

Electronic, Photonic, Plasmonic, Phononic and Magnetic Properties of Nanomaterials

London, Canada

12–16 August 2013

Editor

Mahi R. Singh University of Western Ontario, London, Canada

Assistant Editor Godfrey Gumbs Hunter College, New York, USA

All papers have been peer reviewed.

Sponsoring Organizations Air Force Research Laboratory (AFRL) Air Force Office of Scientific Research Western University – The Department of Physics and Astronomy Western University – The Faculty of Science Western University – Western VP Research Hunter College - The City University of New York

Melville, New York, 2014 AIP Proceedings

Volume 1590

Editor

Mahi R. Singh

University of Western Ontario Department of Physics and Astronomy 1151 Richmond Street London, Ontario, N6A 3K7 Canada

E-mail: msingh@uwo.ca

Assistant Editor

Godfrey Gumbs

Hunter College Department of Physics and Astronomy North Building room 1225695 Park Ave, NY 10065 USA

E-mail: ggumbs@hunter.cuny.edu

Authorization to photocopy items for internal or personal use, beyond the free copying permitted under the 1978 U.S. Copyright Law (see statement below), is granted by the AIP Publishing LLC for users registered with the Copyright Clearance Center (CCC) Transactional Reporting Service, provided that the base fee of \$30.00 per copy is paid directly to CCC, 222 Rosewood Drive, Danvers, MA 01923, USA: http://www. copyright.com. For those organizations that have been granted a photocopy license by CCC, a separate system of payment has been arranged. The fee code for users of the Transactional Reporting Services is: 978-0-7354-1222-4/14/\$30.00

No claim is made to original U.S. Government works.

Permission is granted to quote from the AIP Conference Proceedings with the customary acknowledgment of the source. Republication of an article or portions thereof (e.g., extensive excerpts, figures, tables, etc.) in original form or in translation, as well as other types of reuse (e.g., in course packs) require formal permission from AIP Publishing and may be subject to fees. As a courtesy, the author of the original proceedings article should be informed of any request for republication/reuse. Permission may be obtained online using RightsLink. Locate the article online at http://proceedings.aip.org, then simply click on the RightsLink icon/"Permissions/Reprints" link found in the article abstract. You may also address requests to: AIP Publishing Office of Rights and Permissions, Suite 1NO1, 2 Huntington Quadrangle, Melville, NY 11747-4502, USA; Fax: 516-576-2450; Tel.: 516-576-2268; E-mail: rights@aip.org.

ISBN 978-0-7354-1222-4"*Qtki kpcrlRtkpv+ ISSN 0094-243X Printed in the United States of America

AIP Conference Proceedings, Volume 1590 Electronic, Photonic, Plasmonic, Phononic and Magnetic Properties of Nanomaterials **Table of Contents**

1

Preface: Electronic, Photonic, Plasmonic, Phononic and Magnetic Properties of Nanomaterials

Mahi R. Singh	1
ELECTRONIC PROPERTIES OF NANOMATERIALS The evolvement of the transport mechanism with the ensemble density of Si quantum dots Isaac Balberg	3
Photon assisted current in molecular nanojunctions with novel types of contacts Boris D. Fainberg	10
An excitonic approach to the intraband THz response of semiconductor nanostructures Marc M. Dignam, Fredrik Sy, Andrew M. Parks, and Dawei Wang	20
Experimental and theoretical XANES of CdS _x Se _{1-x} nanostructures Y. M. Yiu, M. W. Murphy, L. Liu, Y. Hu, and T. K. Sham	26
 A review of non linear piezoelectricity in semiconductors M. A. Migliorato, J. Pal, R. Garg, G. Tse, H. Y.S. Al-Zahrani, U. Monteverde, S. Tomić, C-K. Li, Y-R. Wu, B. G. Crutchley, I. P. Marko, and S. J. Sweeney 	32
Experimental study of two-dimensional quantum Wigner solid in zero magnetic field Jian Huang, L. N. Pfeiffer, and K. W. West	42
OPTICAL PROPERTIES OF NANOMATERIALS	
Nanostructure symmetry: Relevance for physics and computing	
Marc-André Dupertuis, K. F. Karlsson, D. Y. Oberli, S. Dalessi, B. Gallinet, and G. Svendsen	51
Nanostructure-based optical filters for multispectral imaging applications Jeffrey J. L. Carson, Mohamadreza Najiminaini, Fartash Vasefi, and Bozena Kaminska	57
New metal-organic nanomaterials synthesized by laser irradiation of organic liquids Stanislav L. Kuzmin, Michal J. Wesolowski, and Walter W. Duley	64
Engineering a resonant nanocoating for an optical refractive index sensor A. Bialiayeu, A. Ianoul, and J. Albert	68

MAGNETIC PROPERTIES OF NANOMATERIALS

MAGNETIC PROPERTIES OF NANOMATERIALS	
Coherent radiation by quantum dots and magnetic nanoclusters V. I. Yukalov and E. P. Yukalova	71
Simulation of the magnetocaloric effect in Tb nanofilms Dory Hélio A. L. Anselmo, Vamberto D. Mello, and Manoel S. Vasconcelos	79
XANES study of Fe-implanted strontium titanate O. Lobacheva, L. V. Goncharova, M. Chavarha, and T. K. Sham	82
A study of ferromagnetic signals in SrTiO ₃ nanoparticles P. Kovacs, B. Des Roches, and D. A. Crandles	87
Structural and physical properties of BiVO ₃ M. P. Singh and F. S. Razavi	90
THERMAL PROPERTIES OF NANOMATERIALS	
Tuning phonon properties to enhance the thermoelectric figure of merit Iorwerth O. Thomas and G. P. Srivastava	95
Simulation of nanosecond laser-induced thermal dynamics of hollow gold nanoshells for hyperthermia therapy	
Ali Hatef, Simon Fortin-Deschênes, and Michel Meunier	105
Anomalous phonon characteristics of unconventional novel III-N superlattices Devki N. Talwar	111
The use of nanomaterials for mass spectrometry can be uplifting for analyte detection J. Li and R. H. Lipson	119
GRAPHITE-BASED NANOSTRUCTURES	
Fabrication and long-wavelength characterization of neat and chemically modified graphene Nikolai G. Kalugin	126
Dynamic polarization of carbon nano-structures by charged particles Zoran L. Miskovic	129
Effects of periodic scattering potential on Landau quantization and ballistic transport of electrons	
in graphene Godfrey Gumbs, Andrii Iurov, Danhong Huang, Paula Fekete, and Liubov Zhemchuzhna	134

Second harmonic generation in gapped graphene Godfrey Gumbs, Yonatan Abranyos, Upali Aparajita, and Oleksiy Roslyak	143
The Coulomb excitations of Bernal bilayer graphene under external fields Jhao-Ying Wu and Ming-Fa Lin	153
Modeling ellipsometry and electron energy loss spectroscopy of graphene Keenan A. Lyon, Zoran L. Miskovic, Alain C. Diebold, and Juan-Carlos Idrobo	158
The effects of the substrate surface roughness on graphene plasmons Keenan A. Lyon and Zoran L. Miskovic	163
NANO OPTICS	
Modeling nanoparticle optics and surface enhanced emission Kevin L. Shuford	168
Fluorescence from a quantum dot and metallic nanosphere hybrid system Daniel G. Schindel and Mahi R. Singh	178
PLASMONICS AND POLARITONICS Hybrid plasmonic nanodevices: Switching mechanism for the nonlinear emission	
Andrea V. Bragas and Mahi R. Singh	187
Backside configured surface plasmonic enhancement Guiru Gu, Jarrod Vaillancourt, and Xuejun Lu	195
Polaritonic excitations in aperiodic nanolayers M. S. Vasconcelos, Dory Hélio A. L. Anselmo, and Vamberto D. Mello	200
PHOTONIC CRYSTALS	
Review on recent progress of three-dimensional optical photonic crystal Mei-Li Hsieh, Ping Kuang, James A. Bur, Sajeev John, and Shawn-Yu Lin	204
Manipulating light propagation and emission using photonic crystals Rajesh V. Nair and B. N. Jagatap	210
Dipole nano-laser: Theory and properties T. Ghannam	214
METAMATERIALS	
A review of nano-optics in metamaterial hybrid heterostructures Mahi R. Singh	218

NANOMATERIALS APPLICATIONS The self-assembly of particles with isotropic interactions: Using DNA coated colloid

The self-assembly of particles with isotropic interactions: Using DNA coated colloids to create	
designer nanomaterials R. B. Thompson, S. Dion, and K. von Konigslow	229
Nanomaterials driven energy, environmental and biomedical research Prakash C. Sharma, Sesha S. Srinivasan, and Jeremiah F. Wilson	234
Future nano- and micro-systems using nanobonding technologies Matiar M. R. Howlader and M. Jamal Deen	244
The effect of TiO ₂ nanostructures on self-degrading polyurethane foams Chao Chen and Paul A. Charpentier	251
Photo-physical properties enhancement of bare and core-shell quantum dots Md Abdul Mumin, Kazi Farida Akhter, and Paul A. Charpentier	259
Application of TiO ₂ and fumed silica nanoparticles and improve the performance of drilling fluids	
Goshtasp Cheraghian, Mahmood Hemmati, and Saeed Bazgir	266
Simulations of optical sensors fabricated from metallic rods couplers M. R. Singh and Shankar Balakrishanan	271
Subject Index	275