined discrete velocity grids for deterministic rarefied flow simulations C. Baranger, J. Claudel, N. Hérouard, and L. Mieussens	389
Investigation of nonequilibrium internal energy excitation in shock waves by means of a spectral- Lagrangian Boltzmann solver	205
Alessandro Munafò, Jeffrey R. Haack, Irene M. Gamba, and Thierry E. Magin	397
Reduced number of discrete velocities for a flow description by lattice Boltzmann theory Jae Wan Shim	405
Molecular kinetic approach to the problem computing sound-wave propagation M. Tsukamoto, A. Sakurai, and R. Iwatsu	409
Unified flow solver for transient rarefied-continuum flows Vladimir I. Kolobov, Robert R. Arslanbekov, Vladimir V. Aristov, Anna A. Frolova, and Sergey A. Zabelok	414
Simulation of nonequilibrium turbulent flows on the basis of the Boltzmann equation V. V. Aristov and O. I. Rovenskaya	422
GPU accelerated kinetic solvers for rarefied gas dynamics Sergey A. Zabelok, Vladimir I. Kolobov, and Robert R. Arslanbekov	429
Application of hybrid N-S/DSMC method in hypersonic transitional flow Zhonghua Li, Zhihui Li, Haiyan Li, and Yanguang Yang	435
A discontinuous Galerkin method for conservation laws coupled with algebraic-type nonlinear	
N. T. P. Le and R. S. Myong	443
Hybrid continuum particle simulations of unsteady flows Sarantis Pantazis	451
Slip effects in compressible turbulent channel flow P. A. Skovorodko	457
Rarefied gas flow through a long circular pipe into vacuum V. A. Titarev and E. M. Shakhov	465
Efficient solution method for rarefied gas flow in long finite-length channels E. M. Shakhov and V. A. Titarev	473
A gas-kinetic scheme for the simulation of turbulent flows Marcello Righi	481

DSMC AND RELATED SIMULATIONS

A comparative study of no-time-counter and majorant collision frequency numerical schemes in	
A. Venkattraman, A. A. Alexeenko, M. A. Gallis, and M. S. Ivanov	489
Rarefied gas flow through a grid of cylinders M. Yu. Plotnikov and A. K. Rebrov	496
Comparison of different approaches to evaluation of statistical error of the DSMC method M. Yu. Plotnikov and E. V. Shkarupa	503
Efficient CUDA implementation in the DSMC method A. V. Kashkovsky, A. A. Shershnev, and M. S. Ivanov	511
A directional rotational relaxation model for nitrogen using molecular dynamics simulation Paolo Valentini, Chongling Zhang, and Thomas E. Schwartzentruber	519
Simulation of electrons in rarefied hypersonic flow fields E. Farbar and I. D. Boyd	527
Investigation on a coupled CFD/DSMC method for continuum-rarefied flows Zhenyu Tang, Bijiao He, and Guobiao Cai	535
DSMC methods for multicomponent plasmas Alexander V. Bobylev, Irina F. Potapenko, and Stanislav A. Karpov	541
On the outflow boundary conditions for subsonic rarefied external flows M. Cevdet Çelenligil	549
Statistical simulation of internal energy exchange in shock waves using explicit transition probabilities Erik Torres and Thierry Magin	557
DSMC study of homogeneous condensation of water in supersonic expansions Arnaud Borner, Zheng Li, and Deborah A. Levin	565
DSMC-based uncertainty quantification for a hypersonic shock interaction flow Jonathan M. Burt, Eswar Josyula, and Isaiah M. Blankson	573
Development of a chemistry model for DSMC simulation of the atmosphere of Io using molecular dynamics Neal Parsons, Deborah A. Levin, and Adri C. T. van Duin	579
Development of an adaptive weighting scheme for DSMC and its application to an axisymmetric jet	E 0.7
DSMC simulations of shock tube experiments for the dissociation rate of nitrogen G. A. Bird	587

Computational efficiency of the inflow boundary conditions in DSMC simulation Aránzazu Pérez and José A. Moríñigo	601
DSMC collision algorithms based on Kac stochastic model Stefan Stefanov	609
Low noise fractional NTC collisions for DSMC Robert Scott Martin and Jean-Luc Cambier	615
Confirmation of non-classical laws in nonequilibrium gases and application of conservation laws to verification of DSMC R. S. Myong and J. H. Park	621
1D PIC-DSMC simulations of breakdown in microscale gaps Chris H. Moore, Matthew M. Hopkins, Paul S. Crozier, Jeremiah J. Boerner, Lawrence C. Musson, Russell W. Hooper, and Matthew T. Bettencourt	629
Accuracy analysis of DSMC chemistry models applied to a normal shock wave Sergey Gimelshein, Ingrid Wysong, Yevgeny Bondar, and Mikhail Ivanov	637
On the velocity distribution of molecular species in pulsed optical lattices T. C. Lilly, B. M. Cornella, S. F. Gimelshein, and A. D. Ketsdever	645
State specific vibrational relaxation and dissociation models for nitrogen in shock wave regions Zheng Li, Ilyoup Sohn, and Deborah A. Levin	653
Monte Carlo simulation of rarefied gas flow induced by wall temperature gradient Hiroaki Matsumoto and Kyoshiro Kanamori	661
Dispersion of sound induced by a non-resonant interaction of an optical lattice with collisional gases	
Mikhail Shneider and Sergey Gimelshein	66/
Effects of rarefaction on the shock wave/boundary layer interaction in hypersonic regime Gennaro Zuppardi and Chiara Boffa	673
Sensitivity analysis of the Gupta and Park chemical models on the heat flux by DSMC and CFD	
codes Luigi Morsa, Giandomenico Festa, and Gennaro Zuppardi	680
DSMC simulation of rarefied gas flows under cooling conditions using a new iterative wall heat flux specifying technique H Akhlaghi F Roohi and R S Myong	687
n. rikingan, 2. Room, and R. S. Hryong	007

MICROFLUIDICS

Fluctuating hydrodynamics and direct simulation Monte Carlo	
Kaushik Balakrishnan, John B. Bell, Aleksandar Donev, and Alejandro L. Garcia	695

Asymptotic modelling of isothermal gaseous flow in microchannels by using Burnett equations R. Gatignol	705
A kinetic model for capillary flows in MEMS Paolo Barbante, Aldo Frezzotti, Livio Gibelli, Paolo Legrenzi, Alberto Corigliano, and Attilio Frangi	713
Transition regime analytical solution to gas mass flow rate in a rectangular micro channel S. Kokou Dadzie and Nishanth Dongari	720
Repulsion and attraction caused by radiometric forces Austin Ventura, Andrew Ketsdever, Rebecca Webb, Alina Alexeenko, Natalia Gimelshein, and Sergey Gimelshein	727
Linearized Boltzmann equation: A preliminary exploration of its range of applicability Gian Pietro Ghiroldi, Livio Gibelli, Paride Dagna, and Alice Invernizzi	735
Asymptotic modeling of the flow of a binary gas mixture in a microchannel M. Reyhanian Mashhadi, C. Croizet, and R. Gatignol	742
Application of radiometric force to microactuation and energy transformation Nathaniel Selden, Natalia Gimelshein, Sergey Gimelshein, and Andrew Ketsdever	750
Effects of thermal creep and high order slip/jump on natural convection in microchannels Behnam Rahimi and Hamid Niazmand	757
Numerical study of the Poiseuille and thermal creep flow of nitrogen in long capillaries V. A. Titarev and E. M. Shakhov	765
VOLUME 2	
MICRO-NANO SCALE FLOWS AND DEVICES	
Velocity inversion and predicting velocity slip on curved surfaces Ali Dinler, Robert W. Barber, David R. Emerson, and Stefan K. Stefanov	771
Rarefaction effects in gas flows over curved surfaces Nishanth Dongari, Craig White, Thomas J. Scanlon, Yonghao Zhang, and Jason M. Reese	778
A simple model for flows around moving vanes in Crookes radiometer Satoshi Taguchi and Kazuo Aoki	786
Numerical analysis on gas separator with thermal transpiration in micro channels Hiroshi Sugimoto and Masaya Hibino	794
A kinetic approach for the evaluation of damping in micro-electro-mechanical systems devices vibrating at high frequencies Silvia Lorenzani and Laurent Desvillettes	802

A numerical study for transport phenomena of nanoscale gas flow in porous media Tomoya Oshima, Shigeru Yonemura, and Takashi Tokumasu	809
Study of gas separation in micro devices by solving the Boltzmann equation O. I. Dodulad, I. D. Ivanova, Yu. Yu. Kloss, P. V. Shuvalov, and F. G. Tchremissine	816
Experimental research of gas flows through isothermal and non-isothermal membranes Yu. V. Nikolskiy and O. G. Friedlander	824
Poiseuille flow in a capillary at all regimes of rarefied gas flows V. V. Zhvick and O. G. Friedlander	830
Prototype of calorimetric flow microsensor Oleg Sazhin	837
2D numerical simulation of gas flow interaction with a solid wall by regularized Grad's set of	
M. Yu. Timokhin, I. E. Ivanov, and I. A. Kryukov	843
PARTICLE METHODS FOR FLOWS SIMULATIONS	
Efficiency and stability of the DSBGK method Jun Li	849
Transient gas flow studied by a test particle Monte Carlo approach with ProVac3D Xueli Luo, Thomas Giegerich, and Christian Day	857
Molecular simulation of small Knudsen number flows Fei Fei and Jing Fan	864
Moment preserving adaptive particle weights using octree velocity distributions for PIC	
Robert Scott Martin and Jean-Luc Cambier	872
Statistical error and optimal parameters of the test particle Monte Carlo method M. Yu. Plotnikov and E. V. Shkarupa	880
MOLECULAR DYNAMICS	
Modeling of an ionic liquid electrospray using a molecular dynamics model Arnaud Borner, Zheng Li, and Deborah A. Levin	887
Molecular dynamics simulations of high speed rarefied gas flows Nishanth Dongari, Yonghao Zhang, and Jason M. Reese	895
Slip effects at the vapor-liquid boundary Aldo Frezzotti and Maurizio Rossi	903

Molecular dynamics simulation on rarefied gas flow in different nanochannel geometries J. H. Kim, A. J. H. Frijns, S. V. Nedea, and A. A. van Steenhoven	911
Molecular dynamics simulation of deposition and growth of Cu thin film on Si substrate Jun Zhang, Chong Liu, Yonghua Shu, and Jing Fan	919
Molecular dynamics study of nonequilibrium processes of evaporation and condensation at a vapor-liquid interface Takeru Yano	926
Computation of unstable rarefied gas flow in channels with different scattering functions O. A. Aksenova and I. A. Khalidov	931
Multi-potential interactions in plasma adopting a GPU version of the reaction ensemble Monte	
A. D'Angola, M. Tuttafesta, M. Guadagno, P. Santangelo, A. Laricchiuta, G. Colonna, and M. Capitelli	938
Thermal transpiration of nanoscale gas flow Gulru Babac, Nishanth Dongari, Yonghao Zhang, and Jason M. Reese	946
Fluid properties from equations of state compared with direct molecular simulations for the Lennard-Jones system HO. May and P. Mausbach	954
GRANULAR SYSTEMS	
Heat flux in a granular gas J. J. Brey and M. J. Ruiz-Montero	961
On the linear Boltzmann equation with rough granular collisions and spin Rolf Pettersson	971
Steady representation of the homogeneous cooling state of a granular mixture M. J. Ruiz-Montero and J. Javier Brey	977
Velocity distribution and cumulants in the unsteady uniform longitudinal flow of a granular gas Antonio Astillero and Andrés Santos	985
Hydrodynamics at the Navier-Stokes level applied to fast, transient, supersonic granular flows Lidia Almazán, Clara Salueña, Vicente Garzó, José A. Carrillo, and Thorsten Pöschel	993
Time dependent Ginzburg-Landau equation for sheared granular flow Kuniyasu Saitoh and Hisao Hayakawa	1001
Which reference state for a granular gas heated by the stochastic thermostat?	1009

Energy non-equipartition in a system with a granular impurity under Couette-Fourier flow F. Vega Reyes and V. Garzó	1017
Homogeneous states in granular fluids driven by thermostats Moisés G. Chamorro, Francisco Vega Reyes, and Vicente Garzó	1024
Grad's moment method for a low-density granular gas. Navier-Stokes transport coefficients Vicente Garzó	1031
Slow dynamics near jamming Kuniyasu Saitoh, Vanessa Magnanimo, and Stefan Luding	1038
Relative entropy of a freely cooling granular gas Andrés Santos and Gilberto M. Kremer	1044
REACTION AND RELAXATION PROCESSES	
The effect of internal energy on chemical reaction rates as predicted by Bird's quantum-kinetic	
Michael A. Gallis and John R. Torczynski	1051
Relaxation of rotational-vibrational energy and volume viscosities in H/H₂ mixtures D. Bruno, F. Esposito, and V. Giovangigli	1061
Macroscopic kinetic model for air in nozzle flow Gianpiero Colonna, Lucia Daniela Pietanza, and Mario Capitelli	1071
Scalar forces/fluxes and reciprocity relations in flows with strong thermal and chemical non- equilibrium E. V. Kustova	1078
Normal mean stress in non-equilibrium viscous N ₂ /N flows with dissociation and electronic	
excitation E. V. Kustova, D. V. Makarkin, and M. A. Mekhonoshina	1086
Equilibrium and non-equilibrium rate constants of oxygen dissociation at high temperatures L. B. Ibraguimova, O. P. Shatalov, and Yu. V. Tunik	1094
The influence of CO₂ kinetics on the hypersonic flow near blunt bodies E. V. Kustova, E. A. Nagnibeda, Yu. D. Shevelev, and N. G. Syzranova	1102
EquilTheTA: Thermodynamic and transport properties of complex equilibrium plasmas G. Colonna and A. D'Angola	1110
CO ₂ state-to-state kinetics and transport in a hypersonic boundary layer: Preliminary results I. Armenise and E. Kustova	1116
Assessment of high-enthalpy air chemistry models for hypervelocity ground-based experiments Marat Kulakhmetov, Yevgeniy A. Bondar, Mikhail S. Ivanov, and Alina A. Alexeenko	1122

GAS-SURFACE INTERACTIONS

Molecular dynamics study of hydrogen atom recombination over silica, based on a new analytical	
DFT potential energy surface P. Gamallo, M. Rutigliano, S. Orlandini, M. Cacciatore, and R. Sayós	1129
A finite-rate model for oxygen-silica catalysis through computational chemistry simulation Paul Norman and Thomas Schwartzentruber	1137
Numerical analysis of vapor-liquid two-phase system based on the Enskog-Vlasov equation Kazumichi Kobayashi, Kotaro Ohashi, and Masao Watanabe	1145
Influence of surface characteristics on scattering behavior in Couette flow with heat transfer Hideki Takeuchi and Toru Hyakutake	1152
Application of Gaussian random field theory to direct simulation of rarefied gas flow near rough	
Olga A. Aksenova, Iskander A, Khalidov, and Victoria I. Sviridovich	1160
The influence of roughness of the surface on the interchange of momentum between gas flow and	
A. I. Erofeev, O. G. Friedlander, A. P. Nikiforov, S. B. Nesterov, and R. A. Nezhmetdinova	1168
On the Maxwell gas-wall interaction model for micro/nano gas flows Tengfei Liang, Qi Li, and Wenjing Ye	1175
EXPERIMENTAL PROCEDURES IN RGD	
Measurements of time-of-flight distributions of shock-heated molecular beams K. Osuka, Y. Yoshimoto, N. Miyoshi, I. Kinefuchi, S. Takagi, and Y. Matsumoto	1182
Response of the Patterson probe in the transition flow regime Martin Grabe	1188
Coherent Rayleigh-Brillouin scattering in high intensity laser fields B. M. Cornella, S. F. Gimelshein, T. C. Lilly, and A. D. Ketsdever	1195
Rarefied gas flow through porous media: Experiments and numerical simulation E. Afrasiabian, L. Marino, and C. M. Casciola	1202
Mass spectrometry of pyrolysis products of hexafluoropropylene oxide during adiabatic	
M. N. Andreev, I. S. Bespalov, A. K. Rebrov, A. I. Safonov, and N. I. Timoshenko	1208
Coupling particle simulation with aerodynamic measurement in hypersonic rarefied wind tunnel	
Toshiyuki Suzuki, Takashi Ozawa, and Kazuhisa Fujita	1213

JETS AND PLUMES

Far field deposition of scoured regolith resulting from lunar landings A. B. Morris, D. B. Goldstein, P. L. Varghese, and L. M. Trafton	1220
Experimental and numerical study of supersonic jets of N ₂ , H ₂ , and N ₂ + H ₂ mixtures P. A. Skovorodko, A. Ramos, G. Tejeda, J. M. Fernández, and S. Montero	1228
Para-hydrogen narrow filament evaporation at low temperature T. G. Elizarova, A. A. Gogolin, and S. Montero	1236
Numerical analysis of a binary jet mixture impinging on a plate L. Marino and C. Spernanzoni	1242
Rarefied planar jet and jet impingement flows C. Cai, C. Zou, X. Huang, L. Wang, and Q. Sun	1249
CLUSTERS, AEROSOLS AND ELECTROSPRAYS	
Chemical reactions studied at ultra-low temperature in liquid helium clusters Friedrich Huisken and Serge A. Krasnokutski	1257
Supercritical-state expansions which cross the binodal line before reaching the nozzle throat Eldon L. Knuth and J. Peter Toennies	1267
Gas dynamic optimization of the atomic nanocluster deposition system Petr A. Skovorodko, Simon A. Brown, and Domagoj Belić	1274
Application of DSMC method for size-corrected theory of homogeneous nucleation Nikolay Y. Bykov and Yuriy E. Gorbachev	1282
Bulk condensation in the dust-laden flow of vapor/gas mixture N. M. Kortsenshteyn and A. K. Yastrebov	1290
MOLECULAR BEAMS AND MOLECULAR COLLISIONS	
Experiments on microjets of undercooled liquid hydrogen José M. Fernández, Matthias Kühnel, Guzmán Tejeda, Anton Kalinin, Robert E. Grisenti, and Salvador Montero	1296
Diagnostics of H₂O and H₂+He supersonic jets by Raman spectroscopy G. Tejeda, J. M. Fernández, and S. Montero	1305

Microscopic linear liquid streams in vacuum: Injection of solvated biological samples into X-ray free electron lasers	
R. B. Doak, D. P. DePonte, G. Nelson, F. Camacho-Alanis, A. Ros, J. C. H. Spence, and U. Weierstall	1314
Quantum decoherence mechanism in atom-molecule - collisions: NO + Ar case study J. Tornero, MS. Chao, K. C. Lin, S. Stolte, and A. González Ureña	1324
Vibrational excitation and relaxation of NO molecules scattered from a Au(111) surface Christof Bartels, Kai Golibrzuch, Alexander Kandratsenka, Russell Cooper, Igor Rahinov, Daniel J. Auerbach, and Alec M. Wodtke	1330
Dynamics of alkali ions-neutral molecules reactions: Radio frequency-guided beam experimental cross-sections and direct quasiclassical trajectory studies J. Aguilar, J. de Andrés, J. M. Lucas, M. Albertí, F. Huarte-Larrañaga, D. Bassi, and A. Aguilar	1340
Measurement of the rotational temperature in a nitrogen molecular beam by REMPI H. Yamaguchi, T. Moriyama, K. Ide, J. Ito, Y. Matsuda, and T. Niimi	1350
Femtosecond resolved dynamics in small polyatomic molecules by velocity map imaging Valérie Blanchet	1355
Radical-neutral chemical reactions studied at low temperature with VUV synchrotron photoionization mass spectrometry Satchin Soorkia, Stephen R. Leone, and Kevin R. Wilson	1365
Reactivity of Ba and Ca atoms with N ₂ O molecules deposited on van der Waals clusters and helium droplets Marc-André Gayeau, Marc Briant, and Jean-Michel Mestdagh	1373
Cluster growth in supersonic jets of CO ₂ through a slit nozzle A. Ramos, G. Teieda, J. M. Fernández, and S. Montero	1383
PLASMA FLOWS AND PROCESSING	
Physics of Hall-effect thruster by particle model Francesco Taccogna, Pierpaolo Minelli, Mario Capitelli, and Savino Longo	1390
Self-consistent coupling of chemical, electron and radiation models for shock wave in Jupiter atmosphere	1400
Gianpiero Colonna, Lucia Daniela Pietanza, Giuliano D'Ammando, and Mario Capitelli	1400
Toward hybrid simulation of flow generation in DBD plasma actuator Kazuya Sugimoto and Naofumi Ohnishi	1408
Modeling of neutral entrainment in an FRC thruster Jeremiah Brackbill, Natalia Gimelshein, Sergey Gimelshein, Jean-Luc Cambier, and Andrew Ketsdever	1416

Experimental investigation of supersonic low pressure air plasma flows obtained with different arc-jet operating conditions Viviana Lago and Abdoul-Aziz Ndiaye	1423
PIC simulation of electrodeless plasma thruster with rotating electric field Ryosuke Nomura, Naofumi Ohnishi, and Hiroyuki Nishida	1431
Gas dynamic aspects of silicon thin layers deposition using excitation of a free jet of the working gas mixture by an electron beam	
P. A. Skovorodko, R. G. Sharafutdinov, V. G. Shchukin, and V. O. Konstantinov	1437
RGD IN ASTROPHYSICS AND AERONOMY. SPACE VEHICLES AERODYNAMICS	
Experimental and numerical investigation of aerodynamic effects induced by a glow discharge over a cylinder in rarefied supersonic regime	
Viviana Lago, Jean Denis Parisse, Jerome Pons, Emmanuelle Tinon, and Alexey N. Kudryavtsev	1443
Simulations of hypersonic, high-enthalpy separated flow over a 'tick' configuration J. N. Moss, S. O'Byrne, N. R. Deepak, and S. L. Gai	1453
Analysis of low-density effects in suborbital flight of FAST20XX Raffaele Votta, Marco Marini, Luigi Morsa, Giorgio Fels, Gennaro Zuppardi, Tobias Schwanekamp, and Martin Sippel	1461
Applications of underexpanded jets in hypersonic aerothermodynamics research Vladimir V. Riabov	1469
Numerical investigation of a drag increase achievable in electrodynamic aerobraking of a reentry	
Hiroshi Katsurayama and Takashi Abe	1477
Rarefied aerothermodynamics for Mars aero-flyby sample collection mission T. Ozawa, T. Suzuki, H. Takayanagi, and K. Fujita	1485
Hypersonic aerodynamics of a flat plate: Bridging formula and wall temperature effects Yuan Hu, Song Chen, and Quanhua Sun	1493
Comparative study of various approaches for modeling transitional hypersonic rarefied gas flows	
I. G. Brykina, B. V. Rogov, G. A. Tirskiy, V. A. Titarev, and S. V. Utyuzhnikov	1500
Treatment of differently weighted particles in reactive re-entry flows with DSMC D. Petkow, A. Mirza, G. Herdrich, and S. Fasoulas	1507
Study of the coupling between real gas effects and rarefied effects on hypersonic aerodynamics Song Chen, Yuan Hu, and Quanhua Sun	1515
Wind compensation by radiometer arrays in high altitude propulsion Natalia Gimelshein, Sergey Gimelshein, Andrew Ketsdever, and Marcus Young	1522

Heat transfer on a hypersonic sphere with gas injection Vladimir V. Riabov	1529
DSMC aero-thermo-dynamic analysis of a sample-return capsule Gennaro Zuppardi, Raffaele Savino, Chiara Boffa, and Valerio Carandente	1535
Numerical analysis of Io's atmospheric behavior during eclipse based on a model Boltzmann	
equation	1541
Sningo Kosuge and Kazuo Aoki	1541
The development of a combined effects space simulation facility Carlos A. Maldonado, Taylor C. Lilly, and Andrew D. Ketsdever	1549
Climatic effects of the Chicxulub impact ejecta	1.5.5.7
Devon Parkos, Marat Kulakhmetov, Brandon Johnson, Henry J. Melosh, and Alina Alexeenko	1557

Author Index