2011 PHYSICS EDUCATION RESEARCH CONFERENCE

Omaha, Nebraska, USA 3 – 4 August 2011

EDITORS

N. Sanjay Rebello Kansas State University, Manhattan, KS, USA

Paula V. Engelhardt Tennessee Technological University, Cookeville, TN, USA

> Chandralekha Singh University of Pittsburgh, Pittsburgh, PA, USA

SPONSORING ORGANIZATION American Association of Physics Teachers

Melville, New York, 2012 AIP | CONFERENCE PROCEEDINGS 1413

Editors

N. Sanjay Rebello Kansas State University Department of Physics 116 Cardwell Hall Manhattan, KS 66506-2601 USA

E-mail: : srebello@phys.ksu.edu

Paula V. Engelhardt Tennessee Technological University Department of Physics P.O. Box 5051 Cookeville, TN 38505 USA

E-mail: engelhar@tntech.edu

Chandralekha Singh University of Pittsburgh Department of Physics & Astronomy 3941 O'Hara Street Pittsburgh, PA 15260 USA

E-mail: clsingh@pitt.edu

Authorization to photocopy items for internal or personal use, beyond the free copying permitted under the 1978 U.S. Copyright Law (see statement below), is granted by the American Institute of Physics for users registered with the Copyright Clearance Center (CCC) Transactional Reporting Service, provided that the base fee of \$30.00 per copy is paid directly to CCC, 222 Rosewood Drive, Danvers, MA 01923, USA: http://www.copyright.com. For those organizations that have been granted a photocopy license by CCC, a separate system of payment has been arranged. The fee code for users of the Transactional Reporting Services is: 978-0-7354-0990-3/12/\$30.00

© 2012 American Institute of Physics

No claim is made to original U.S. Government works.

Permission is granted to quote from the AIP Conference Proceedings with the customary acknowledgment of the source. Republication of an article or portions thereof (e.g., extensive excerpts, figures, tables, etc.) in original form or in translation, as well as other types of reuse (e.g., in course packs) require formal permission from AIP and may be subject to fees. As a courtesy, the author of the original proceedings article should be informed of any request for republication/reuse. Permission may be obtained online using RightsLink. Locate the article online at http://proceedings.aip.org, then simply click on the RightsLink icon/"Permissions/Reprints" link found in the article abstract. You may also address requests to: AIP Office of Rights and Permissions, Suite 1NO1, 2 Huntington Quadrangle, Melville, NY 11747-4502, USA; Fax: 516-576-2450; Tel.: 516-576-2268; E-mail: rights@aip.org.

L.C. Catalog Card No. 2012945308 ISBN 978-0-7354-0990-3'*Qtki kpcrlRtkpv+ ISSN 0094-243X Printed in the United States of America

AIP Conference Proceedings, Volume 1413 2011 Physics Education Research Conference

Table of Contents

Preface: 2011 Physics Education Research Conference N. Sanjay Rebello, Paula V. Engelhardt, and Chandralekha Singh	1
Conference Overview	3
Schedule	5

INVITED PAPERS

(NOT PEER REVIEWED)

In search of alignment: Matching learning goals and class assessments David T. Brookes and Eugenia Etkina	11
Fostering computational thinking in introductory mechanics Marcos D. Caballero, Matthew A. Kohlmyer, and Michael F. Schatz	15
Development of proximal formative assessment skills in video-based teacher professional	
development Eleanor W. Close, Rachel E. Scherr, Hunter G. Close, and Sarah B. McKagan	19
FCI normalized gain, scientific reasoning ability, thinking in physics, and gender effects Vincent P. Coletta, Jeffrey A. Phillips, and Jeff Steinert	23
Graphical representations of vector functions in upper-division E&M Elizabeth Gire and Edward Price	27
Implementation of phased-array homework: Assessment and focused understanding Stacy H. Godshall	31
ACS exams as an example of scholarship-based assessment in a discipline Thomas Holme and Megan Grunert	35
Promoting and assessing creativity and innovation in physics undergraduates Patrick B. Kohl, H. Vincent Kuo, Susan Kowalski, and Frank Kowalski	39
Developing a magnetism conceptual survey and assessing gender differences in student	
understanding of magnetism Jing Li and Chandralekha Singh	43

Can multiple-choice questions simulate free-response questions? Shih-Yin Lin and Chandralekha Singh	47
Assessment to complement research-based instruction in upper-level physics courses Michael E. Loverude	51
Representations for a spins-first approach to quantum mechanics Corinne Manogue, Elizabeth Gire, David McIntyre, and Janet Tate	55
Complex interactions between formative assessment, technology, and classroom practices Edward Price	59
Changing scientific reasoning and conceptual understanding in college students Brian A. Pyper	63
Comparing students' performance on research-based conceptual assessments and traditional	
classroom assessments N. Sanjay Rebello	66
Standards-based grading with voice: Listening for students' understanding Andy Rundquist	69
Assessment lessons from K-12 education research: Knowledge representation, learning, and	
motivation Lorrie A. Shepard	73
Improving students' understanding of quantum mechanics by using peer instruction tools Chandralekha Singh and Guangtian Zhu	77
When students can choose easy, medium, or hard homework problems Raluca E. Teodorescu, Daniel T. Seaton, Caroline N. Cardamone, Saif Rayyan, Jonathan E. Abbott, Analia Barrantes, Andrew Pawl, and David E. Pritchard	81
Representations of partial derivatives in thermodynamics John R. Thompson, Corinne A. Manogue, David J. Roundy, and Donald B. Mountcastle	85
Representation issues: Using mathematics in upper-division physics Joseph F. Wagner, Corinne A. Manogue, and John R. Thompson	89
When basic changes to a solution suggest meaningful differences in mathematics Michael C. Wittmann and Katrina E. Black	93
The Group Administered Interactive Questionnaire: An alternative to individual interviews Edit Yerushalmi, Charles Henderson, William Mamudi, Chandralekha Singh, and Shih-Yin Lin	97

PEER REVIEWED PAPERS

Expectancy violation in physics and mathematics classes in a student-centered classroom	
Carolina Alvarado, Angeles Dominguez, Ruth Rodriguez, and Genaro Zavala	103

Interpretive themes in quantum physics: Curriculum development and outcomes Charles Baily and Noah D. Finkelstein	107
Student interpretation of the signs of definite integrals using graphical representations Rabindra R. Bajracharya, Thomas M. Wemyss, and John R. Thompson	111
Students' difficulties with unit vectors and scalar multiplication of a vector Pablo Barniol and Genaro Zavala	115
Using artifact methodology to compare learning assistants' and colleagues' classroom practices Stephanie A. Barr, Mike J. Ross, and Valerie Otero	119
Student-generated content: Using PeerWise to enhance engagement and outcomes in introductory physics courses	
Simon P. Bates, Ross K. Galloway, and Karon L. McBride	123
Implementation of physics and everyday thinking in a high school classroom: Concepts and	
argumentation Shelly N. Belleau, Mike J. Ross, and Valerie K. Otero	127
Designing a physics learning environment: A holistic approach David T. Brookes and Yuhfen Lin	131
Item response theory analysis of the mechanics baseline test Caroline N. Cardamone, Jonathan E. Abbott, Saif Rayyan, Daniel T. Seaton, Andrew Pawl, and David E. Pritchard	135
But does it last? Sustaining a research-based curriculum in upper-division electricity and	
magnetism Stephanie V. Chasteen, Rachel E. Pepper, Steven J. Pollock, and Katherine K. Perkins	139
Teasing out the effect of tutorials via multiple regression Stephanie V. Chasteen	143
What do students learn about work in physical and virtual experiments with inclined planes? Jacquelyn J. Chini, Adrian Madsen, N. Sanjay Rebello, and Sadhana Puntambekar	147
Differentiation of energy concepts through speech and gesture in interaction Hunter G. Close and Rachel E. Scherr	151
The use of PDAs as classroom interaction system: Instructors' perspective Edgar D. Corpuz, Ma. Aileen A. Corpuz, and Mary A. Moriarty	155
Teaching physics to life science students—Examining the role of biological context Catherine H. Crouch and Kenneth Heller	159

Experiences of new faculty implementing research-based instructional strategies Melissa H. Dancy and Charles Henderson	163
Teaching assistant-student interactions in a modified SCALE-UP classroom George DeBeck and Dedra Demaree	167
Gender bias in the force concept inventory? R. D. Dietz, R. H. Pearson, M. R. Semak, and C. W. Willis	171
Applying Rasch theory to evaluate the construct validity of brief electricity and magnetism assessment Lin Ding	175
Student views of macroscopic and microscopic energy in physics and biology Benjamin W. Dreyfus, Edward F. Redish, and Jessica Watkins	179
Problem-based learning in upper division courses: Student successes, perceptions, and reactions Gintaras Duda and James Ross	183
"Implicit Action": Understanding discourse management in modeling instruction Jared Durden, Eric Brewe, and Laird Kramer	187
Developing an energy assessment for elementary education majors Tom Foster and Daniel Barnett	191
Making sense of quantum operators, eigenstates and quantum measurements Elizabeth Gire and Corinne Manogue	195
Effects of the learning assistant experience on in-service teachers' practices Kara E. Gray, David C. Webb, and Valerie K. Otero	199
Elements of proximal formative assessment in learners' discourse about energy Benedikt W. Harrer, Rachel E. Scherr, Michael C. Wittmann, Hunter G. Close, and Brian W. Frank	203
Probing student understanding with alternative questioning strategies Jeffrey M. Hawkins, Brian W. Frank, John R. Thompson, Michael C. Wittmann, and Thomas M. Weymss	207
Physics Education Research funding census Charles Henderson, Ramón Barthelemy, Noah Finkelstein, and Jose Mestre	211
Scaffolding students' application of the 'area under a curve' concept in physics problems Dehui Hu, Joshua Von Korff, and N. Sanjay Rebello	215
Using Johnson-Laird's cognitive framework of sense-making to characterize engineering students' mental representations in kinematics Bashirah Ibrahim and N. Sanjay Rebello	219
Understanding the variable effect of instructional innovations on student learning Heidi L. Iverson	223

Assessing students' ability to solve introductory physics problems using integrals in symbolic and graphical representations	227
Neelam Khan, Dehui Hu, Dong-Hai Nguyen, and N. Sanjay Rebello	227
Replicating a self-affirmation intervention to address gender differences: Successes and challenges Lauren E. Kost-Smith, Steven J. Pollock, Noah D. Finkelstein, Geoffrey L. Cohen, Tiffany A. Ito, and Akira Miyake	231
Socratic dialogs and clicker use in an upper-division mechanics course H. Vincent Kuo, Patrick B. Kohl, and Lincoln D. Carr	235
Successes and constraints in the enactment of a reform May Lee, Melissa Dancy, Charles Henderson, and Eric Brewe	239
Students' difficulties with equations involving circuit elements Jing Li and Chandralekha Singh	243
Assessing physics learning identity: Survey development and validation Sissi L. Li and Dedra Demaree	247
Using analogical problem solving with different scaffolding supports to learn about friction Shih-Yin Lin and Chandralekha Singh	251
TA-designed vs. research-oriented problem solutions Shih-Yin Lin, Chandralekha Singh, William Mamudi, Charles Henderson, and Edit Yerushalmi	255
The effect of immigration status on physics identity and physical science career intentions Florin Lung, Geoff Potvin, Gerhard Sonnert, and Philip M. Sadler	259
Should students be provided diagrams or asked to draw them while solving introductory physics problems?	
Alex Maries and Chandralekha Singh	263
Do prescribed prompts prime sensemaking during group problem solving? Mathew "Sandy" Martinuk and Joss Ives	267
Evidence of students' content reasoning in relation to measure of reform Mojgan Matloob Haghanikar, Sytil Murphy, and Dean Zollman	271
Student views of similarity between math and physics problems Dyan L. McBride	275
Criteria for creating and categorizing forms of energy S. B. McKagan, R. E. Scherr, E. W. Close, and H. G. Close	279

Finding meaningful search features for automated analysis of short responses to conceptual	
questions Christopher M. Nakamura, Sytil K. Murphy, Michael Christel, Scott M. Stevens, and Dean A. Zollman	283
Development of a mechanics reasoning inventory Andrew Pawl, Analia Barrantes, Carolin Cardamone, Saif Rayyan, and David E. Pritchard	287
Facilitating faculty conversations: Development of consensus learning goals Rachel E. Pepper, Stephanie V. Chasteen, Steven J. Pollock, and Katherine K. Perkins	291
Towards research-based strategies for using PhET simulations in middle school physical	
science classes Katherine Perkins, Emily Moore, Noah Podolefsky, Kelly Lancaster, and Christine Denison	295
Context dependence of teacher practices in middle school science Noah S. Podolefsky and Katherine K. Perkins	299
Issues and progress in transforming a middle-division classical mechanics/math methods course Steven J. Pollock, Rachel E. Pepper, and Alysia D. Marino	303
Multiple roles of assessment in upper-division physics course reforms Steven Pollock, Rachel Pepper, Stephanie Chasteen, and Katherine Perkins	307
Adapting a theoretical framework for characterizing students' use of equations in physics problem solving Carina M. Rebello and N. Sanjay Rebello	311
How accurately can students estimate their performance on an exam and how does this relate to their actual performance on the exam? N. Sanjay Rebello	315
Communicating scientific ideas: One element of physics expertise Idaykis Rodriguez, Renee Michelle Goertzen, Eric Brewe, and Laird Kramer	319
Following student gaze patterns in physical science lectures David Rosengrant, Doug Hearrington, Kerriann Alvarado, and Danielle Keeble	323
Teacher-driven professional development and the pursuit of a sophisticated understanding of inquiry Mike Ross, Ben Van Dusen, Samson Sherman, and Valerie Otero	327
Anke Ross, Den van Dusen, Sanison Sherman, and valene Olero	521
Comparing the development of students' conceptions of pulleys using physical and virtual manipulatives Amy Rouinfar, Adrian M. Madsen, Tram Do Ngoc Hoang, Sadhana Puntambekar,	
and N. Sanjay Rebello	331
Further investigation of examining students understanding of Lenz's Law and Faraday's Law Casey W. Sanchez and Michael E. Loverude	335

Creating opportunities to influence self-efficacy through modeling instruction Vashti Sawtelle, Eric Brewe, Renee Michelle Goertzen, and Laird H. Kramer	339
Intuitive ontologies for energy in physics Rachel E. Scherr, Hunter G. Close, and Sarah B. McKagan	343
Promoting proximal formative assessment with relational discourse Rachel E. Scherr, Hunter G. Close, and Sarah B. McKagan	347
What are the effects of self-assessment preparation in a middle school science classroom? Sara E. Severance	351
Students' understanding of the addition of angular momentum Chandralekha Singh and Guangtian Zhu	355
A longitudinal study of the development of attitudes and beliefs towards physics K. A. Slaughter, S. P. Bates, and R. K. Galloway	359
Toward an analytic framework of physics teaching assistants' pedagogical knowledge Benjamin T. Spike and Noah D. Finkelstein	363
Examining student ability to interpret and use potential energy diagrams for classical systems Brian M. Stephanik and Peter S. Shaffer	367
Faculty perspectives about instructor and institutional assessments of teaching effectiveness Chandra Turpen, Charles Henderson, and Melissa Dancy	371
Changing roles and identities in a teacher-driven professional development community Ben Van Dusen and Valerie Otero	375
Assessment of vertical transfer in problem solving: Mapping the problem design space Joshua Von Korff, Dehui Hu, and N. Sanjay Rebello	379
Evidence of embodied cognition about wave propagation Michael C. Wittmann and Evan Chase	383
Students' difficulties with quantum measurement Guangtian Zhu and Chandralekha Singh	387
Transforming the advanced lab: Part I—Learning goals Benjamin Zwickl, Noah Finkelstein, and H. J. Lewandowski	391
List of Participants and Email Addresses	395
Author Index	399